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Abstract

The Electron-Ion Collider (EIC) project at the Brookhaven National Laboratory (BNL) will

reuse most of the components of one of the hadron storage rings of the Relativistic Heavy Ion

Collider (RHIC) for the new EIC Hadron Storage Ring (HSR). To cope with the higher beam

intensity in the HSR, a beam screen will be inserted into the superconducting arc sections

of RHIC vacuum chamber, which is incompatible with the existing RHIC cold stripline beam

position monitors (BPM). Therefore, a new, compact button-style BPM was designed for the

HSR, which builds upon the cross-section geometry of the HSR beam screen and tries to meet

the requirements of the HSR beam position measurement, while fitting into the space inside the

cryostat between superconducting RHIC quadrupole and dipole magnets.

In this document we analyze and compare two different arrangements of the BPM button-style

electrodes in the BPM housing wrt. the position sensitivity and non-linearities, the beam-induced

RF heating effects, and the expected resolution of the BPM, in particular for the HSR operation

with large horizontal beam displacements.
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I. INTRODUCTION

The superconducting (SC) arcs of the EIC Hadron Storage Ring (HSR) will be equipped

with 240 new button-style beam position monitor (BPM) pickups, located near the in-

terface between SC quadrupole and dipole magnets. They will be used to replace the

to-be-shielded RHIC stripline BPMs and have the same cross-section as the new beam-

screen, which will be inserted into the existing RHIC vacuum chambers. These new button

BPM pickups are passive cooled in the liquid He cryostat and will have an operational

ambient temperature of approximately 10. . . 20K.

To act as BPM, each pickup is equipped with four symmetrically arranged button-style

pickup electrodes, which interact electromagnetically with the beam field and deliver

signals that are proportional to the bunched beam intensity and transverse position,

circulating in the HSR. Figure 1 shows a highly simplified schematic view of the major

hardware components for a specific BPM station:

• A button BPM pickup, being part of the accelerator vacuum chamber, located inside

the HSR arc cryostat.

• Four coaxial cables, i.e. signal transmission-lines, to transfer the four BPM signals

to the BPM electronics. In practice each of this cable transmissions is divided in

at least three sections, a dedicated 60 inch long, radiation and cryo-temperature

compatible SiO2 coaxial cable inside the cryostat, a up to 240m long low-loss RF

cable and a short coaxial patch cable. The matching of the signal delay, i.e. the

cable length, of the four cables may be important.

Figure 1. HSR BPM hardware schematics.
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• A 4-channel BPM read-out electronics, preferable installed outside the accelerator

to avoid damage and single event effects (SEE) of the electronics due to the ionizing

radiation. This electronics system conditions the button signals, digitizes them,

and after further signal processing and decimation of the raw data, provides a beam

intensity independent beam position value on a turn-by-turn, bunch-by-bunch, or

on a time-averaged (for beam orbit measurement and feedback purposes) basis,

calibrated to millimeter.

For the HSR BPMs, as well as for all other BPM pickups in the EIC accelerator

complex, we can assume the beams as relativistic, β ≈ 1, with the beam field in the

vacuum chamber being a purely transverse electromagnetic (TEM). Under this condition

the beam induced image charges on each of the four button electrodes produce a signal

voltage:

Velec(x, y, f) = s(x, y)Zelec(f)Ibeam(f)

⇒ velec(x, y, t) = s(x, y)

∫ +∞

−∞
Zelec(f)Ibeam(f)e

i2πftdf
(1)

with Ibeam(f) being the Fourier transform of the bunched beam current ibeam(t) and

Zelec(f) = Zbutton(f) the transfer impedance of the button electrode, which can be esti-

mated from the mechanical dimensions:

Zbutton(ω) = ϕRload
ω1

ω2

iω/ω1

1 + iω/ω2

(2)

with:

ω1 =
1

RloadCbutton

∝ 1/time constant

ω2 =
c

2r
∝ 1/transit time

for the angular frequency ω = 2πf and a button diameter 2r. For the HSR BPM buttons,

as well as for almost any button BPM pickup, the resistive load impedance is equal to

the characteristic impedance of the coaxial signal cable, Rload = Z0 = 50Ω. The button

capacitance Cbutton depends for the size and geometric details of the button electrode, and

its surroundings, and was determined by a numerical analysis for a generalized HSR BPM

button geometry. ϕ in Eq. (2) relates to a coverage factor, defined by the portion of the

image charges induced on the BPM button wrt. the total image charges in that area of the

beam pipe, assuming the beam being in the center of the beam pickup (x = y = 0)! For

simple cross-section geometries like a circular vacuum chamber, ϕ can be approximated
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by the geometric coverage area of the button, for the HSR BPM chamber with its more

complicated cross-section geometry a numerical analysis was performed.

ò
Please note, Eq. (1) is nothing else than Ohm’s law. However, there exist

different definitions for the term transfer impedance in connection with

beam pickups!

The beam current in Eq. (1) could be defined as:

ibeam(t) = ⟨IDC⟩+ 2⟨IDC⟩
∞∑
m

Am cos(mωt)

with ⟨IDC⟩ = en/T (en = qbeam and T = 2π/ω = k/fRF relating to the bunch spacing

or revolution period T ) and Am being a harmonic amplitude factor (assuming bunches of

same intensity and equally spaced!), e.g. Am = exp[(mωσ)2/2] for a Gaussian bunched

beam. However, in practice the definition of the bunch current ibunch(t) as stimulus

signal is more convenient, as the beam pickup electrode is a LTI system (linear and time-

invariant), and the superposition principles can always be applied. For the HSR we can

assume Gaussian bunches in collision operation:

iGauss(s) =
en

σs

√
2π

e−
1
2(

s
σs
)
2

≡ iGauss(t) =
en

σt

√
2π

e
− 1

2

(
t
σt

)2

(3)

with a RMS bunch length of σs ≈ 60mm ≡ σt ≈ 200 ps and a bunch charge of qbunch = en.

In the frequency domain Eq. (3) results in:

IGauss(f) = ene−2(πfσt)2 (4)

ò
Please note, for beams in the HSR at injection energy, during cooling and

RF reformatting, the bunches in the HSR are not Gaussian !

Finally in Eq. (1), s(x, y) refers to a sensitivity function that depends on the transverse

distance between beam and electrode, preferable given in (x, y) Cartesian coordinates wrt.

center of the BPM pickup, see also Fig. 1. The sensitivity function varies 0 ≤ s(x, y) ≤ 1,

and for a centered beam x = y = 0 is equivalent to the coverage factor, s(0, 0) = ϕ.
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While the BPM button indeed is a LTI system, i.e. the button output

voltage is always proportional to the beam or bunch current, vbutton ∝

ibeam, the position sensitivity s(x, y) is a non-linear function of the (x, y)

transverse beam position!

A beam intensity independent position measurement is performed by normalization,

using all signals of four symmetrically arranged BPM button electrodes. Different types of

normalization exist, with the signal levels measured and digitized separately (see Fig. 1),

the popular difference-over-sum (DOS or ∆/Σ) method will be applied for the HSR BPMs:

pos. = f

(
vA − vB
vA + vB

)
(5)

with pos. being the horizontal or vertical beam position and vA, vB the output voltage

signals of a pair of BPM buttons symmetrically arranged in the horizontal or vertical

plane.

In theory we could now analyze the non-linear position characteristics of the button

BPM pickup by assigning vA,B ≡ velec, i.e. Eq. (1) into Eq. (5), and scanning the transverse

(x, y) space. Even making use of some symmetry conditions, this would be a very time

consuming numerical calculation for the BPM pickup! Fortunately Eq. (1) separates the

frequency dependent, but not position dependent transfer characteristic Zelec(f) from the

frequency independent, position characteristic s(x, y) of the button electrode, allowing not

only to separate the analysis of the BPM button output signal waveform from its position

behavior, but by applying the reciprocal theorem is also an efficient way to compute the

position characteristic of the entire BPM pickup.

ò
Again, this is only true for broadband BPM pickups, such a as button,

stripline or split-plane BPMs without any resonances (eigen-modes) within

the bunched-beam spectrum measured by the BPM read-out electronics,

and only for those BPM operating with relativistic beams! For, e.g. cavity

BPMs, or for broadband BPMs operating with non-relativistic beams (β ≪

1) Eq. (1) does not apply!

5



Figure 2. STEP file model of the HSR corner BPM.

II. THE HSR BUTTON BPM FOR THE CRYOGENIC ARC SECTIONS

The analysis of the HSR BPM is based on numerical methods which require a model of

the physical geometry, for some calculations also the electrical properties of the materials

are used. Figure 2 shows the HSR button BPM for the SC arc sections as visualization of

the mechanical design STEP file, transparently shown are the bellows, beam-screen and

other non-relevant parts.

The numerical analysis of the HSR BPM is divided in two steps:

1. As electromagnetic analysis, i.e. the interaction between the EM-field of a beam

bunch of given parameters (bunch charge, bunch length and shape, and bunch

velocity) and the HSR BPM pickup structure using the CST Studio wakefield solver,

for a beam traveling in the center of the beam pipe / pickup, or with at a given

transverse (x, y) offset. This analysis delivers the output signal response at one or

several BPM button electrodes into a perfect 50Ω termination (load impedance).

2. As electrical circuit analysis of the BPM signal transmission and conditioning, start-

ing from the BPM button through the coaxial cables up to the front-end part of the

read-out electronics (analog signal conditioning and ADC) using the Keysight Path-

wave ADS transient solver. This analysis utilizes the BPM button output signal

given by the CST wakefield simulation, as well as other BPM pickup characteristics

provided by CST Studio simulations, e.g. the button capacitance Cbutton, to model

6



a Perspective view. b Cross-section view.

c Detailed view of the button feedthrough.

Figure 3. CST Studio 3D parametric model of the HSR corner BPM.

the button electrode as equivalent circuit.

For the electromagnetic analysis the 3D geometry given as mechanical model STEP

file (Fig. 2) was reproduced as parametric 3D geometry, including the material properties

in CST Studio. This “CST model geometry”, see Fig. 3, uses the same dimensions as the

STEP file geometry, e.g. the mixed circular/rectangular shape of beam pipe (inner diam-

eter 63.1mm, inner height 48.0mm), etc., but with some simplifications and removing

non-relevant details like mounting screws, etc. This CST geometry served for both, the

BPM button signal analysis (CST wakefield solver), i.e. the button electrode output signal

velec for a given bunch signal ibunch, for the wakefield analysis (CST wakefield solver, i.e.

the beam induced power losses, and for the S-parameter analysis (CST transient solver),

i.e. a time-domain reflectometry (TDR) of S11, e.g. to evaluate the button capacitance

Cbutton.

