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Abstract

The Electron Ion Collider calls for collisions of polarized proton and polarized
helion beams on polarized electron beams. To preserve polarization of these
polarized hadron beams during acceleration, six full helical snakes will be
installed. As there are currently 4 snakes in RHIC, the remaining two snakes
will be made from existing rotator magnet coils. The existing snakes are
made from only right-handed helices where the rotator magnets are made
from both right handed and left handed helicity magnets. In order for a
sufficient stock of spare coils, one snake will be made of left handed coils.
Simulations using Opera field maps in zgoubi show the left handed snake has
sufficient range to provide the desired snake precession axes for helions and
protons with the existing power supplies. This is an overview of the right
and left handed snake assemblies and their effects.



Introduction

The Electron Ion Collider (EIC) Hadron Storage Ring (HSR) will be pri-
marily constructed using existing components from the Relativistic Heavy
Ion Collider (RHIC). The HSR will have six snakes, each of which are com-
prised of four helical dipoles, to preserve polarization of protons and helions
up to their maximum collision energies. The purpose of these snakes is to
rotate the spin vector 180◦ at each of the snake locations. To produce the
six snakes, four will be directly repurposed from RHIC, two from the RHIC
yellow ring and two from the RHIC blue ring. The remaining two snakes
will be modified from existing RHIC rotator magnets. The existing RHIC
snakes are comprised of four right-handed helicity (RH) helical dipole coils.
The existing rotators are comprised of four helical dipoles, however they al-
ternate between left-handed helicity (LH) and RH. In addition, the coils in
the rotators are rotated ninety degrees about the longitudinal axis relative
to the coils found in the snakes. Additional details on the rotators and snake
configurations are documented in [1]. To maximize the amount of spare coils,
one of the remaining two snakes will be made of only LH helical dipoles [2].
This will allow for four spare LH coils and four spare RH coils. Each coil has
a maximum supported field of 4 T which corresponds to 322 A in the power
supply [3] with the excitation noted in Fig. 1.
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Figure 1: Excitation of the magnetic field in the snake coils as a function of
current.

The helical dipoles have a period λ=2.4 m. The magnet period is defined
as [4]

k = R
2π

λ
(1)

with R being the helicity (that is -1 for LH and +1 for RH). The spin rotation
from one coil is

ϕ = π
√
1 + χ2 (2)
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where

χ = (G+ 1/γ)
qBo

mβc|k| . (3)

with G being the anomalous gyromagnetic g-factor, q is the charge, m is the
mass, Bo is the field amplitude, and c is the speed of light. This rotation
occurs in the laboratory frame about the precession axis, defined as

u = [us, ux, uy]. (4)

The precession axis for a single coil is defined as

u =
[
0,− R√

1 + χ2
,− χ√

1 + χ2

]
. (5)

The total precession axis is a contribution from all four dipoles and can be
defined as an angle in the horizontal plane, θs,x. The axis as a function of
θs,x is defined as

u = [cos θs,x, sin θs,x, 0]. (6)

For a 180◦ rotation, the angle of the spin vector from the horizontal plane is
θy = −90◦. These parameters are noted in Fig. 2.
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Figure 2: A visual of the snake coordinate system with relevant parameters
shown.

An example 45◦ precession axis corresponds to =[0.707, 0.707, 0]. The
notation for representing the sign of the field of the coil is denoted either
(+) or (-). For the standard helix configuration of right handed helices and
alternating the sign of Bo, it is labeled as R+R-R+R-. The two outer coils
are powered together with current Iout and the two inner coils are powered
with current Iin. The spin tune in the presence of full snakes is defined as

νs =
1

π

Ns∑
k=1

(−1)kϕk. (7)
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where ϕk is the azimuthal location in the ring, and k is the snake number.
For a nominal 6-snake configuration, example snake axes of ±15◦ and ±45◦

satisfy νs = n+0.5, with n being an integer [5, 6]. These axes support νs=0.5
and νs = 1.5, respectively. Relevant parameters for protons and helions are
found in Tab. 1.

