
Brookhaven National Laboratory 

U.S. Department of Energy
USDOE Office of Science (SC), Nuclear Physics (NP)

Electron-Ion Collider

September 2025

M. Blaskiewicz

The TRANFT User Manual version 2.0

BNL-229007-2025-TECH

EIC-ADD-TN-142

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for
publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United
States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



The TRANFT User Manual version 2.0
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The Fortran program TRANFT has undergone significant revision. While many of the original
features remain others have been modified and new capabilities have been added. A second trans-
verse direction is now tracked so that the tune and force distributions associated with the beam
beam force and nonlinear space charge are correct. Also, general mutibunch instabilites are now
treated. For symmetric coupled bunch modes one can track one bunch for purely transverse modes
or a few contiguous bunches to include longitudinal modes as well. Another option which tracks all
the bunchs in the ring with provision for a clearing or abort gap is also available. In addition to
this a new algorithm to model the transverse voltage on crab cavities is introduced which includes
the effect of various feedbacks.

I. INTRODUCTION AND THEORY

Coherent instabilities are of significant concern for a wide variety of planned and existing accelerators. The theory
of these phenomena has been advancing steadily for decades [1–15]. A theoretical treatment involving all the relevant
pieces appears very difficult whereas simulation using particle tracking is conceptually straightforward [16].

The algorithm involves single particle evolution and multi-particle kicks. First consider the single particle motion.
The single particle longitudinal update for one turn is given by

ε̄ = ε+
q

mc2
[V (τ)− Vs] + δε− T0ε/Tr (1)

τ̄ = τ +
T0η

β2γ0
ε̄ (2)

where τ is the arrival time of the particle with respect to the synchronous phase, ε = γ − γ0 is proportional to the
energy deviation, γ0 is the reference Lorentz factor for a particle of mass m and charge q, V (τ) is the RF voltage,
Vs is the synchronous voltage due to both acceleration and radiation, β = v/c, T0 is the revolution period, η is the
frequency slip factor, δε is a quantum excitation random kick, Tr is the longitudinal radiation damping time, and the
updated variables are τ̄ and ε̄.

Only one transverse variable is subjected to collective forces and it will be referred to as x. The single particle
transverse update, without radiation, for one turn is

x̄ = x cosψ + p sinψ (3)

p̄ = −x sinψ + p cosψ (4)

ψ = ψ0 +
2πξ

β2γ0

ε+ ox(x2 + p2) + oy(y2 + p2
y) (5)

where p is the transverse momentum variable, ψ0 is the on-momentum phase advance, and ξ is the chromaticity.
We refer to the other dimension with variables y and py. Octupolar detuning from both dimensions is included in x
motion. Transverse radiation damping and quantum excitation are also included for x and y,

x̄ =

(
1− T0

Tx

)
x+ δx (6)

p̄ =

(
1− T0

Tx

)
p+ δp, (7)

where Tx is the transverse radiation damping time, and δx and δp are random variables. While equations (1) though
(7) are written for one turn, TRANFT allows the user to choose the number of updates per turn.
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The single bunch multiparticle forces are associated with three Green’s functions that are referred to as wake
potentials. The longitudinal voltage is

Vs(t) = −
τb∫
−τb

Ws(τ)Ib(t− τ)dτ, (8)

where τb is the bunch length, Ws(τ) is the longitudinal wake potential, and Ib(t) is the instantaneous beam current.
Note that Ib(t) is the linear superposition of the current impulses from each of the individual macro-particles. The
short range transverse voltage is

Vx(x, t) =

τb∫
−τb

[xWd(τ)Ib(t− τ) +Wx(τ)Dx(t− τ)] dτ, (9)

where Wd(τ) will be called the detuning wake [17–19], Wx(τ) is the usual transverse wake potential, and Dx(t) is
the instantaneous dipole density. Note that Dx(t) is the product of the instantaneous current and the instantaneous
value of x.