The position characteristic of the broadband HSR button BPM pickup is independent

7



Figure 4. Simplified 3D geometry of the HSR corner BPM for the electrostatic analysis.

from the bunch signal shape, respectively the frequency content, see also Eqs. (2) and (5).

Therefore, the position characteristic was analyzed as electrostatic problem by numerically

solving the Laplace equation using a simplified, loss-free parametric 3D model geometry,

again implemented in CST, see Fig. 4.

Notably, the four BPM buttons are symmetrically arranged in HSR circular/rectangu-

lar beam-screen aperture under an angle of 30◦, which we call the HSR corner BPM as

the BPM buttons are located in the corners of the circular/rectangular shape, see Figs. 2

to 4. The following numerical analysis shows, beside some advantages, also some short-

comings for this type of BPM button arrangement, therefore, the more popular electrode

arrangement for hadron BPMs along the horizontal and vertical axis was studied as well,

which we call the HSR orthogonal BPM, see Fig. 5.

III. POSITION CHARACTERISTIC OF THE HSR BPM PICKUP

A. Theoretical background

Without proof, the electromagnetic (EM) field of a charged particle (point charge)

traveling at relativistic velocity, β = v/c ≈ 1, inside the metallic (conductive) beam

pipe has only transverse components (TEM field), and the coupling between the charged

particle ρ = q δ(r−r0) and a BPM electrode can be simplified to an electrostatic problem,

by solving the Poisson equation in the reference frame of the particle:

∇2Φ(r) = −ρ/ε0 (6)
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a Perspective view. b Cross-section view.

c Simplified model for the electrostatic analysis.

Figure 5. CST Studio 3D parametric model of the HSR orthogonal BPM.

In the following we neglect the the transverse size of the bunched beam, assuming σx,y ≪ a,

taking the beam as line charge density distribution λ(z − ct) = ibeam(t) with effectively

σx,y = 0 and with a being the transverse beam pipe aperture, e.g. this would be the

diameter for a beam pipe with circular cross-section1.

Figure 6 illustrates a possible solution of electrostatic field problem for the HSR corner

BPM with a beam, indicated as line charge with a transverse beam position xbeam =

15mm, ybeam = 5mm (see Fig. 6a), with Fig. 6b showing the electric field distribution

of the beam line charge in the z = 0 xy-plane as numerical solution of Eq. (6) using the

electrostatic solver of the CST Studio software.

To analyze the normalized horizontal and vertical position characteristic following

Eq. (5), we would have to monitor the image charges on each of the four BPM electrodes,

equivalent to s(x, y) in Eq. (1), and scan the transverse beam line charge position in the

1 Please note, the HSR beam pipe does not have a circular cross-section.
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a Transverse beam coordinates. b Electric field distribution in the xy-plane.

Figure 6. Solution of the electrostatic beam field problem for the HSR corner BPM.

xy-plane xmin < xbeam < xmax, ymin < ybeam < ymax. This time-consuming procedure can

be simplified by applying Green’s reciprocity theorem∫
V

ϕ1ρ2dV +

∫
S

ϕ1σ2da =

∫
V

ϕ2ρ1dV +

∫
S

ϕ2σ1da (7)

with ϕi being the potentials, and ρi and σi the volume and surface charge densities,

respectively. Applied to the BPM case we use ϕ1 = ϕelec(r) as scalar potential for the

electrode set to a fixed voltage potential, e.g. V = 1V, while putting all other surfaces to

ground potential. For this case Eq. (7) simplifies to∫
V

ϕelec(r)ρ2(r)dV = −Vqelec (8)

with qelec being the total charge on the button electrode. Assuming ρ2 is a point charge

q at (r0), Eq. (8) retrieves the value of the scale potential ϕelec(r0) at that location

qelec = −qϕelec(r0)

V
(9)

demonstrating that ϕelec(r0) indeed is equivalent to s(x, y) in Eq. (2), and is proportional

to the induced surface charge on the button electrode qelec. This leads to a solution of the

Laplace equation

∇2Φelec(r) = 0 (10)

by putting the electrode to a fixed voltage potential V and all other surfaces being

grounded (see Fig. 7), but with the caveat that the beam line charge and vacuum chamber

are 2D objects in the xy-plane, while the button electrode is a 3D object.

Figure 8 illustrates the result of Eq. (10) for the HSR corner BPM with the upper left

(UL) button electrode set to a fixed potential V = 1V as shown in Fig. 7. Figure 8a
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Figure 7. HSR corner BPM with the upper left (UL) button set to V = 1V.

a Contours of constant potential ϕUL = const.. b Isometric surface potential for ϕUL = 0.25.

Figure 8. Scalar potential ϕUL(r) for the UL electrode of the HSR corner BPM.

shows ϕUL(x, y) = const. in the x, y-plane (z = 0 cross-section) and Fig. 8b shows the

result for ϕUL(x, y, z) = 0.25 as isometric surface.

In most cases the position characteristic of broadband button-style BPMs have been

analyzed as purely 2D electrostatic problem, i.e. in the xy symmetry plane. Unfortunately,

a detailed study demonstrates that this is an oversimplification of the 3D nature of the

button electrodes and their coupling to the beam, and leads to systematic errors evaluating

the position characteristic. Comparing 2D and 3D electrostatic analysis’ of circular button

electrodes and long stripline electrodes of the same xy cross section shape shows that we

need to use the 3D equipotential result of Eq. (10) as basis for a correct result. The

induced image charge on the button electrode is then calculated from the 3D scalar

potential ϕelec(x, y, z) as

qelec ∝ ϕelec(x, y) =

∫ zmax

z=zmin
ϕelec(x, y, z)dz

deff
(11)

except for the constant factor −q/V , with deff = dbutton + g being the “effective” button

diameter which includes the half gap width g. Using Eq. (11) and and setting V = 1V
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also results in the correct value for the coupling sensitivity s(x, y) between beam and

button electrode in Eq. (2).

B. Numerical calculation procedures

The normalized, i.e. beam intensity independent position characteristic is now calcu-

lated numerically for the two HSR BPM button electrode configurations, following Eq. (5)

and the procedure described in the previous section:

ϕh =
(ϕUR + ϕDR)− (ϕUL + ϕDL)

Σϕ
ϕv =

(ϕUR + ϕUL)− (ϕDR + ϕDL)

Σϕ
corner BPM

ϕh =
ϕR − ϕL

ϕR + ϕL

ϕv =
ϕU − ϕD

ϕU + ϕD

orthog. BPM

(12)

with Σϕ = ϕUR + ϕDR + ϕUL + ϕDL and the indices UR, UL, DR and DL indicating the

up-right, up-left, down-right and down-left button electrodes for the HSR corner BPM

(see also Fig. 4) and R, L, U, and D the up, down, right and left button electrode for the

HSR orthogonal BPM (see also Fig. 3c).

ò
Please note, the right/left labels are defined in beam (+z) direction.

Due to the 2-fold symmetry of the HSR corner BPM, it it sufficient to solve Eq. (10)

for only one button electrode, here for the UL electrode with the potential set to V =

1V as shown in Fig. 7. The computation was performed using the electrostatic solver

(ES) of the CST Studio software with a high number of tedrahedral mesh cells (∼ 5 ×

105), and making use of the symmetries, i.e. calculating 1/8 of the structure by applying

magnetic symmetry boundaries. For the HSR orthogonal BPM the 1-fold symmetry

requires separate computations for the R and for the U button electrodes.

The 3D scalar potential result of CST ES (Potential [Es]), ϕelec(x, y, z), is then

sampled in steps of ∆x = ∆y = ∆z = 0.5mm and stored as ASCII text file, so we

have ϕUL(x, y, z) for the HSR corner BPM and ϕR(x, y, z) and ϕU(x, y, z) for the HSR

orthogonal BPM.

These files are now post-processed using the Mathematica software, and as an initial

step we compute the 2D scalar potential by numerical integration along the z-axis and

normalization with deff = 18.4658mm following Eq. (11) to get ϕUL(x, y) for the corner
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BPM, and ϕR(x, y) and ϕU(x, y) for the orthogonal BPM. The missing scalar potentials for

the other electrodes are simply generated by rearranging the discrete matrix elements of

those scalar potentials accordingly to the symmetry conditions, e.g. inverting the x-vector

to get ϕL(x, y) = ϕR(−x, y).

Having now the scalar potentials of all electrodes as vector matrix at hand, step size

0.5mm, we simply compute the normalized horizontal and vertical position characteristic,

ϕh and ϕv, for the corner and orthogonal BPM following Eq. (12). For a better follow up

analysis, the results are then approximated by an interpolating function in Mathematica.

C. Results

The beam-to-electrode coupling sensitivities for a centered beam (x = y = 0mm) are

found as

corner BPM: ϕUR(0, 0) = ϕUL(0, 0) = ϕDR(0, 0) = ϕDL(0, 0) = 0.048697

orthogonal BPM:

ϕR(0, 0) = ϕL(0, 0) = 0.0532306

ϕU(0, 0) = ϕD(0, 0) = 0.11976

which are equivalent to the sensitivity factor s in Eq. (2) and are important to calculate

the output voltage signal of the button electrodes. In simple words, the corner BPM

electrodes couple out ∼ 5% of the image charges for a centered beam, approximately the

same is true for the horizontal electrodes of the orthogonal BPM. The vertical button of

the orthogonal BPM are much closer to the beam, therefore the coupling is ∼ 10% if the

beam is in the center.

Figures 9 and 10 summarize the results of the normalized ∆/Σ horizontal and vertical

position characteristic for both BPM button electrode configurations, the corner and

the orthogonal BPM. The parametric plots, Figs. 9a, 9d, 10a and 10d, show lines of

∆/Σ = const., visualizing the non-linear behavior wrt. the beam position. In other

words, if the beam position would move on one of these lines, without further correction

the BPM would report the always same horizontal or vertical beam position. Evidently,

the nonlinearities are more pronounced for the corner BPM configuration, in particular

for the vertical position measurement. Also indicated (dashed rectangle) is the maximum

anticipated operational range of the BPM, horizontal ±23mm and vertical ±2mm. The

∆/Σ plots, Figs. 9b, 9e, 10b and 10e, illustrate the position behavior along the axis of
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interest, for beam offset of 0, 5 and 10mm in the other axis. Figures 9c, 9f, 10c and 10f

show the gradient of those ∆/Σ plots, which indicates the position sensitivity of the BPM

button configuration. For beams near the center the sensitivity in the horizontal plane

is similar for both button configurations, in the vertical plane evidently the orthogonal

button arrangement is preferable.