Table 1: Relevant parameters for protons and helions.
G q m (GeV/c2)

proton 1.7928474 1 0.93827209
helion -4.1841536 2 2.80839148

It is convenient to define the maximum vertical orbit excursion, ymax, the
vertical orbit match requirement, ymatch, and the maximum supported βy to
provide zero clearance for a 6σ beam, βy,max. An example vertical orbit is
shown in with both ymatch and ymax in Fig. 3.
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Figure 3: Example aperture diagram with the vertical orbit in the snake, the
6σ beam envelope, the physical aperture of the snake and beam screen, and
ymatch and ymax labelled.

Snakes

Proton Configurations

For the case of protons to rotate the spin vector 180◦ about a precession axis
of 45◦, the required currents are Iout=100 A and Iin=322 A. These currents
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are near the limit of the supply, leaving little to zero margin for tuning.
Another caveat of being near the maximum current, the orbit excursion at
injection would be large. The ±15◦ has the benefit of a reduced total current,
and the axis sits near the Iin = 2Iout line (which results in zero orbit outside
of the snake), reducing the orbit match requirements in the accelerator.

The attainable precession axis while remaining under the PS limits is seen
in Fig. 4 where the symmetry between left (bottom) and right (top) handed
helices is apparent. Here, the topography is calculated using the formulation
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Figure 4: Attainable snake axes for protons, using right-handed (top) and
left-handed (bottom) helices. The dashed line corresponds to Iout = Iin
to denote the region of a symmetric orbit. The ’x’ marks correspond to
calculations with field maps which agree closely with the numerical model.

of the Introduction, and the ’x’ marks are from tracking using the field maps.
This tracking has the constraints of θy=-90 and {θs,x ∈ (−45, ..., 45)}, using
zgoubi and its preinstalled fitting routine. The results of this tracking are
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also shown in Fig. 5. Relevant parameters are summarized in Tab. 2.

Table 2: Snake currents to achieve ±45◦ and ±15◦ and an evaluation at injec-
tion of the vetical orbit excursions, matching requirements, and the maximum
supported βy to provide zero clearance for a 6σ beam.

Angle Species Iout Iin ymax (cm) ymatch (cm) βy,max (m)
±15 p 136 247 1.897 0.222 289.9
±45 p 100 322 2.331 0.888 182.6

Calculations using field maps of θs,x with respect to the inner and outer
power supplies currents, with different field configurations (+-+- and -+-+),
and with different handed helicities, is shown in Fig. 5. From this figure, it
is apparent that only axes from −45◦ to +45◦ and 135◦ to 225◦ (by flipping
the sign of Bo) can be achieved.
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Figure 5: Proton case of inner and outer PS currents required to achieve the
specified precession axis for RH and LH helices and different Bo.

Fig. 6 shows a comparison of the horizontal (top) and vertical (bottom)
orbits for the ±15◦ (left) and the ±45◦ (right) precession axes. As noted in
Tab. 2, the orbit requirement for the ±15◦ axis to match with the accelerator
is minimal when having the orbit centered in the snake. As noted in Tab. 2,
ymatch(±15◦) = 0.222 cm and ymatch(±45◦) = 0.888 cm.
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Figure 6: Proton orbits in a 15◦ snake (left) and a 45◦ snake (right).

Helion Configurations

For the case of helion, G = −4.1842 with the equivalent configuration as
protons to rotate the spin vector for protons 180◦ with a precession axis of
45◦ in the horizontal plane is to have the outer coils powered at Iout=65.5 A,
and the inner coils at Iin=211 A. For powering an equivalent magnet that
is only made of left handed coils rotates the spin vector about a precession
axis of 135◦, equivalent to a -45◦ rotation. Due to the higher G of helions
compared to protons, the snakes are able to satisfy almost all possible snake
precession axes. The precession axes are seen in Fig. 7 where the symmetry
between left and right handed helices is apparent. Note that nearly the full
array from 0 to 360◦ can be satisfied while remaining under PS limits.