II. ALGORITHMS

All calculations, but wakefields, are done to machine precision using straighforward implementations of the equations
already introduced. As an example of the wakefield calculations consider the longitudinal voltage, equation (8). Taking
the instantaneous current to be a series of delta functions one obtains the first order approximation

Vs,1(t) = −
N∑
k=1

q̂Ws(t− τk), (10)

where there are N macroparticles of charge q̂. There are two problems with using (10) as it stands [22]. Firstly, since
N is small compared to the actual number of particles within the bunch, there can be large statistical fluctuations
in the applied voltage. This is especially worrisome since short range wake potentials tend to be very large. The
net effect is that one can have a significant, unphysical, blow-up in the longitudinal emittance. The second problem,
not fully unrelated to the first, is caused by the discrete time steps between updates. A typical particle makes a
step 2πQsστ each turn, where Qs is the synchrotron tune and στ the rms bunch length. When length scales less
than 2πQsστ are important in the wake potential then it is possible for macro-particles to pass each other without
interacting via the short range wake. Both of these problems can be alleviated by convolving (10) with a smoothing
function of characteristic scale ∆τ >∼ 2πQsστ and, since convolution is commutative and associative, we may consider

a smoothed wake potential Ŵs(τ). This leads to a second approximation for the voltage that is physically reasonable

Vs,2(t) = −
N∑
k=1

q̂Ŵs(t− τk). (11)

To update the particles equation (11) needs to be evaluated for t = τ1, . . . τN and a naive algorithm requires O(N2)
operations. Instead of incurring this computational penalty, it was decided to use an approximate technique. First,
a uniform grid of points spaced by δt <∼∆τ/5 is generated. Next, the macroparticles are placed on the grid via linear

interpolation. A fast Fourier transform (FFT) is applied, multiplied by the FFT of Ŵs, and an inverse FFT completes
the calculation of Vs,2. The total number of grid points is a power of 2 and the total grid length is at least twice the
total bunch length to eliminate “phantom” of “ghost” forces [23]. There are two sources of error involved with this
computation. The first is due to the application of linear interpolation in gridding the system and the second involves
using numerical integration (via FFT) to evaluate the sums. The net effect is easily tested by cutting δt in half and
rerunning the simulation until the answer converges. For many cases the smoothing length scale associated with a
full turn update is to large. For these cases TRANFT allows the turn to be cut into pieces allowing for shorter range
effects.

Now consider the coupled bunch algorithms. In the first it is assumed that there are M identical, equally spaced
bunches interacting with coupled bunch mode number s. While the code allows for tracking a few continguous
bunches to treat longitudinal CBMs this discussion is limited to a single tracked bunch. The tracked bunch is given
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index 0. Consider a fixed location in the ring and let xk(n), pk(n), τk(n) denote the coordinates and arrival time of
macroparticle k on turn n. For this turn define the two functions

D0
x(t, n) =

N∑
k=1

xk(n)δ̂(t− τk(n))

D0
p(t, n) =

N∑
k=1

pk(n)δ̂(t− τk(n)), (12)

where δ̂(t) is a Gaussian smoothing function. Note that these functions are nonzero only over the interval occupied
by the first bunch. Define the coupled bunch mode number so that at a fixed point in Minkowski time there is a
phase shift of −2πs/M between one bunch and the next. The key assumption of this approximation is that equations
(3) and (4) with ψ = ψ0 are adequate to characterize the bunch motion over a single turn. Then one can define the
dipole moment for turn n,

Dx(t, n) =

M−1∑
m=0

D0
x(t−mT0/M, n) cos(mψ0/M − 2πms/M)

+D0
p(t−mT0/M, n) sin(mψ0/M − 2πms/M). (13)

Notice that the dipole moment for the turn are just shifted linear combinations of D0
x and D0

p. For D0
x(t, n) =

cos(nψ0)δ(t− nT0), D0
p(t, n) = − sin(nψ0)δ(t− nT0) one has

Dx(t) =
∑
n

Dx(t, n) =
M

T0

∞∑
p=−∞

cos[(pM + s−Qx)ω0t], (14)

where Qx is the betatron tune and ω0 = 2π/T0. The frequency spectrum is typical for a coupled bunch mode and the
equation above can be used to find the most unstable value of s for a given impedance.

We now limit the allowed transverse wakes to the form Wx(τ) = Re(W̃ (τ)), with

W̃ (τ) = H(τ)

L∑
`=1

W` exp(−α`τ) (15)

where L is the number of long range transverse wakes and H is the Heaviside function. For a given n the complex
force is given by

F`(t) = W`

t∫
−∞

dt1Dx(t1) exp(−α`(t− t1)), (16)

which satisfies the differential equation

dF`
dt

= −α`F` +W`Dx(t) (17)

Suppose Fn is known at the start of the turn. In the very beginning it is just 0. One accumulates arrays representing
D0
x(t, n) and D0

p(t, n) as was used for the single bunch forces. The first bunch occupies the interval [0, T0/M ]. Equation
(17) is used to update Fn(t) over this interval supplying the force for bunch 0. Additionally one generates the numbers