For large horizontal beam displacements, x ≈ ±20mm, as expected for proton beams

in the HSR operating at a beam energy of 275GeV or 100GeV, the horizontal position

sensitivity is substantially reduced, ∼ 5×, regardless of the type of the button configura-

tion, see Figs. 9c and 10c. This also means the precision (resolution) of the measurement

will be reduced by approximately the same factor. However, the orthogonal BPM but-

ton configuration allows a “trick”, using the two vertical electrodes U and D as a virtual

horizontal electrode. E.g. for large positive horizontal beam trajectories, Ep ≈ 275GeV,

we would use the U and D, and the R button electrodes for the horizontal beam posi-

tion measurement, which is simply possible as the BPM read-out electronics continuously

acquires and analyses all four individual BPM button signals simultaneously, see Fig. 1.

For this “trick”, the position characteristic is calculated as

ϕh,trick =
(ϕU + ϕD)/2− ϕL

(ϕU + ϕD)/2 + ϕL

(13)

a (∆/Σ)h = const. b (∆/Σ)h = f(x, y = 0, 5, 10 mm). c d(∆/Σ)h = f(x, y = 0, 5, 10 mm).

d (∆/Σ)v = const. e (∆/Σ)v = f(y, x = 0, 5, 10 mm). f d(∆/Σ)v = f(y, x = 0, 5, 10 mm).

Figure 9. Normalized position characteristics of the HSR corner BPM.
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a (∆/Σ)h = const. b (∆/Σ)h = f(x, y = 0, 5, 10 mm). c d(∆/Σ)h = f(x, y = 0, 5, 10 mm).

d (∆/Σ)v = const. e (∆/Σ)v = f(y, x = 0, 5, 10 mm). f d(∆/Σ)v = f(y, x = 0, 5, 10 mm).

Figure 10. Normalized position characteristics of the HSR orthogonal BPM.

a (∆/Σ)h = const. b (∆/Σ)h = f(x, y = 0, 5, 10 mm). c d(∆/Σ)h = f(x, y = 0, 5, 10 mm).

Figure 11. Normalized hor. position characteristics of the orthogonal BPM “trick” configuration.

and Fig. 11 illustrates the result. At a horizontal beam offset of +20mm the loss of

sensitivity is less severe, ∼ 1.5×, however, the nonlinearities are still substantial.

Figure 12 illustrates the advantage of the “trick” configuration for large horizontal off-

sets comparing the normalized ∆/Σ horizontal position characteristic for all three mea-

surement options, Fig. 12c zoomed into the range of interest for the gradient d(∆/Σ)h/dx

around +20mm.
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a (∆/Σ)h = f(x, y = 0 mm). b d(∆/Σ)h = f(x, y = 0 mm). c d(∆/Σ)h = f(x, y = 0 mm),

zoomed.

Figure 12. Comparison of the normalized horizontal position characteristic

for the different HSR BPM button configurations.

IV. CORRECTION OF THE NON-LINEAR POSITION CHARACTERISTIC

The HSR BPM system, as well as all other BPM systems of the EIC complex, will

acquire and digitize the signals of each of the four BPM button electrodes separately, as

illustrated in Fig. 1. This allows the correction of the non-linear behavior of the BPM

pickup position characteristic and the scaling, usually to millimeters (mm) within the

digital signal processing section of the read-out electronics.

A. Theoretical background

1. Linear scaling

The simplest and straightforward method to scale the measured signals from the button

electrodes is to apply a linear scaling factor:

pos. ≈ 1

k

A−B

A+B
(14)

with A and B being the count values of the ADC’s proportional to vA and vB to the signal

levels of the horizontal or vertical pair of BPM electrodes. k is the gradient of ∆/Σ =

f(x, y), given in mm−1, at the center of the beam pipe, x = y = 0 for the axis of interest.

For a BPM with circular-cross section of radius Rpipe the gradients for the horizontal and

vertical plane are identical, and can be approximated as kx = ky = k ≈ 2/Rpipe. For

the HSR button BPM, e.g. with the orthogonal BPM electrode arrangement, horizontal

and vertical gradients are different, however, not as much as the cross-section geometry

suggest, kx ≊ 0.0736mm−1 and ky ≊ 0.0713mm−1, see also Fig. 10.
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a (∆/Σ)h = f(x, y = 0, 5, 10 mm). b (∆/Σ)/kx,y = f(x, y).

Figure 13. Linear scaling of the HSR orthogonal BPM position characteristic.

Figure 13 illustrates the shortcomings on the linear scaling on the example of the HSR

orthogonal BPM. The left-hand side, Fig. 13a, shows (∆/Σ)h for the horizontal plane in

the range −30mm < x < 30mm for vertical beam displacements at y = 0, 5, 10 mm,

similar to Fig. 10b, but also indicating kx (dotted line) and points spaced by δx = 2mm

in the range −20mm < x < 20mm on the traces. The right-hand side, Fig. 13b, shows

the result as of the linear scaling with kx and ky as given above as grid of points and

circles in the xy-plane, in a range −20mm < x < 20mm, −10mm < y < 10mm. The

blue points in Fig. 13a, sampling (∆/Σ)h = f(x, y = 0) at the true beam position in steps

of δx = 2mm, appear as blue circled measured position values (xlin
bpm, y

lin
bpm) in Fig. 13b.

Hardly to distinguish in Fig. 13a, the red and magenta points appear as same colored

circled measured position values, now with some vertical offset in Fig. 13b. For reference,

the true beam position value (x, y) for each colored circle value is also indicated in Fig. 13b

as colored dot.

To complete the picture, gray points in Fig. 13b map the nominal position values on

a 2mm grid in a ±20 × ±10mm area after applying the linear scaling. Beside a rather

small area near the center, the difference, i.e. the error, between the true position value

(x, y) and the measured position value based on linear scaling (xlin
bpm, y

lin
bpm) becomes larger

with increasing distance to the center. The “shrinking” measurement effect is called

pin-cushion effect, Fig. 14 shows the absolute error in mm.
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2. 1D polynomial error correction

A correction of the non-nonlinearities of the BPM position characteristic, which also

takes care of the scaling, can be implemented in two ways, by a look-up table or by

a polynomial correction. For the EIC BPMs, including those in the HSR, we consider

the polynomial correction, which requires less “house-keeping” and only a small set of

correction data, simple in the post-processing.

E.g. for the horizontal axis, lets define the raw position data as

xraw = f(x) =

(
∆

Σ

)
h

=
R− L

R + L
(15)

with R and L being the count values of the ADC’s proportional to vR and vL to the signal

levels of the horizontal pair of BPM electrodes. We can assume Eq. (15) to be a smooth

function of the true beam position x, which can be simply inverted:

x = f−1(xraw) (16)

A polynomial of power p can now be calculated that approximates Eq. (16)

x1D
bpm =

p∑
i=0

(cix
i
raw) = Up(xraw) ≈ x (17)

The polynomial fit approximation is based on a regression model, e.g. least-squares. Due

to the symmetry of the BPM pickup, the even polynomial coefficients in Eq. (17) vanish,

ci = 0,∀ i ∈ 2Z, however, this is not the case for asymmetric situations, like the “trick”

BPM. For the vertical axis, y1Dbpm = Up(yraw) in general is a different function, like here

Figure 14. Absolute position error |(xlinbpm, ylinbpm)− (x, y)| in mm for the corner BPM,

following the measurement based on linear scaling.
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for the HSR BPM, except for BPM pickups with two-fold symmetry, e.g. with circular

cross-section.

ò
An even-order coefficient c0 ̸= 0 corresponds to an BPM offset.

The polynomial converts the raw horizontal (or vertical) ∆/Σ data directly into a

scaled position value in mm. The accuracy of the linearization depends on the power p

of the polynomial, but also on the range of f−1(xraw) to be fitted, as well as on accuracy

and data points of the source function f(x).

3. 2D polynomial error correction

As seen in the next paragraph from the results, the 1D polynomial correction works

well along the horizontal or vertical axis, but not so good for the entire xy-plane. The 2D

polynomial correction makes use of the signals of other pair of BPM electrodes, taking

the both ∆/Σ raw data into account for a correction of the position nonlinearities in the

entire xy-plane.

For an arbitrary beam offset x, y ̸= 0 within the BPM aperture, the coupling between

the raw position acquired by the ADCs as uncorrected ∆/Σ information and the true

(x, y) beam position can be linked to two functions:xraw = f(x, y)

yraw = g(y, x)
(18)

which again can assumed to be smooth and therefore invertible (please note the swap of

the variables for g): x = f−1(xraw, yraw)

y = g−1(yraw, xraw)
(19)

We now fit the inverse raw ∆/Σ position data, Eq. (19) with a 2D surface polynomial

Qpq of power p and q for both variables, which allows to correct the entangled, non-

linear relationship between them and returns an approximation of the true, orthogonal

horizontal and vertical beam position:x2D
bpm =

∑p,q
i,j=0(cijx

i
rawy

j
raw) = Qpq(xraw, yraw) ≈ x

y2Dbpm =
∑p,q

i,j=0(cijy
i
rawx

j
raw) = Qpq(yraw, xraw) ≈ y

(20)
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Like for the 1D case, the 2D polynomial fitting is base on a regression model, but now in

2 dimensions. For our types of inverted functions, defined by the cross-section geometry

of the BPM pickup, a maximum order of p, q ≤ 5 usually gives sufficient good results –

typically χ2 → 1 and the RMS error < 10−2 – and was used for all corrections studied

for the HSR BPMs. Again, due to the symmetry only the odd coefficients in Eq. (20) are

used, however, this is not true for the cross-term coefficients p ̸= q.

Evidently, this 2D correction works best if the two ∆/Σ axis, i.e. the BPM pickup

electrodes, are arranged along the horizontal x and vertical y axis. This is true for the

HSR orthogonal BPM button arrangement, but not for the 30◦ HSR corner BPM buttons,

still the 2D polynomials can achieve a sufficient correction for the non-orthogonal case.

B. Results

The polynomial correction utilizes the ∆/Σ data from the electrostatic numerical anal-

ysis, acquired and post-processed on a 0.5mm xy grid, as shown in Section III C, and was

performed within the same Mathematica script. With f and g being present as numerical

functions it is particular simple to invert them by a transpose operation, truncate the

range as reasonable, and then interpolate the resulting f−1 and g−1 data for the following

1D or 2D polynomial fit.

A 1D polynomial correction for the HSR BPMs was studied only for “educational”

purposes and should not be considered. With p = 5 and due to the symmetry it requires

only 3 coefficients:

Up(x) = c1x+ c3x
3 + c1x (21)

and was applied in the range −0.96 < f−1(xraw) < 0.96.