Comparing Fig. 4 with Fig. 7 it is obvious that polarized helions have
a much broader range of available precession axes that the snakes can sat-
isfy. The primary set of axes that are of interest are ±15◦, ±45◦ and 0, 90◦.
The current requirements, and orbit evaluation at injection is summarized in
Tab. 3. Here it is important to note that the 90◦ axes requires large current
with Iout > Iin, resulting in a large orbit match requirement. In this case, the
orbit matching requirement is outside of the beam screen aperture of 2.4 cm.
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Figure 7: Attainable snake axes for helions, using right-handed (top) and
left-handed (bottom) helices. The dashed line corresponds to Iout = Iin to
denote the region preferential for minimal orbit excursions, Iout < Iin. The
’x’ marks correspond to calculations with field maps which agree closely with
the numerical model.

Table 3: Snake currents to achieve 90◦, ±45◦, ±15◦, and 0◦, and an evaluation
at injection of the vetical orbit excursions, matching requirements, and the
maximum supported βy to provide zero clearance for a 6σ beam.

Angle Species Iout Iin ymax (cm) ymatch (cm) βy,max (m)
0 h 103 137 1.540 -0.785 396.6

±15 h 86 156 1.751 -0.198 331.5
±45 h 59 193 2.237 0.979 203.6
90 h 229 62 2.534* 2.534* 0
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Figure 8: The maximum supported βy as a function of Bρ at a 90◦ snake for
polarized helions, with existing snakes marked in orange.

At injection |Gγ| = 49.5, Bρ=55.2 Tm which is significantly lower than
that of protons at Gγ = 45.5 (Bρ=79.4 Tm). This lower rigidity results
in larger orbit excursions, which reduces the available axes due to aperture
constraints. The maximum supported βy as a function of Bρ, taking into
account the reduction in beam size and the reduced orbit excursion with
increased energy, is shown in Fig. 8. At a minimum, Bρ=61.35 Tm (|Gγ| =
54.96) would be needed to achieve the 90◦ axis. This involves crossing the
very strong |Gγ| = 60 − νy in the Alternating Gradient Synchrotron. This
also assumes zero clearance when considering actual beam sizes with 2 µm
assumed for injection. Simulations in the AGS show that it is possible to cross
the |Gγ| = 60 − νy resonance in the AGS with two cold snakes, each with
a strength of 25% [7]. The yo5 snake, labelled as ”YO5 SNK” in Fig. 8, is
located in the low beta insertions of IR6, resulting in a larger βy which would
required an even larger injection Bρ. It is possible for this snake to operate
at 0◦ in the 0, 90◦ snake scheme which would eliminate this requirement.

A comparison of the orbits at injection (|Gγ| = 49.5) with a 45◦ and a
90◦ is shown in Fig. 11. Although the total orbit excursion of the two are
similar, the 45◦ requires a matched orbit amplitude of 9.8 mm to have the
orbit centered, whereas for 90◦ the matched orbit is 25.3 mm. Due to 0◦

being near the symmetry line in Fig. 7, the matched orbit amplitude will be
minimal.

The current on the power supplies for the inner and outer currents, with
different field configurations, and with different helicities, is shown in Fig. 10.
This figure also shows that the snakes with polarized helions can support
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Figure 9: Helion orbits in a 45◦ snake (left) and a 90◦ snake (right).

almost all snake axes.
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Figure 10: Helion case of inner and outer PS currents required to achieve the
specified precession axis for RH and LH helices and different Bo.
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Figure 11: Orbits of helions through the snakes with physical apertures and
the 6σ envelopes for a snake axis of 45◦ (left) and 90◦ (right).
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Snake ramp diagrams for RHIC

The snake ramp rates and currents as documented in [8].
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