U` =

T0/M∫
0

dt1D
0
x(t1)W` exp(−α`(T0/M − t1))

V` =

T0/M∫
0

dt1D
0
p(t1)W` exp(−α`(T0/M − t1)) (18)

We have calculated F`(T0/M) by integrating equation (17) over the first bunch. The most bullet proof algorithm to
obtain the force at the end of the turn uses the iteration

F`((k + 1)T0/M) = F`(kT0/M) exp(−α`T0/M) + U` cos(kψ0/M − 2πks/M) + V` sin(kψ0/M − 2πks/M). (19)
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While it is possible to use a geometric series to sum this there is always the risk of small denominators. Given there
are usually less than a few thousand bunches this is a low cost safety measure.

The second transverse algorithm tracks a larger number of bunches simply using eq (17) throughout. It is worwhile
to mention that the bunches can occupy regions far smaller than T0/M and that between the bunch grids one simply
propagates the decaying exponentials.

For longitudinal coupled bunch modes there is no simple formula for motion over a turn. In this case we track
Ns contiguous bunches with M/Ns an integer. The wakes are limited to exponentials as in the transverse case. The
bunches for the remainder of the turn are copies of the first Ns. With Ns 4 or 5 one can get coupled bunch modes if the
resonant frequencies are chosen correctly. The transverse modes are updated using equation (19) with M → M/Ns.
As with the transverse modes it is possible to track using eq (17) alone.

A nonlinear space charge force has been implemented. It starts by calculating smoothed dipole moments and
longitudinal densities

Dx(t) =

N∑
k=1

xk δ̂(t− τk), λ(t) =

N∑
k=1

δ̂(t− τk). (20)

With these one creates x̄(t) = Dx(t)/λ(t). The beam is assumed to be a round Gaussian with the same rms as the
initial macroparticle distribution. The force in x is approximated as:

Fx(x, y, t) = Kλ(t)[x− x̄(t)]
1− exp

[
− (x−x̄(t))2

2σ2
b

− y2

2σ2
b

]
(x− x̄(t))2 + y2

(21)

where K is a constant chosen to give the correct tune shift for small amplitude particles. A similar formula is used
for the beam-beam kick, which is applied once a turn.

III. IMPLEMENTATION AND USE

The fortran source code resides in the file tranft2 0.f and is liberally commented. Common blocks and some pa-
rameters are in tranft2 0 c.f. The code employs some routines from numerical recipes[24]. Some small modifications
were needed. The top of subroutine SORT2.FOR needs to be changed from

SUBROUTINE SORT2(N,RA,RB)
DIMENSION RA(N),RB(N)

to

SUBROUTINE SORT2(N,RA,RB)
DIMENSION RA(N)

C NEXT DECLARATIONS FOR INTEGER TAG-ALONG ARRAY
C BASED ON QUICKSORT

INTEGER RB(N),RRB

Along with sort2 the code uses ran3 and four1. The code may be obtained by contacting the author
blaskiewicz@bnl.gov. The code has been tested with the intel fortran compiler ifort. The compilation com-
mand is

ifort -132 -r8 -o tranft2_0 numrec.f tranft2_0.f

where the three numerical recipes routines are in numrec.f and the executable is tranft2 0.
The code uses four input files. The file tranft2 0.in contains data with regard to the beam and the lattice while

imped3.in contains data with regard to collective forces. Numerically calculated wakefields can be incorporated
via impedfile.dat and parameters defining the crab cavities are in the file crab.in. The files are not entirely
independent and using the code will be outlined with an example. Consider tranft2 0.in given by

600 10000 10 171487 10 nturns,ndim,nwrite,iseed,nperturn fiducial proton input
22.75 3833.94 25.37 -40.e3 315 -40.e3 2 gammat,circ,gamma0,vrf,nharm,vrf2,nharm2
29.23 30.25 1.368e-3 0.e-3 .0 0 0 tunex,tuney,ampx,xinject,chrom_init,chrom2d,dispavg
2.8e11 1. 1. 5.e-10 3.5 15.e-9 0. 100 5.4e9 0. pnumber,aatom,qatom,taupart,power,tauhat,phisynch,

nturnon,harmbtf,phibtf
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3000 21 19 0.e-8 83.e-9 20 nresamp,mbunch,nsim,tlob,thib,mode
-1 1 1 1 tradperp,sigperp,tradlong,siglong
0.00 -0.0 0.000 0.0 2.7e-4 0.0 dgain, alfaxx, alfaxy,bbtune,bbrad,dgainz
1.23778e9 0 0 315 15 19 omegadamp, idononlinsc, idosimfill, ncrabupdate, longrangemult, iavgsum