For all practical cases in the HSR, the 2D polynomial correction is considered. For this

study we limited the polynomial order to p = 5, q = 4, which may need to be revisited for

some cases. The would lead to a 25× 25 matrix for the polynomial coefficients, but due

to the symmetry, many coefficients are zero or turn out to have negligible small values.
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Except for the “trick” BPM case, we need 9 coefficients per axis:

Q54(x, y) = c10x +c30x
3 +c50x

5

c12xy
2 +c32x

3y2 +c52x
5y2

c14xy
4 +c34x

3y4 +c54x
5y4

(22)

Q54(y, x) = c10y +c30y
3 +c50y

5

c12yx
2 +c32y

3x2 +c52y
5x2

c14yx
4 +c34y

3x4 +c54y
5x4

(23)

A “reasonable” fitting range is important, a too small range leads to large errors towards

the corners of the xy plane of interest, a too large range results in large errors everywhere.

As indicated, e.g. in Fig. 9a, the operational range of the HSR arc BPMs foreseen is

−23 < x < 23 mm, −3 < y < 3 mm, therefore we looked for a larger horizontal fit

range, like −0.85 < f−1 < 0.85, while keeping the vertical fit range smaller, typically

−0.5 < g−1 < 0.5. These fit range values may have to be revisited on the individual case.

Figures 15 to 17 summarizes the polynomial correction for the corner and orthogonal

BPM, as well as for the “trick” with 3 electrodes for the corner BPM for beam with large

horizontal offset. On the left side the correction performance is visualized as points (dots),

placed in the area ±20×±10 mm for nominal 2× 2 mm position steps, indicated as line

graticule. The better the dots match on the grid of the graticule, the lower is the error

between the true and the measured, i.e. the corrected beam position (xbpm, ybpm)− (x.y).

The error is shown as absolute value (modulus) on the right side graphs for a range

0 . . . 2mm.
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a 1D polynomial fit correction b Absolute error |(x1D
bpm|, y1Dbpm|)− (x, y)|

cx1 = 15.6025, cx3 = −0.502556, cx5 = 14.7967

cy1 = 33.0943, cy3 = −13.8763, cy5 = 389.408

c 2D polynomial fit correction. d Absolute error |(x2D
bpm|, y2Dbpm|)− (x, y)|

cx10 = 15.9371, cx30 = −3.1729, cx50 = 18.6844,

cx12 = −18.1285, cx32 = 28.7611, cx52 = −20.8357,

cx14 = 7.65207, cx34 = −42.9883, cx54 = 36.5936

cy10 = 34.2644, cy30 = −45.4929, cy50 = 16.8735,

cy12 = −49.5561, cy32 = 249.601, cy52 = −232.271,

cy14 = 567.256, cy34 = −2020.13, cy54 = 1736; 78

Figure 15. Polynomial fits for the HSR corner BPM.
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a 1D polynomial fit correction. b Absolute error |(x1D
bpm|, y1Dbpm|)− (x, y)|

cx1 = 14.2871, cx3 = −1.34726, cx5 = 11.1694

cy1 = 14.1461, cy3 = 2.14885, cy5 = 4.49846

c 2D polynomial fit correction. d Absolute error |(x2D
bpm|, y2Dbpm|)− (x, y)|

cx10 = 13.8174, cx30 = 1.7459, cx50 = 7.27535,

cx12 = 1.75408, cx32 = −0.730107, cx52 = 5.83343,

cx14 = 2.20115, cx34 = −19.3716, cx54 = 40.5884

cy10 = 14.0504, cy30 = 2.29542, cy50 = 4.82214,

cy12 = 3.53551, cy32 = −0.25992, cy52 = 7.33069,

cy14 = 1.89072, cy34 = −3.48808, cy54 = 20.135

Figure 16. Polynomial fits for the HSR orthogonal BPM.
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a 1D polynomial fit correction. b Absolute error |(x1D
bpm|, y1Dbpm|)− (x, y)|

cx0 = 7.87524, cx1 = 33.2209, cx2 = −103, 633, cx3 = 265.939, cx4 = −308.582, cx5 = 135.947

cy1 = 21.0226, cy3 = 7.7476, cy5 = 9.28555

c 2D polynomial fit correction. d Absolute error |(x2D
bpm|, y2Dbpm|)− (x, y)|

cx10 = 104.863, cx20 = −331.279, cx30 = 599.922, cx40 = −535.182, cx50 = 191.929,

cx12 = 55.3974, cx22 = 317.144, cx32 = −903.172, cx42 = 1119.75, cx52 = −478.12,

cx14 = 283.699, cx24 = −305.59, cx34 = −131.092, cx44 = 1093.72, cx54 = −704.419

cy10 = 20.2339, cy30 = −36.5747, cy50 = 113.052,

cy12 = 3.83639, cy32 = −15.4246, cy52 = 386.274,

cy14 = 2.85023, cy34 = 81.0456, cy54 = −167.443

Figure 17. Polynomial fits for the horizontal HSR orthogonal “trick” BPM.
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-
As mentioned, the results for the 1D polynomial corrections are included

for illustration purposes only, for all practical applications of the BPMs in

the HSR only the 2D polynomial corrections should be used!

Finally, below the graphical results, are listed all the calculated polynomial coefficients

cx,yij .

Comparing the results of the orthogonal and the corner BPM, for both button arrange-

ments the errors of the non-linear position corrections are acceptable, for the operational

range of the HSR well below 0.5mm. However, comparing Fig. 15d and Fig. 16d still

shows the errors of the orthogonal button arrangement being lower, and a better regres-

sion performance that is also reflected by the lower values of the higher-order polynomial

coefficients. The orthogonal button arrangement has the intrinsic advantage to the corner

BPM that we are already measuring in the horizontal and vertical plane, plus the fact of

the orthogonality.

C. Implementation

The polynomial correction should be implemented after all decimation and averaging

algorithms, either in the FPGA firmware code or in the post-processing software. The

ADC raw data of the four BPM read-out channels is processed following Eq. (12) for the

corner or orthogonal button arrangement, with ϕR,L,U,D ≡ ADC1,2,3,4 or ϕUR,DR,UL,DL ≡

ADC1,2,3,4 being the rawADC count values proportional to the electrode signal voltages

velec. The resulting ϕh,v ≡ xraw, yraw values in Eq. (12) are now the raw normalized

horizontal and vertical ∆/Σ position information, ranging −1 < (xraw, yraw) < 1, which

need to be scaled and corrected. This is simply performed by calculating x2D
bpm, x

2D
bpm from

Eq. (20), which simplifies to Eqs. (22) and (23) for both electrode arrangements – but not

for the orthogonal “trick” – using the polynomial coefficients given below the Figs. 15c

and 16c, while the orthogonal “trick” requires a few additional coefficients, as listed below

Fig. 17c.
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V. ESTIMATION OF THE BPM RESOLUTION

The HSR BPM system has to cover a large variety of beam types (particle species)

and formats (bunch spacing, number of bunches), as well as a large range of bunch in-

tensities, shapes and length, starting with low bunch charges during the commissioning

of the new machine, up to and beyond the designed beam intensities. Moreover, for the

luminosity operation of proton beams at energies of 275GeV or 100GeV, the beam orbit

in the HSR arcs has to be shifted from its nominal location in the center of the vacuum

chamber to outside or inside, i.e. horizontally by ∼ 20mm, adding another challenge.

The performance of the HSR BPM system has to meet a set of well defined requirements

under these various beam conditions.

The BPM precision or resolution is one of the key performance parameter of any BPM

system, and it depends on those beam conditions, as well as on the measurement time

or averaging interval. The illustrations in Fig. 18 recalls the definitions of accuracy and

precision for a measurement. The accuracy, i.e. how close is the measured value to the

true value, is related to the correct scaling of the BPM, and was mostly covered in the

previous sections, however, ignoring the important aspect about the BPM offset, which

is mostly related to the alignment of the BPM pickup and to asymmetries in the BPM

read-out electronics (electronic offset). The measurement precision, i.e. how good can we

reproduce the measurement, and the resolution, i.e. what is the smallest difference our

measurement can detect, are related to each other, basically on different times scales.

Temperature drifts, aging effect, etc., effect the measurement precision, thermal noise,

power supply ripple, electro-magnetic interferences (EMI), quantization errors of ADCs,

clock jitter, etc., limit the resolution of a beam position measurement.

a “Dart” view. b Probability density function view.

Figure 18. Accuracy and precision terminology for a measurement.
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A. BPM signal processing

The achievable resolution of a BPM is related to several factors:

• The position sensitivity of the BPM pickup, d(∆/Σ)x,y/dx, y, which is the gradient

of the normalized position ∆/Σ characteristic, as discussed in Section III. Figures 9c,

9f, 10c and 10f shows the position sensitivity for the corner and orthogonal BPM

button configurations, for horizontal and vertical axis, and Fig. 11c for the horizontal

“trick” of the orthogonal configuration for large horizontal beam displacements.

Usually this sensitivity gradient is given for a beam near the center of the BPM,

x, y ≈ 0, however, for the HSR BPM operating at 275GeV and 100GeV beam

energies with a large horizontal displacement for the proton beam, the value at

x = ±20mm is of particular interest (see also Fig. 12c).

• The thermal noise added to the BPM button signals by all resistive or lossy elements

in the read-out signal processing electronics. This voltage of this noise is given by

vnoise,RMS =
√

4kBTR∆f (24)

with kb = 1.38×10−23 J/K being the Boltzmann constant, T the operating tempera-

ture in K, R the value of the resistor or resistive element in Ω and ∆f the operating

bandwidth of the read-out electronics.

• The added thermal noise by active gain stages (amplifiers), usually specified by their

noise factor or noise figure.

• The quantization noise or quantization error given by the finite quantization of

the ADCs, when converting the analog waveform of the BPM button signals into a

digital, i.e. numerical value.

• The clock jitter of the ADC sampling clock signal, which should sample the ana-

log waveform in equidistant time intervals, which are then distorted, resulting in

additional uncertainty of the converted BPM signal waveform.

• Environmental aspects, like electro-magnetic interference (EMI) to the signal ca-

bles or read-out electronics from high pulsed power systems in close proximity (RF
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Figure 19. Signal processing scheme, 1-of-2 channels, of the HSR BPM read-out analysis.

systems, kicker, septa, switched power supplies, etc.) adding an unwanted con-

tents to the BPM signals or ground loops and other grounding issues, leading to an

uncontrolled signal reference.

While it maybe possible to estimate the achievable BPM resolution analytically from

the closed-form equations of the BPM sensitivity, thermal noise and ADC quantization

error, there are many details that complicate the picture and may lead to a wrong result.

For the HSR BPM we therefore use a brute-force numerical approach, basically a numeri-

cal analysis of the entire BPM signal processing chain, including the ADC. Figure 19 shows

a simplified block diagram of 1-of-2 BPM channels, as it was implemented in the Keysight

Pathwave Advanced Design System (ADS), see also the overview schematic Fig. 1. Here

we utilize the ADS transient solver to numerically analyze a simplified model of the BPM

read-out electronics in the time-domain, using the BPM button electrode output signal

waveform as stimulus.

A multi-bunch MB source, shown in the lower-left corner of Fig. 19, uses the waveform

generated by a numerical EM analysis of the HSR corner BPM using the CST Studio

wakefield solver or by applying the analytical analysis, e.g. based on Eqs. (1) to (3).

In practice, numerical and analytical results are basically identically, see Fig. 20, with

the analytical analysis getting the result much faster. The button electrode output signal

waveforms are always referenced to a bunch charge of qbunch = 1nC for the beam traveling
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a Gaussian bunch, σ = 60mm. b RHIC bunch, PP-Rebuckt02-17Aug24.

Figure 20. Output signal waveform of a HSR corner button to a centered bunch of qbunch = 1nC.

through the center of the corner BPM pickup, x = y = 0mm. The MB source in ADS

allows the concatenation of this single bunch waveform into a bunch train, as well as into

batches of bunch trains with a given gap, in this way we are able to simulate some of

the beam formats used in the HSR. The bunch intensity is scaled to the charge value of

interest, indicated by the q symbol in the MB source.

To correctly model the equivalent circuit (see lower-left in Fig. 19) and the transfer

function Eq. (2) of the button, the button capacitance Cbutton was evaluated with help of a

numerical time-domain EM analysis of the corner BPM geometry, using the time-domain

S11 reflection coefficient Γ(t) provided by the CST Studio software. A simple graphical

fit to the theoretical response

Γ(t) =

 0, t < tD

1− 2e−
t−tD

τ , t > tD
with: τ = Z0Cbutton (25)

yields the button capacitance to be Cbutton ≊ 2.6 pF, see Fig. 21. A delay-time tD ≈ 460 ps

Figure 21. Determination of the button capacitance Cbutton.

29



in Eq. (25) accounts for the length of the transmission-line between port and button,

Z0 = 50Ω is the characteristic impedance of the line.

As illustrated in Fig. 19, the equivalent circuit of the HSR BPM button is modeled as

voltage-controlled current source in ADS and includes the button capacitance Cbutton. The

MB source, mimicking the HSR beam-to-button action, feeds two button BPM equivalent

circuits, BPM A and BPM B, representing an adjacent, symmetric pair of button electrodes,

e.g. the horizontal or vertical buttons of the orthogonal BPM. For a simulation of a beam

in the center of the chamber, x = y = 0mm, the gain factors are set to sA = sB = 1, for a

displaced beam, sA, sB are calculated according to the results of the position characteristic

Section III C. Here, all bunch signal intensities are referenced to a centered beam in

the corner BPM, with qbunch = 1nC, therefore we scale ϕelec(x, y) of the corner BPM,

ϕelec(x, y) → ϕ(x = y = 0) = 1, and then retrieve the sA, sB gain factors for a beam with

an arbitrary displacement, i.e. beam position x ̸= 0 or y ̸= 0. The potential differences

between corner BPM and orthogonal BPM for horizontal and vertical beam positions

are analyzed and known, Section III C, so it is trivial to calculate sA, sB also for the

orthogonal BPM.

The upper part of Fig. 19 shows 1-of-2 read-out channels implemented in the ADS

circuit simulation software, that are fed from the BPM A and BPM B outputs of the button

equivalent circuits. We used a 1524mm long sample of a SiO2, type 141mil coaxial cable

(Times Microwave Corp., TMS ), and characterized it with the vector-network analyzer

(VNA). The S-parameter results were then fitted by a coaxial cable simulation model

supplied in ADS, now enabling the simulation for any cable length, here extended to

60 inch as required for the BPM cables running inside the HSR arc cryostats. The same

procedure was applied to 1⁄4 inch and 3⁄8 inch Heliax type coaxial cables, as well as for

a LMR-240 cable. A comparison of the measure sample and the technical information

provided by the datasheet form industry showed good agreement when applying the fit to

the ADS coaxial cable model. The 3⁄8 inch Heliax DF2-50 is preferred for the long cable

runs between BPM pickup and read-out electronics.

As of the large differences in bunch intensities, length’s and shapes in the HSR, the

button BPM signals cover a large dynamic range, which includes both, the bunch intensity

and the beam position, see Eq. (1). A typical 12-bit or 14-bit analog-to-digital converter

(ADC) has a usable dynamic range of ∼ 60 dB, which is insufficient for the digitalization

of the HSR BPM button signals. To better cover the entire BPM signal dynamic range,
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we decided to split the signal after an absorptive low-pass filter with ∼ 200MHz cut-

off frequency and a step-attenuator, see Fig. 19. The upper, blue colored high-frequency

branch uses a low-gain amplifier (g ≈ 0 . . . 10 dB) and the feeds into an ADC. This branch

is designed to acquire the BPM signals on a bunch-by-bunch bases when the HSR is in

collision operation, i.e. the bunch spacing is tbunch = fRF/6 = 10.15 ns 2 and the particles

in the bunches have a longitudinal Gaussian distribution with σ = 60mm. The lower,

green colored low-frequency branch uses a high-gain amplifier (g ≈ 40 . . . 50 dB) after

passing through another abortive low-pass filter with ∼ 75MHz cut-off frequency. This

branch acquires the BPM signals at injection energy, with long proton or ion bunches

being present (up to ∼ 7.5m), spaced by tbunch = fRF/24 = 40.6 ns.

Despite splitting the BPM button signals into separate, simultaneously acquiring high-

and low-frequency branches, the RF step-attenuator in front of the power divider, see

Fig. 19, is required to optimized the signal levels at the inputs of the ADCs for the different

beam/bunch parameters and also to compensated for the insertion loss variations due to

the different cable length in HSR BPM system.

B. ADS transient analysis of the HSR BPM read-out electronics

All components and subsystems shown in Fig. 19, together with a few other not shown

supporting elements, have been implemented in ADS, using the non-linear transient solver

for the analysis of this electrical network. A low-pass prototype, serving the two absorptive

filters, was based on the well-known quasi-Gaussian absorptive ladder network and further

optimized using the ADS optimizer within a dedicated S-parameter simulation. For the

RF step attenuator and the 3 dB power splitter we used S-parameter models provided

by industry, ADS then applies the convolution integral “on-the-flight” when converting

the frequency-domain model data into the time-domain during the transient simulation

procedure, utilizing inter- and extrapolation as necessary. For the gain-stages the internal

ADS ideal amplifier model was used, applying the necessary gain and using a noise figure

of NF = 1.5 dB. The ADCs were modeled based on the data sheets provided by the

industry, trying to exactly implement the recommended analog, balun input circuit and

the ADC load impedance. The ADS build-in sample & hold and quantizer models were

used to model the digital part of the ADCs. The sample & hold receives the clock signal

2 fRF = 591.1MHz is the highest harmonic acceleration frequency in the HSR.
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from a source with 200 fs RMS jitter, the ADC of the upper, high-frequency branch is

clocked with fCLK−HF = 3GHz ≡ 3GBPS, the ADC in the lower, low-frequency branch

with fCLK−LF = 1GHz ≡ 1GBPS.

The BPM read-out channel with two ADCs as shown in Fig. 19 is implemented as

sub-circuit in ADS. Two of them are called by the main simulation circuit that runs the

transient solver, named BPM A and BPM B, along with the MB source. Other elements,

like the absorptive low-pass filters, are implemented as sub-circuits as well, with relevant

parameters, e.g. 3 dB cut-off frequency, being made available to the calling main circuit.

The two button equivalent circuits, the clock sources and a few other circuit elements

are implemented directly in the main simulation circuit level, also controlled by a set of

parameters. The gain and attenuator settings were always kept the same for both read-out

channels, also when simulating beams with large displacement. The maximum time step

in the ADS transient simulation was set to tstep = tCLK−HF/10 = 33.3 ps, however, the

software internally selects smaller time steps as necessary. The thermal noise if activated

for all resistive circuit elements, the noise bandwidth was set to ∆fnoise = 1/(2tstep) =

15GHz.

ò
Please note, this is the maximum noise bandwidth which can be simulated,

the actual noise bandwidth ∆f that shows up at the ADC input following

Eq. (24) is mostly defined by the bandwidth of the low-pass filters in the

circuit.

Most simulation parameters, like bunch waveform, bunch-to-bunch distance, bunch

charge, number of bunches per batch, total number of batches, physical length of the

cables, BPM gain settings (for a specific beam displacement / position), gain and atten-

uator settings, clock signal frequencies and details of their waveforms, etc., can be simply

modified by changing the corresponding value / file name in the main simulation circuit.

The ADC output signals of the two BPM buttons, digiA and digiB, are still “analog”

voltage waveforms in ADS, given by the internal ADS time step and a “voltage” level

defined by the maximum quantization value. In our analysis we set the ADS quantizer

to N=1024, which is equivalent to the effective number of bits (ENOB) of the ADCs cho-

sen for this analysis. Therefore the results are ranging 0 < digiA, digiB < 1024. The
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quantizer (ADC) reference voltage levels are empirically set to ensure a symmetric and

well balanced leveling wrt. the input waveform. For the setting of gain / attenuation in

the two channels we followed the rule of thumb, the higher level signal should be in the

regime of 60 . . . 70% full-scale range (FSR) of the ADC.

The ADC output signals digiA and digiB are saved as ACSII text files for further

analysis. These are large files, as they are still discretized by the internal time step of

33.3 ps or smaller. We added a ADS time stamp waveform, vTime, which is saved along

with the two ADC output waveforms, and indicates the actual ADC clock cycles. In the

post-processing this allows to synchronize and decimate the digiA and digiB “analog”

waveform files to the ADC clock cycle.

C. Results for proton bunches with a large horizontal displacement

The resolution of the HSR BPMs probably is most important in collision mode, and

please keep in mind, the achievable resolution depends on the statistics of the measure-

ment and on the measurement time, or averaging time, which is linked to the system

bandwidth. We may distinguish three different use cases, having quite different time

scales or bandwidth needs using the HSR beam position data:

1. A beam orbit measurement for analyzing the RMS orbit of all or of a particular

BPM in the control room display and as input for the transverse beam orbit feedback

system (OFB). The averaging time on the BPM data should be equal or smaller

the the equivalent bandwidth required for the OFB, which typically is in the order

of 1000 turns for most storage rings.