The code reads only the numbers on the lines (free format) and the character strings to the right are the corresponding
variables in the source code. No text is required, but the author finds it very helpful. For the case above nturns =
600 is the total number of turns simulated. The parameter ndim=10000 controls the number of macro-particles per
bunch. Writes to the screen and output files are done every nwrite=10 turns. Setting nwrite to a negative number
calculates more beam properties every |nwrite| turns and increases computional time. The random number generator
is ran3 from numerical recipes[24] and iseed =171487 is the random seed. Radiation damping, quantum excitation,
beam-beam, and all long range wakes are applied once per turn. All other algorithms are applied nperturn=10 times
per turn. For the nperturn updates of the transverse variables the angle in the rotation matrix corresponds to the
tune tune dyn = tune - int(tune)+1. This tune gives the correct betatron sidebands and a monotonic increase in
the phase angle on the x, p plane throughout the turn. It can be removed upon request.

The transition Lorentz factor is gammat, the machine circumference is circ meters. The central Lorentz factor of
the beam is gamma0. The primary RF voltage amplitude is vrf volts and nharm is the primary harmonic number.
For stable motion, the product vrf*qatom is positive below transition and negative above. Since electron clouds are
not included, switching the signs of vrf and qatom lead to identical dynamics. When vrf2=vrf the second harmonic
voltage cancels the linear part of the first harmonic, nharm2 is the ratio of the higher harmonic to the main harmonic.

The betatron tunes tunex and tuney and the average beta function is defined to be circ/(2*pi*tunex) with pi
= 3.141.... The beam is round and the rms transverse amplitude at average beta is ampx meters and the particle is
(eventually) given a kick of amplitude xinject. The unnormalized chromaticity is chrom init and the second order
chromaticity is chrom2d. The average dispersion referenced to the average beta is dispavg. It is best left 0.

The actual, physical bunch contains pnumber particles of atomic mass aatom and atomic number qatom. Set
aatom = me/mp for electrons. The wake potential smoothing is controlled by the parameter taupart. The smoothing

employs a gaussian function with equivalent length taupart =
√

2πσ seconds. The initial bunch has half length
tauhat seconds and its shape is controlled by power. The initial bunch is matched to the low current rf bucket with
shape |Hs(tauhat, 0) −Hs(τ, ε)|power where Hs(t, ε) is the longitudinal Hamiltonian obtained from equations (1) and
(2) without radiation damping. The synchronous phase is phisynch radians. (The next line should be appended to
the one above.) Over the course of nturnon turns the longituinal wakes are linearly ramped up. Then, a transverse
kick of amplitude xinject with angular frequency harmbtf and phase phibtf is given and the transverse wakes are
turned on. By running with phibtf=0 and phibtf = 1.5707 (π/2) the transverse beam transfer function can be
extracted [28].

The number of grid points used for the FFT is the smallest power of 2 that is at least as large as nresamp. The
number of bunches for a symmetric fill is mbunch, the number of contiguous bunches to track is nsim. If nsim¡ mbunch
there is a gap at the end of the bunch train. When symmetry is employed mode is the parameter is s in equation (13).
To minimize problems with truncation the stable fixed point is at half an rf period Trf/2. The interval used for the
entire FFT domain is [tlob,thib]. One gains no increase in accuracy by having thib− tlob greater than twice the
bunch length, but a factor of 3 leaves a good safety margin without introducing a large computational overhead.

The transverse radiation damping time is tradperp, called Tx in equation (6). The rms, equilibrium beam size at
average beta is sigperp. The longitudinal radiation damping time is tradlong, called Tr in equation (1) and siglong
is the rms energy spread in units of γ. Setting tradperp < 0 turns off radiation damping and quantum excitation.

The transverse damper kicks with angular frequency omegadamp with imaginary tune dgain. The octupole damping
is controlled with alfaxx which is the average tune shift from the octupoles due to the x action and alfaxy which is
the average tune shift due to y action. The central beam-beam tune shift is bbtune. This is implemented as a round
beam with rms radius bbrad. There is a rigid longitudinal damper with imaginary tune dgainz. When idononlinsc
= 1 the nonlinear space charge algorithm is used. When idosimfill=1 it is assumed that mbunch/nsim is an integer
and equation (12) through (19) are used. The crab cavities are calculated using base band forumlas [29]. The number
of baseband updates per turn is ncrabupdate which must be an integer multiple of mbunch. Another useful trick
is to divide the true number of bunches by an integer. For the case under consideration the number of bunches for
a symmetric fill is 315. The number mbunch=21 is a factor of 15 less than this. The parameter longrangemult
multiplies all long range wakefields, by 15 in this case. In this way one can track fewer bunches while keeping most
dynamics and not need to modify the impedance input file. The final parameter iavgsum is the number of bunches
one chooses to use when writing res.den and creating averages for csmon.out, to be described later.

A sample impedance input file imped3.in is

3 3833 70.e-8 .035 0 0. slenx,slens,rhoe,bpipe,wstep,detunefrac
-5.10e-6 2.e-10 47.8e6 0.078 0.e6 0 wallinduct,twall,scimped,scabrat, broad,curve_csr
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2 0 0 5 npolex,npoles,npolexlong,npoleslong
4.5e15 0 2.5e9 0 broad band transverse
1.e15 0 5.0e8 0
1.245950E+10 -2.317615E+05 1.207316E+04 6.490531E+08 5.160000E+05 2.688000E+04
1.113201E+10 -1.664973E+05 1.807144E+04 1.208257E+09 3.080000E+05 3.343000E+04
4.191200E+10 -7.263778E+05 3.010920E+04 1.737301E+09 6.960000E+05 2.885000E+04
1.090688E+11 -2.344556E+06 4.440910E+04 2.065911E+09 1.228000E+06 2.326000E+04
3.422371E+10 -3.789162E+05 2.742285E+04 2.476832E+09 6.240000E+05 4.516000E+04

The first line defines all the resistive wall quantities. The effective length for the transverse impedance and trans-
verse detuning wake is slenx meters. Remember that all quantities are referenced to the average beta func-
tion circ/(2 ∗ pi ∗ tunex) and that the relevant quantity for stability calculations is the beta weighted transverse
impedance. The effective length for the longitudinal resistive wall impedance is slens meters. The electrical re-
sistivity of of the wall material is rhoe ohm-meter. The transverse wake potential is calculated assuming a round
pipe of radius bpipe meters. The transverse detuning wake is a fixed fraction detunefrac of the longitudinal wake.
For vertical instabilities with a small vertical aperture and large horizontal aperture detunefrac = 0.5[18]. The
parameter wstep is the value for the transverse step function wake (as in a stripline pickup) in volts per coulomb per
meter.

The broad band wall inductance is wallinduct in Ohm-seconds. The very short range nature of this force warrants
additional smoothing[25] and the rms length of the additional smoothing is twall seconds. The net voltage kick per
turn is given by

V = −wallinduct dIbeam
dt

∣∣∣∣
twall

,

where the subscript on the time derivative of the beam current denotes smoothing with a gaussian pulse of rms length
twall seconds. For longitudinal space charge[26]

wallinduct = −T0

2π

∣∣∣∣Zn
∣∣∣∣
sc

= −T0

2π

Z0

βγ2 ln

(
b

1.5σb

)
, (22)

where the beam has relativistic parameters β, γ, an rms (round) transverse size σb in a round pipe of radius b and
Z0 = 377Ω. The magnitude of the direct, transverse space charge impedance is scimped in ohms per meter [26, 27],

scimped =
Z0circ

2πβ2γ2a2 (23)

where a = 2σb is the radius of a uniform equivalent beam[27]. The parameter scabrat = a/b is the ratio of the
equivalent beam radius to the beam pipe radius and is used to calculate the image space charge force. The broad
band transverse impedance in Ohm/meter is broad, and curv csr is the average curvature for the free space coherent
synchrotron radiation wake. The last components defined in imped3.in are the resonators. There are npolex short
range transverse resonators followed by npoles short range longitudinal resonators. Each resonator is defined by 4
real (2 complex) numbers. The input parameters on each line are wr, wi in Ohms per second; and α and ωr in inverse
seconds. The wake potential vanishes for t < 0 and is Re(wr + iwi) exp(−αt− iωrt) for t > 0. One may set either or
both of npolex,npoles to zero and neglect resonator contributions to that plane. There are npolexlong long range
transverse resonators and npoleslong longitinal resonators. For resonantors only the first four columns are read by
the code. Here there are additional columns on some wakes denoting shunt impedance and quality factor which help
the user keep track of things.