2. A turn-by-turn position measurement, synchronized for all BPMs in the HSR. This

position measurement is typically utilized for beam optics studies, with the BPM

data analyzed as the response of the machine after an excitation, e.g. by a transverse

kick of an AC dipole. All BPM data within a turn should be averaged, assuming

the digitized BPM signal waveforms are well separated on a turn-by-turn bases.

3. A bunch-by-bunch or selected single bunch position measurement for 1 or many

turns. This type of dedicated bunch position data is typically requested during

special machine studies or by the collision experiment, e.g. analyzing beam orbits

or positions of colliding vs. non-colliding bunches, etc.
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Figure 22. Proton bunch / batch signal generated by the MB source in ADS.

While we could study the resolution of the HSR BPM for all the different HSR beam

types and formats, unfortunately the execution time of the ADS software to generate

enough position data, e.g. for 1000 turns is rather long 3. Therefore we limit our initial

analysis for the case with a large horizontal beam displacement, x = +20mm, for 4

consecutive proton bunches, qbunch = 5nC, of Gaussian long. distribution, σ = 60mm,

and spaced by 10.15 ns. A 5th bunch is an empty bucket, so we can imaging that we

simulate the BPM signal behavior for a HSR fill with 4 proton bunches for a given number

of turns, see also Fig. 22.

In this analysis we want to compare the resolution of the corner BPM vs. the orthogonal

BPM applying the “trick” with the virtual center electrode. As our waveform is based on

a 1 nC bunch from a corner BPM button, a factor q = 5 has to be accounted for in the

MB source, see Fig. 19. For the x = +20mm horizontal beam displacement the “gain”

factors sA and sB for the two cases are referenced to a centered beam (x = y = 0mm) of

Table I. “Gain” factors for a beam with x = +20mm displacement.

sA sB

corner BPM 2.53233 0.198646

orthogonal “trick” BPM 5.30905 0.996553

3 A ADS simulation of 4 bunches, 1024 turns and 240 meter long cables takes about 24 hours.
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a At the HSR BPM pickup outputs. b After 240m of 3⁄8 inch Heliax cables.

Figure 23. Bunch signal waveforms for FE channel A and B.

the corner BPM and evaluated following Section III C. We apply those factors, Table I,

to sA and sB in the voltage-controlled current sources of our button equivalent

circuit Fig. 19. Figure 23a illustrates the two A and B bunch signal waveforms at the

buttons of the corner BPM. As we use the “trick” arrangement, these are the signals

coming for a horizontal and a vertical BPM button of the orthogonal BPM for the 5 nC,

60mm proton bunch with 20mm horizontal offset. The worst-case situation – requiring

long coaxial cables between the BPM pickup and the read-out electronics – is of greatest

interest, therefore we analyzed the cases for a cable length of 130m and 240m. Figure 23b

shows the attenuation and degradation of the bunch signals at the end of the 240m of 3⁄8

inch Heliax cables, also indicating some unwanted reflection effects due to imperfections

of the components in the simulated read-out system.

Figure 24 shows the bunch signal waveforms in the upper high-frequency (HF) branch

of the front-end electronics, Fig. 19, Fig. 24a after the 200MHz absorptive low-pass

filter and Fig. 24b before and after the sample & hold. To achieve the anticipated

60 . . . 70% FSR levels in the A channel ADC, the step attenuators have been set to

0 dB and the amplifier gain to 8 dB for both channels (processing the signals for the

orthogonal “trick” BPM).

As the BPM resolution analysis is based on statistics, we simulate 1024 batches of 4

proton bunches, with one empty bucket as shown in Fig. 22, and account them for 1024

turns in the HSR. The digitized output waveforms digiA and digiB, simulated by ADS

are stored as ASCII text files along with the time stamp file for post-processing with a
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a At the 200MHz LPF output. b Before / after the sample & hold.

Figure 24. Bunch signals in the HF -branch of the FE electronics.

Mathematica script. The script identifies and marks the batch numbers in the raw data

and subtracts the baseline from the data, therefore allows for a variety of sanity check,

e.g. comparing batches and channels.

a Raw ADC signals, ortho-“trick” BPM. b Decimated ADC data, ortho-“trick” BPM.

c Raw ADC signals, corner BPM. d Decimated ADC data, corner BPM.

Figure 25. Bunch signals of batch #1024 in the post-processing.
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a orthogonal “trick” BPM. b corner BPM.

Figure 26. Decimated ADC samples of batch #1 shown as |digiA| vs. |digiB| graph.

ò
As of the baseline subtraction, the 10-bit sample values are signed integers!

Figure 25 shows the bunch signals of the last batch (turn), batch #1024, of channel

A and B in the post-processing, Figs. 25a and 25c the raw ADC data as acquired from

the ADS and Figs. 25b and 25d the ADC data after applying the decimation with help

of the time stamp data.

Each batch of 4 bunches plus an empty bucket has ∼ 150 ADC samples, after decima-

tion lets simply call them A and B. Figure 26 plots the absolute values of those samples,

i.e. the modulus |A|, |B|, in a parametric form |A| vs. |B| for the orthogonal “trick” BPM

(Fig. 26a) and for the corner BPM (Fig. 26b). Evidently, the points fall on a linear slope

crossing zero with the gradient equal to the amplitude ratio of the acquired button sig-

nals4. For the estimation of the BPM resolution, we select a threshold value, arbitrarily

set to 50 counts for the higher level signal A, and will take only values |A| > 50 and their

channel B counterparts into the analysis, indicated as orange points in Fig. 26. This will

remove the low-level, more noisy parts of the data, at a sampling rate of 3GBPS we still

get ∼ 70 samples on the 4 consequence bunches.

For the analysis we have to follow the normalization procedure, and as we took the

specific button configuration – orthogonal “trick” or corner BPM – into account by setting

sA and sB, we simply follow

xraw =
a− b

a+ b
(26)

4 Please be aware of the different scaling in those graphs, particular the vertical |B| value axis.
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to get the normalized, uncalibrated horizontal beam position. To calibrate xraw in Eq. (26)

we have to apply the correction discussed in Section IVB, here for simplicity we use the 1D

polynomial correction Eq. (17) with the 1D coefficients given in Fig. 17 for the orthogonal

“trick”, and in Fig. 15 for the corner BPM configuration.

As BPM resolution we define the standard deviation

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (27)

on a set of N calibrated BPM position values, while the mean value

µ =
1

N

N∑
i=1

xi (28)

returns the actual beam position, which was set to x = +20.00mm.

1. Single batch (turn) measurement resolution

For this estimation we use the ∼ 70 samples on 4 consequence bunches of a single

batch, equivalent to a single turn, from the two electrodes. For a and b in Eq. (26) we

use the orange sample points of |A| and |B| shown in Fig. 26 of a given batch, here we

arbitrary select batch #500. Table II lists the statistics for the corner and the orthogonal

“trick” BPM configurations for the normalized, corrected (1D polynomial) position values,

indicating a BPM resolution of 0.3mm, resp. 0.08mm for a beam with x = +20.00mm

horizontal displacement, with the 3GBPS, 10ENOB ADC read-out electronics connected

via 240m long 3⁄8 inch Heliax coaxial cables.

Table II. Statistics of a single batch (#500).

µ [mm] σ [mm]

corner BPM 19.8 0.3

orthogonal “trick” BPM 20.0 0.08
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ò
Please note, in practice the mean value µ for the corner BPM will be

improved by applying the 2D polynomial correction. Also please notice,

there is some spread on the σ-values wrt. the selected batch #, in particular

for the corner BPM, due to the rather low statistics.

2. Multi batch (turn), orbit measurement resolution

In practice, the ADC samples will not be processed individually as done in the previous

Section VC1, purely for the illustration of the single batch performance. Instead, we

calculate the root mean square (RMS) value of the samples on a batch-by-batch (turn-

by-turn) bases:

ARMS
# =

√√√√ 1

N

N∑
i=1

A2
i,#, BRMS

# =

√√√√ 1

N

N∑
i=1

B2
i,# (29)

with Ai and Bi being the ∼ 70 ADC samples of larger value (|A| > 50) of the four

consequence bunches of a given batch number (#). Equation (29) represents the signal

power for each batch, measured at the two BPM buttons.

ò
This signal power measurement assumes we are respecting the Nyquist-

Shannon sampling theorem, the total signal bandwidth is half the sampling

rate: B < fs/2.

Applying the normalization Eq. (26) on the batch-by-batch calculated RMS values,

Eq. (29) and calibrated those using the appropriate polynomial correction – again, here for

simplicity the 1D polynomials – results in batch-by-batch, or turn-by-turn beam position

values. Table III summarizes the results, again, for the 3GBPS, 10ENOB ADC, 240m

long 3⁄8 inch Heliax cable case. The number of batches (turns) rows show the statistical

values for the first 10, 20, . . . 1000 batches for the two BPM button arrangements. The

mean values, i.e. the calibrated beam positions, are almost identically, with a larger error

for the corner BPM due to the insufficient 1D polynomial correction, as expected. The

standard deviation σ in Table III could be viewed as the theoretically achievable position

resolution for the two BPM button configurations.

Our simulation results do not follow the simple σ ∝ 1/
√
n characteristic, i.e. more

samples equal better resolution. For the corner BPM, averaging only a small number of
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Table III. Statistics on multiple batches (turns).

number of

batches (turns)

corner BPM ortho-“trick” BPM

µ [mm] σ [µm] µ [mm] σ [µm]

10 19.8 (16.0) 20.0 8.0

20 19.8 (18.0) 20.0 6.5

50 19.8 (19.2) 20.0 5.4

100 19.8 (19.7) 20.0 4.9

200 19.8 21.2 20.0 4.8

500 19.8 20.2 20.0 4.8

1000 19.8 19.5 20.0 4.8

batches, ⪅ 200 seems to have too low statistics to give a reliable standard deviation. Those

σ-values shown in brackets in Table III vary substantially if, e.g. other batches are selected.

The standard deviation results for the orthogonal “trick” BPM button arrangement looks

a bit more consistent, however, averaging more then 200 batches (or turns) does not

further improve the achievable BPM resolution. The reason for this resolution limit

maybe linked to the finite ADC quantization, but would need more studies to verify this

speculation.

-
The standard deviations σ for a single batch (turn) or for many (> 500)

batches (turns) listed in Tables II and III can be interpreted as the best

achievable beam position resolution for a single turn, resp. multi-turn posi-

tion measurement. However, despite an accurate analysis, there are several

unknown factors, like EMI or ground-loops, which may degrade the BPM

performance, therefore the values, ∼ 0.3mm and ∼ 80µm for a single batch

(turn) or ∼ 20µm and ∼ 5µm for a 1000 turn average, for the corner, resp.

orthogonal “trick” BPM button configurations have to be taken with great

care, and may not be achievable in practice!
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VI. BEAM-INDUCED POWER LOSSES

The HSR BPM pickups will be located between the RHIC superconducting (SC)

quadrupole and dipole magnets, inside the SC-crystat. The BPM pickup is passive cooled,

through thermal conduction to the attached components, e.g. the beam pipe and screen,

the bellow, the signal cables, etc. The temperature of the BPM pickup, i.e. of all the

individual components like BPM body, feedthroughs, buttons, etc., will reach a state of

thermal equilibrium depending on this thermal conduction and the thermal losses, and

will be discussed in the following section. Beam-induced power losses play a major role

in this thermal equilibrium, in particular for the case of high intensity proton beams with

large horizontal offset. The power-loss results summarized at the end of this discussion

are used as input for the estimation of the maximum temperatures we can expect in the

different parts of the BPM pickup during luminosity operation at 275GeV or 100GeV

beam energy.

A. Theoretical background

The electromagnetic field of a charged particle, point charge, traveling with relativistic

velocity, β ≈ 1, in a metallic, perfectly conducting beam pipe has no longitudinal com-

ponents, it’s EM-field configuration is called TEM (transverse electro-magnetic). Any

change in the beam pipe aperture causes a change of the EM-field, i.e. it will generate

longitudinal field components which may act on a following charged particle. In this case

a Lorentz force acts on the test charge q2, generated by the wake fields of the probe charge

q1:

F⃗ =
dp⃗

dt
= q2(E⃗ + ce⃗z × B⃗) (30)

with ce⃗z = βve⃗z indicating the relativistic motion of the charge in the z-direction of the

beam pipe. The wake function of the “perturbed” beam pipe geometry, e.g. a simple

discontinuity in form a of a bellow, or an accelerating cavity, or a BPM pickup, etc., due

to the probe charge q1 is then defined as:

w⃗(x1, y1, x2, y2, s) =
1

q1

∫ +∞ (or L)

−∞ (or 0)

dz
[
E⃗(x2, y2, z, t) + ce⃗z × B⃗(x2, y2, z, t)

]
t=(s+z/c)

(31)

which causes a change of the momentum on the test charge q2

∆p =
q1q2
c

w⃗(s)
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Figure 27. Two-particle model illustrating the wake function.

Figure 27 illustrates Eq. (31), for all practical cases the integration range spans the

range 0-to-L of the object, which needs to include fringe and decaying fields until all

stored energy in the structure is completely decayed 5.

For a distributed source, e.g. a beam bunch with many charged particles

ρd(r⃗, t) =

transverse distribution︷ ︸︸ ︷
η(x1 − x̄1, y1 − ȳ1) λ(z − ct)︸ ︷︷ ︸

longitudinal
distribution
(line charge)

the wake potential

W⃗d(x̄1, ȳ1, x2, y2, s) =

∫
w⃗(x1, y1, x2, y2, s)η((x1 − x̄1, y1 − ȳ1)

λ(z1)

q1
dx1dy1dz (32)

is derived from the wake function Eq. (31).

ò
Please note, the point charge has an infinite frequency spectrum, the spec-

trum of the distributed source is limited.

The wake function of potential can be separated into longitudinal and transverse com-

ponents, which are related to each other described by the Panofsky-Wenzel theorem. For

the analysis of beam pickups, including this HSR BPM pickup, the longitudinal wake

potential is of primary interest:

W∥(s) =

∫ +∞

−∞
dśw∥(ś)λ(s− ś) (33)

with the longitudinal wake function given as:

w∥(s) =
1

q1

∫ +∞

−∞
dzEz[x2, y2, z, (s+ z)/c]

5 This often is not achievable by numerical simulations and a reasonable threshold, i.e. a cut in term of

wakelength L to be calculated has to be made.
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In many cases we can assume the bunch source distribution as Gaussian:

ρ(r⃗, t) = q1δ(x)δ(y)λ(z − ct), with: λ(s) =
1

σ
√
2π

exp

(
− s2

2σ2

)
(34)

ò
Numerical simulation tools, like the wakefield solver of the CST Studio

software used here, calculate the wake potential for a distributed source,

typically a line-charge with Gaussian distribution.

The bunch shape dependent total loss parameter describes the energy loss of the bunch

∆Ebunch = q2bunchktot (35)

due to the wake fields for a line-charge distribution with negligible transverse dimensions:

ktot = −
∫ +∞

−∞
dsW∥(s)λ(s) (36)

Finally, the longitudinal coupling impedance is of interest, which is defined as the

frequency-domain representation of the longitudinal wake potential:

Z∥(ω) =
1

c

∫ +∞

−∞
dsw∥(s)e

−jωs/c (37)

Electromagnetic software codes, like ECHO, GdfidL, A3P, CST Studio usually solve

the problem numerically in the time-domain for a given geometry (and materials) and for

a given bunch charge distribution, intensity and velocity (usually v = c). Among many

other parameters they return the total loss factor ktot, Eq. (36), and the longitudinal

coupling impedance Z∥(ω), Eq. (37). The total, geometry related power loss in a ring

accelerator can be estimated as:

Ploss =
∆Ebunch

trev
Nbunch (38)

with trev being the revolution time of the machine and assuming it is filled with a number

Nbunch of bunches of identical parameters. Alternatively, the power losses can also be

calculated from the real part of the longitudinal coupling impedance:

Ploss = I2beamZloss (39)

with Ibeam = NbunchIbunch, Ibunch = qbunchfrev, frev = 2πωrev = 1/trev and

Zloss =
+∞∑

p=−∞

|Λ(pωrev)|2Re[Z∥(pωrev)] (40)
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Figure 28. Electric beam field components in the xz-plane of the HSR orthogonal BPM.

by examining Λ2Z∥ at the pωrev revolution harmonics, with Λ(ω) being the normalized

beam spectrum. Assuming identical bunches in the ring, which do not couple to each

other, the total power loss can be calculated from the normalized single bunch spectrum

(SBS) λ(ω):

PlossSBS = I2bunchNbunchZlossSBS (41)

with:

ZlossSBS = 2Nbunch

+∞∑
p=0

|λ(pωrev)|2Re[Z∥(pωrev)] (42)

The power losses due to beam induced wakefields, calculated by Eqs. (38), (39)

and (41), are the total power losses due to the geometric structure of the vacuum device,

caused by the energy loss in the beam bunches, Eq. (35). They include, e.g. for a beam

pickup, the output signal power from the electrodes and do not elaborate where the

power is dissipated. Figure 28 illustrates the electric components of the beam field, in the

xz-plane, for a passing proton bunch, i.e. a Gaussian line charge distribution, σ = 60mm.
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ò
The total power losses calculated based on the loss factor, Eq. (36), are

related to the geometry of the vacuum device, here the HSR BPM pickup,

causing an energy loss of the beam bunch, Eq. (35), and appear also if no

power dissipation is specified, e.g. perfect electrical conductors (PEC) are

used as materials in the numerical analysis!

To analyze the power dissipation generated by the geometric wake field losses, e.g.

how much power is dissipated in the various materials of the BPM pickup, we have to

take not only the exact BPM pickup geometry, but also the electric material properties,

in particular the electric conductivity σ at the operating temperature T , into account.

The CST Studio software allows to monitor the magnetic beam field components and

the related surface currents vs. time, and generates lists of power losses sorted by the

specified materials and/or geometric components, e.g. the different parts of the BPM

pickup. Figure 29 visualizes the surface currents generated by a passing proton bunch

with large horizontal displacement, x = +23mm, y = +2mm, on the beam pipe and

buttons.

The power dissipation Ploss metal for each BPM part is then calculated by the energy

loss ∆Eloss metal associated to the losses in that specific part

Ploss metal =
∆Eloss metal

trev
Nbunch (43)

assuming a number of Nbunch bunches of equal properties. For simple scaling purposes we

always used a bunch charge of qbunch CST = 1nC in the CST Studio software, which needs

Figure 29. Beam bunch induced surface currents for the HSR corner BPM.
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to be scaled as

kqScale =

(
qbunch

qbunch CST

)2

(44)

to estimate the actual energy loss in the metallic part, in Eq. (43):

∆Eloss metal = kqScale∆Eloss metal CST (45)

CST reports the material or part specific power loss due to the finite conductivity in the

metal as power loss vs. time, which needs to be integrated to calculate the associated

energy loss:

∆Eloss metal CST =

∫
Ploss metal CST (t) dt (46)

ò
The power losses due to the H-field induced surface currents are not limited

to the beam fields, but for the BPM pickup are also generated by the signal

waveforms in the coaxial transmission-lines!

B. Simulation parameters and other details of the power dissipation analysis

Details and the most important dimensions of the two HSR BPM pickup geometries,

along with the materials implemented into the CST Studio wakefield analysis are illus-

trated in Figs. 3a and 3b for the corner BPM button configuration and Figs. 5a and 5b

for the orthogonal BPM. Figure 3c shows a more detailed view of the button feedthrough,

here for the corner arrangement, indicating the materials used in the CST wakefield

simulations which are also used for the orthogonal BPM.

Table IV list the parameters used in the numerical simulations and post-processing,

assuming the HSR BPM is operated at cryogenic temperatures, T ≈ 10K. While for

metals like Inconel 718 or stainless steel 316L the is almost no or only little change in

the electrical conductivity compared to operation at room temperature (T ≈ 300K), for

copper and the copper-plated surfaces the electrical conductivity changes substantially.

Here we use the analytical approximation for the electrical resistivity of copper (Cu) as

function of the ambient temperature (T ):

ρCu =

(
1.545

RRR
+

1
2.325 47×109

T 5 + 9.571 37×105

T 3 + 1.627 35×102

T

)
108 + 0.5× 1010B (47)

assuming no magnetic field at the BPM location (B = 0T). Figure 30 illustrates Eq. (47),
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Table IV. Parameters used of the power dissipation analysis.

beam, machine or material parameter value

HSR circumference 3833.9m

revolution time trev 12.7885 µs

bunch charge qbunch 19.1× 1010 e = 30.6 nC

number of bunches Nbunch 290

bunch current ibunch = qbunchfrev 2.4mA

beam current Ibeam = ibunchNbunch 0.694A

CST specific simulation parameters

beam velocity β = v/c 1

simulated bunch charge qbunch CST 1 nC

bunch length (Gaussian distribution) σ 60mm (200 ps)

max. simulation frequency fmax 3GHz

simulated wake length 1000mm (≡ 5.85 ns)

transverse beam locations x = 0,+23mm; y = 0 and + 2mm

el. cond. of bulk copper (T = 10K, B = 0T) 3.23× 109 S/m (RRRCu = 50)

SS 316L el. conductivity (RRRSS = 1.4) RRRSS × 1.25× 106 S/m = 1.89× 106 S/m

Inconel 718 electrical conductivity 8.0× 105 S/m

with RRRCu = ρCu,300K/ρCu,0K being the residual-resistance ratio for a given copper

quality. Here we assume as default RRRCu = 50 for the copper bulk material (e.g.

the material of the button electrodes) and RRRCu = 10 for the copper coated (plated)

surfaces, like the 316L stainless steel BPM body and beam screen stubs. The electrical

resistivity of copper was specified at T = 10K and given as electrical conductivity σCu =

1/ρCu in material definition used in the CST simulation software.