The third input file is crab.in. Before describing the input file we overview the algorithm. The crab cavity
transverse voltage is related to the dipole moment by

V̈x + ω2
rVx + 2αV̇x =

Rx
Q
ω2
rDT (t), (24)

where Vx is the transverse voltage on the cavity, ωr is the angular resonant frequency of the cavity, Rx is the transverse
shunt impedance, Q is the loaded quality factor of the cavity, α = ωr/2Q, and DT is the total dipole moment driving
the cavity. The dipole moment is given by

DT (t) = DB(t) + x0ILL(t)− 1

ωrReff

d

dt
(Vx(t− Td) + Vnotch(t)) . (25)
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In equation (25) DB is the beam dipole moment at the cavity as a function of time, x0ILL is the drive derived from
the setpoints of the RF system, Reff is the effective transverse shunt impedance for the feedback gain, Td is the time
delay for wide-band feedback which is equal to an integer number of RF periods. The time derivative operating on
the voltages is automatic if one couples to the electric field of the cavity. The voltage Vnotch is output from narrow
band notch filters centered at the betatron sidebands.

TRANFT assumes that a typical voltage varies like V (t) = Re[V̂ exp(jω̂t)]. The code requires that ω̂ = kωb with
ωb the bunching frequency and integer k. The CC voltage update on a given turn begins with creating the drive signal
from the beam,

V̂B(n) = −j Rx
Q

ω2
r

ω̂

nτ∫
(n−1)τ

DB(t) exp(jω̂t)dt (26)

where τ = Trev/M and the dipole moment for the turn resides in the interval [0, Trev]. When the bunch spacing is
large it can be advantageous to update the slow voltages more than once per bunch. This is done by padding zeroes
after each nonzero value of V̂B(n). Including this effect in the derivation introduces unnecessary complications and
will be neglected. The wideband feed back drive is

V̂eff (n) =
ωrτ

2Qfeed

[
f−V̂cav(n− n−) + f+V̂cav(n− n+)

]
exp(−jω̂Td), (27)

where n− ≤ Td/τ ≤ n+ bound the true delay, Qeff is the quality factor associated with feedback and f− = n+−Td/τ =
1− f+. For the notch filters there are two stages of processing. First, the notches are formed

V̂±(n) = (1− ε)V̂±(n−M) exp(∓j2πQx) + εV̂cav(m−K) exp(∓j2πQx), (28)

where K < M is an input delay, ε controls the width of the notch, and Qx is the betatron tune. Next a low pass filter
is applied.

V̂notch(n) =
1

1 + αnotch

{
ωrτ

2Qfeed
Gnotch(V̂+(n) + V̂−(n)) + αnotchV̂notch(n− 1)

}
, (29)

where Gnotch is the notch filter gain and αnotch controls the bandwidth of the notch filter. With all the various inputs
defined the cavity voltage is updated via

V̂cav(n) = exp[j(ωr − ω̂)τ − ατ ]V̂cav(n− 1)− V̂eff (n)− V̂notch(n) + V̂B(n). (30)

The voltage is applied using linear interpolation. For particles in interval [(n−1)τ, nτ ] this is Vx(t) = Re[(f−Vcav(n−
1)+f+Vcav(n)) exp(jω̂t)] where t is the particle arrival time and f− = n− t/τ . After the forces are updated one shifts

V̂ (n)→ V̂ (n−M) and the process is repeated.
We now discuss the input file crab.in.

13.8e11 3.e6 197077393. 3.196714e-7 500 10 .0625 .9460317 r197,q197,f197,tw197,gw197,gn197,
eps197,frac197

0 3.e6 394.e6 3.196714e-7 1000 10 .1 .9 eventual parameters of second crab cavity
0 0 500. lagrange idowake qnotch

The transverse shunt impedance in Ohm/m is Rx = r197. This value is referenced to the average beta function
and crab cavities are skipped when r197 < 0. The loaded quality factor of the crab cavities is Q = q197 and the
resonant frequency is f197 = ωr/2π. The total delay for fast feedback is tw197 = Td and the gain is chosen so that
gw197 = QReff/Rx. The notch filters have gain gn197 = Gnotch. (The next line should be appended to the line
above.) The notch width in revolution lines is eps197 = ε and the notch filter input is delayed by frac197 turns.
The second line is a place holder for the second crab cavity. On the third line the parameter lagrange may be
implemented to control the order of Lagrange interpolation. It is not used currently and should be left 0. When
idowake = 1 the crab cavity routine gives a single kick starting at the first turn. The output files can be used to get
the effective impedance. Finally, the parameter qnotch is the quality factor of the low pass filter applied to the notch
output. The interested reader can consult [29] for details.