To include the signal power of the BPM button electrodes dissipated in the read-
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Figure 30. Electrical resistivity of copper vs. temperature (no magnetic field).

out electronics, voltage monitors have been included in the CST simulation model. The

primary focus of the analysis are the beam and signal induced power losses in the different

BPM parts, shown in the cross-sections Figs. 3b, 3c and 5b. For the analysis of those

parts we separated the 75mm long BPM body from the two 87.5mm long beam screen

(beam pipe) stubs, see Fig. 3a.

C. Results

Figure 31 summarizes the results of the CST wakefield solver for the two different HSR

BPM geometries, and for each case with the beam centered (x = y = 0mm) and for a

large horizontal displacement, in case of the corner BPM at x = +23mm, y = +2mm

and in case of the orthogonal BPM at x = +23mm, y = 0mm, which we assume as worst

case scenario wrt. the power losses. Clearly, from a wakefields aspect, the corner BPM

performs better then the orthogonal BPM, which is also reflected by the lower loss factor,

see the legend in Fig. 31a.
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a Wake potential. b Wake impedance.

Figure 31. Wake field results from CST.

ò
While the maximum simulation frequency was set to fmax = 3GHz, the

maximum frequency calculated for the wake impedance (see Fig. 31b) is

limited to a frequency equivalent to 10% of the Gaussian bunch spec-

trum spectrum intensity (∼ −20 dB). In our case, for a bunch length of

σ = 60mm, this results in a maximum frequency for the wake impedance

calculation of approximately 1.7GHz.

Figure 32 illustrates some examples of the power dissipation Ploss CST (t) results from

CST by monitoring the H-field and surface currents vs. time, as used as input to calculate

the dissipated power in a specific part of the BPM pickup Eqs. (43) to (46). Figure 32a

shows the total power dissipated in the all the metal parts of the BPM (including the two

beam pipe stubs), Fig. 32b shows the part dissipated on the “hot” button electrode, i.e.

a Losses in all metal. b Losses on the “hot” button electrode.

Figure 32. Power dissipation Ploss CST (t) results from CST.
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a HSR corner BPM.

b HSR orthogonal BPM.

Figure 33. Power loss distribution results for proton beams with large horizontal displacement.

the electrode closest to the beam with large horizontal displacement.
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The results of the power loss distribution in the HSR BPM metal parts for beam with

large horizontal displacement are summarized in Fig. 33 for both button configurations,

and are used as basis for the thermal analysis. The total power losses in the beam field and

the power losses distributed in the metals and at the ports should be “almost” identical:

Ploss field ≊ Ploss metal +
∑

Pport (48)

However, some discrepancies are noticeable, Eq. (49):

Ploss,corner = 1.402W ≈ 0.243W+ 1.272W = 1.515W

Ploss,ortho = 5.442W︸ ︷︷ ︸
Ploss field

≈ 0.375W︸ ︷︷ ︸
Ploss metal

+5.155W︸ ︷︷ ︸∑
Pport

= 5.530W
(49)

These differences may have a variety of reasons, e.g. the wakefield simulation could not

be performed with the preferred, more accurate Indirect testbeams integration method,

but has to use the Indirect interfaces method. Moreover, the hexahedral meshing of the

corner BPM geometry was challenging and unable to accurately approximate the shapes.

Also please note that we did not take the losses in the dielectric material of the quartz

glass (fused silica) insulator into account.

However, Eq. (49) demonstrates, a major fraction of the total field losses are related to

the actual needed port signal power (see also Eq. (48)) and may not be viewed as power

losses. Wrt. to power losses and the associated thermal heating, the power losses in the

metal are the relevant part, following Eq. (49) and Fig. 33.

ò
The CST Studio wakefield solver requires the ports to be parallel to one of

the Cartesian coordinates, that is why the coaxial outputs in Fig. 33a are

bend towards the yz-plane.

-
Details of the BPM geometry, materials and coatings are very important

for the calculated power loss values! At this point, without the final BPM

button feedthrough design at hand, a rather conservative approach was

followed, materials with better electrical conductivity or coating could lower

some dissipated power substantially, e.g. a copper-beryllium pin instead of

Inconel 718, or a copper plating of the 316L stainless steel feedthrough

body on the coaxial transmission-line surface.
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a As function of RRRCu. b As function of the horizontal beam position.

Figure 34. Power dissipation in the HSR orthogonal BPM and in the beam pipe screen.

The power dissipation results summarized in Fig. 33 uses a “conservative” approach,

i.e. using RRRCu bulk = 50 for the bulk copper materials (button electrodes) and

RRRCu coat = 10 for the 25 µm thick coated 316L stainless steel surfaces (BPM body

and beam pipe stubs), also using a very large horizontal beam offset (x = +23mm).

Figure 34 illustrates the effect of a change of the RRRCu and the horizontal beam dis-

placement on the power losses for the orthogonal BPM, as total power loss in all the

metal parts, as power loss on the “hot” (horizontal) button electrode and for comparison

the loss in the HSR beam pipe screen, scaled to 1m length (please note the logarithmic

vertical axis!). The RRRCu in Fig. 34a was varied to the same values for the bulk and

coated copper, here the horizontal beam displacement was kept at x = +23mm.
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VII. EVALUATION OF THE HSR BPM BUTTON HEATING

FOR THE ORTHOGONAL CONFIGURATION

A. Introduction

In the original configuration of the HSR BPM the orientation of the button electrodes

was 30◦ up/down from the horizontal plane. This was done to alleviate concerns about

heating of the button and ease its mechanical integration in the interconnect. Since the

early design, several aspect have reduced the expected button heating, in particular the

reduction of the diameter of the button electrodes, from 20mm to 18mm, and a change of

the material of the buttons itself, from copper-plated stainless steel to pure copper. This,

and the significant improvement of the system resolution have motivated a revisit of the

heating analysis. FE simulations were conducted to assess the heating of the HSR BPM

button in the orthogonal configuration. The general modeling philosophy is described in

detail in [1] for the HSR BPM corner button assembly. The following analysis revisits

these results for the orthogonal button arrangement.

B. Heating boundary conditions

The beam-induced heating as well as the RF power coupled has been obtained through

CST simulations, see Fig. 33b and Table VI. The cable attenuation, leading to a heating

of the cable, has been obtained through a 1D model developed initially for the button

analysis [1, 2]. The BPM housing temperature is estimated to be at 15K [1].

Table V. Power input values used for the heat analysis (orthogonal BPM).

heat source estimated power input (mW)

button electrode (bulk copper) 5.4

coaxial outer signal connector (316L button flange) 161

coaxial inner signal connector (Inconel 718) 32

coaxial cable losses (SiO2, 0.141 inch diameter) 376

coaxial cable losses (SiO2, 0.090 inch diameter) 812
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a Connected to a 0.141 inch dia. SiO2 cable. b Connected to a 0.090 inch dia. SiO2 cable.

Figure 35. Heating of the HSR orthogonal “hot” button electrode.

C. Results

1. Button temperature

Both cases show a similar response pattern. For the 0.141 inch diameter cable, the

button face temperature reaches 43K. At this temperature, the H2 desorption from the

amorphous carbon (aC) coating face can become a concern. However, upon initial cooling,

the BPM module will be kept ”hotter” and cooled with a delay compared to the adjacent

superconducting magnet, so the H2 adsorption is expected to be limited on the button

face and will be condensed preferentially on the magnet cold bore. The button can also be

“baked out” at 80K along with the beam screen cooling circuit which will help releasing

any condensed H2.

2. Cable temperature

The pattern of the 0.090 inch diameter cable temperature profile is typical of a thermal

runaway, see Fig. 36b. While the SiO2 cable has a high operating temperature, the cable

attenuation will vary in time which will affect the BPM output. Therefore, it is not

adequate to be used at this high signal power and above.
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a 0.141 inch diameter.

b 0.090 inch diameter.

Figure 36. Temperature profile of the SiO2 coaxial signal cable.

3. Conclusions

In conclusion, provided the potential outgassing of H2 at 43K is acceptable, the use

of the HSR BPM button in the orthogonal configuration is granted with the 0.141 inch

diameter coaxial cable.

VIII. SUMMARY

A comparison between two button configurations for the HSR BPMs, under ±30◦ wrt.

the horizontal plane, i.e. the corner BPM, and in the horizontal / vertical plane, i.e. the

orthogonal BPM was presented, mostly based on numerical analysis methods. The focus of

the analysis was for bunched beams in HSR collision operation with large horizontal beam

displacements, as expected at beam energies of 275GeV or 100GeV. While both BPM

configurations perform similar at these large x =∼ ±20mm beam offset, the orthogonal
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Table VI. Power handling summary (orthogonal BPM, 0.141 inch diameter cable).

boundary condition power input (mW) power output (mW)

button electrode 5.4

coaxial outer signal connector 161

coaxial inner signal connector 32

coaxial cable losses (0.141 inch dia.) 376

power from the 293K feedthrough 133.5

power to heat shield intercept -383

power the BPM module (15K) -326

total 708 -709

button BPM offers the option to make use of the vertical electrodes as virtual center

electrode, which improves the BPM pickup sensitivity and therefore the resolution by

∼ 4× compared to the corner BPM or the orthogonal BPM not using this “trick”.

Beam and signal induced thermal heating of the “hot” electrode, i.e. the button close

to the beam, was a major concern leading to the corner button arrangement. However,

those concerns could be mitigated by two measures, reducing the diameter of the button

electrodes and using high-RRR bulk copper material for the buttons. Along with the use

of 60 inch long, 0.141 inch diameter SiO2 semi-rigid coaxial signal cables between button

output and insulation vacuum feedthrough, the thermal heating is manageable also under

the most extreme HSR operating condition (hor. beam offset: 23mm, qbunch = 30.6 nC,

Nbunch = 290).
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