The final input file is impedfile.dat which allows the user to input data from simulation codes such as Gdfidl,
CST and ABCI. The top few lines of such a file are
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3.137e-12 -242 114 dtfile,nptfile,idex0
-3.545098E-10 -8.046247E+12 0.000000E+00 4.023123E+12 tk filex(k),files(k),filed(k)
-3.513726E-10 -4.601705E+12 0.000000E+00 2.300852E+12

The file defines three arrays of nptfile elements. The wakepotentials defined in these arrays are added to those
calculated above. Setting nptfile < 0 causes the subroutine to exit and no lines after the first are read. The array
elements are spaced in time by dtfile seconds. The index corresponding to time equals zero is index0. It is strongly
suggested that at least one negative time be included, even if all wake potentials vanish at that time. The second line
on contain the array elements. The first column is the time lag in seconds. While this column is ignored by the code
the author finds it useful for comparison purposes. columns 2,3 and 4 are the additional values of Wx, −Ws and Wd.
Note that the longitudinal wake is negative at the particle which corresponds to the sign convention used in most
codes.

To run the code it is suggested that all the input files be put in a single use directory. When the code runs there are
several lines describing relevant quantities. Some notable ones are the actual voltage used for the second harmonic
cavity and the average beta function assumed for applying transverse wakes. Another important parameter is the
ratio of bin length to the rms of the gaussian smoothing length, it should be <∼0.2. Also there is the Oide-Yokoya
intensity factor I[13] in MKS units.

On the last turn of the simulation the individual particle tunes are calculated via least squares. Let a single particle’s
coordinates on this turn be x1, p1, . . . xN , pN with N = nperturn. Consider the sum

Γ(a, b, c, d) =

N−1∑
k=1

(xk+1 − axk − bpk)
2

+ (pk+1 − cxk − dpk)
2
. (31)

Minimizing Γ simultaneously with respect to a, b, c and d gives a least squares fit to the transfer matrix best describing
the particle. Given the transfer matrix the single particle tune q satisfies 2 cos(2πq/N) = (a+ d)/(ad− bc). The sign
of q is the same as the sign of b. Fitting q = ξε/γ+ q0 yields yields the chromaticity ξ. The effect of long range wakes
are not included in the tune calculation.

As the code updates the turn number (kturns) and number of macroparticles per bunch (np) are displayed. There
are also two quantities which allow the user to monitor the progress of a transverse instability. The parameter csfull
is the average over particles of x2 + p2. This parameter includes information about the emittance as well as any
coherent motion. The parameter coherecs is tailored to be a sensitive indicator of instability. Let x̄(t), and p̄(t) be
smoothed average values of x and p as the bunch passes and let I(t) be the smooth current pulse, then

coherecs =

∫
bunch

dtI(t)
[
x̄2(t) + p̄2(t)

]
∫

bunch

dtI(t)

. (32)

Along with writes to the screen there are several output files. The wake potentials in various forms are in w.out,
z.out, and ws.out. The raw wake potentials before smoothing are in w.out. There are 4 columns: the time, Wx(τ),
Ws(τ), and Wd(τ). All are in MKS units. The file z.out contains the Fourier transforms of the wake potentials and
the frequency window used for smoothing. Defining Fourier transforms as

F̃ (f) =

∞∫
−∞

F (t) exp(2πift)dt,

the columns are f in Hz, Re(W̃x), Im(W̃x), exp(−π[ftaupart]2), Re(W̃s), Im(W̃s), Re(W̃d), and Im(W̃d) all in
MKS. The final wake field file is ws.out. This file contains the smoothed wake potentials in the same format as
w.out.

A note concerning the resistive wall quantities is in order. Only the simplest low frequency approximations for
resistive wall quantities have been used, resulting in continuum forms that have singularities of various types. The
transverse resistive wall wake is taken to be

Wx(τ) = H(τ)
cLx

πb3

√
Z0ρ

πcτ
, (33)
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where Z0 = µ0c = 376.74Ω is the impedance of free space, Lx = slenx, b = rpipe, ρ = rhoe, and H(τ) is the
Heaviside function. The value of Wx assigned to time nδt is

Wx,n =
1

δt

(n+1/2)δt∫
(n−1/2)δt

Wx(t)dt. (34)

This guarantees that the low frequency impedance behaves correctly and that the smoothed quantities converge
rapidly to their continuum values. When the pipe radius or beta function vary with machine azimuth the appropriate
value for Lx = slenx satisfies

β̄
Lx
√
ρ

b3
=

∮
β(s)

√
ρ(s)

b(s)3 ds, (35)

where β̄ = circ/(2 ∗ pi ∗ tunex) is the average beta function. The longitudinal resisitve wall wake potential it taken
to be

Ws(τ) =
d

dτ

{
H(τ)

Ls
2πb

√
ρZ0

πcτ

}
, (36)

where Ls = slens. Ws(τ) has a functional near τ = 0, but it is trivial to integrate as long as τ = 0 is not one of the
end points. The code does this in exact analogy to equation (34). The analog of equation (35) is

Ls
√
ρ

b
=

∮ √
ρ(s)

b(s)
ds. (37)

Two output files describe the instantaneous dynamics of the beam. The file res.den is over written every |nwrite|
turns and contains gridded data. The file tran.full is over written every |nwrite| turns if nwrite < 0. Both are
always written when the simulation ends and the code is much faster with nwrite > 0. There are 8 columns of
data in res.den. The first column is arrival time in seconds, with Trf/2 corresponding to the stable synchronous
phase. The second column is the instantaneous line density normalized to be equal to the number of macroparticles in
[t− taupart/2, t+ taupart/2] , which is useful for judging the statistical accuracy of the simulation. Columns 3 and
4 are x̄(t) and p̄(t) in meters, as defined in equation (32). Column 5 is the instantaneous current in amperes. Column
6 is the value of the kick to p due to Wx, column 7 is the longitudinal kick due to Ws in units of γ, and column 8 is the
detuning kick. Multiplying column 8 by −nperturn/4π yields the tune shift due to Wd as a function of longitudinal
position within the bunch.The next two columns are the longitudinal and transverse kicks due to long range forces
with the same units as columns 6,7. Columns 11 and 12 describe the nonlinear space charge force. Column 11 is x̄(t)
and columns 12 is Kλ(t).

The second file describing instantaneous dynamics is tran.full. The first 4 columns are x, p, t, ε for each of the
macroparticles, They are ordered in t. Column 5 is the betatron tune of the particles in the first bunch. The next
column is the kick in γ due to the RF voltage. The next column is a running sum of ε within the bunch. The last
value in each subarray is the average energy offset before the RF kick. With strong synchrotron radiation loss the
last value in each subarray is close to the energy loss per turn. The next two columns are the offsets and momenta of
the other transverse coordinate. The only collective force for these coordinates is beam-beam.

The summary output file is csmon.out which has 8 columns. Column 1 is the turn number. Column 2 is < x2+p2 >
averaged over the beam. Column 3 is < y2 +py2 > averaged over the beam. Column 4 is coherecs defined in equation
(32). Column 5 is the averge rms bunch length in seconds. Column 6 is the average rms energy spread in units of γ.
Column 7 is the effective synchrotron tune defined using the ratio of the rms energy spread to the rms bunch length.
It is useful for long bunches or multiple harmonics. Column 8 is < t > averaged over the bunches. Column 9 is the
averge value of ε averaged over bunches. Column 10 is the rms value of x and 11 is the average value of x.

There are 6 other output files, fort.21 contains output associated with the crab cavities. Each line is

t, V̂cav(n), V̂B(n), V̂+(n), V̂−(n), V̂notch(n− 1)

Each line of fort.22 are the real and imaginary values of the long range transverse wakes at the end of each turn.
The file fort.23 is the same for the longitudinal.

The file fort.24 has 3 columns. The first is the turn number. Columns 2 and 3 are the cosine and sine Fourier
harmonics of Dx evaluated at frequency harmbtf. When kicks are used these columns can be used to calculate beam
transfer functions [28].
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The initial particle coordinates are in fort.66.

n, t(n), ε(n), x(n), p(n), y(n), py(n)

The initial RF parameters are in fort.67. Column 1 is the time in seconds, column 2 is the voltage in volts.

Column 3 is U(t) = C
∫ t
Vrf (t)dt. The constant is chosen so that

√
U(t)− Uusp, with Uusp the value of U at the

unstable fixed point, is the RF bucket in units of ε.
Consider the output using the input files described above, only the first line of impedfield.dat is needed. Figures

1 through 5 highlight key points. Please note this example is only for illustration.
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FIG. 1: Longitudinal profile of bunch 1 (red) and scaled and offset coherent longitudinal long range force (blue). Notice that
the peaks in the line density correspond to losing energy to the wake.
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