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1 Introduction

Particle beam focussing and other confined physical systems often obey the equation ẍ = kx,
where k < 0 implies stable motion. A constant negative value of k yields simple harmonic motion
(constant focussing), while positive values give unstable (defocussing) motion. Alternating-
gradient focussing is the surprising principle that if k(t) is varied periodically, the overall motion
can sometimes be stable even if the average value of k is zero or negative. It is used where
focussing in one direction implies defocussing in one or more other directions, such as with
electromagnetic fields in free space that have to satisfy ∇ ·E = 0 and similar.

2 Equation of Motion and Time Rescaling

Sinusoidally-varying focussing is a natural choice in some experiments (Paul-type ion traps for
example). The equation

ẍ = k sin(ωt)x

for some constant k determines the motion. Rescaling time with y(t) = x( t
ω ) and ÿ(t) = 1

ω2 ẍ(
t
ω )

and evaluating the original equation at time t
ω gives

ω2ÿ(t) = ẍ

(
t

ω

)
= k sin(t)x

(
t

ω

)
= k sin(t)y(t)

⇒ ÿ =
k

ω2
sin(t)y.

This only has one parameter, k
ω2 . So, without loss of generality, the remainder of this note will

study behaviour of the equation
ẍ = k sin(t)x

for constant k.

3 Linear Dynamics

The equation of motion is second order and linear in x, so values at later times satisfy[
x(t)
ẋ(t)

]
=

[
a(t) b(t)
c(t) d(t)

] [
x(0)
ẋ(0)

]
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for some functions a, b, c, d. Differentiating both sides gives[
ẋ(t)

k sin(t)x(t)

]
=

[
ẋ(t)
ẍ(t)

]
=

[
ȧ(t) ḃ(t)

ċ(t) ḋ(t)

] [
x(0)
ẋ(0)

]
⇒

[
c(t) d(t)

k sin(t)a(t) k sin(t)b(t)

] [
x(0)
ẋ(0)

]
=

[
ȧ(t) ḃ(t)

ċ(t) ḋ(t)

] [
x(0)
ẋ(0)

]
.

This gives the time derivatives of a, b, c, d:

ȧ = c, ḃ = d, ċ = k sin(t)a, ḋ = k sin(t)b.

At t = 0 the matrix is just the identity, so the initial conditions are

a(0) = 1, b(0) = 0, c(0) = 0, d(0) = 1.

4 Effective Focussing Strength

The equation of motion is periodic in time, so solutions can be shifted by multiples of 2π. This
means once the matrix

M =

[
a(2π) b(2π)
c(2π) d(2π)

]
is obtained, it can evolve conditions at t = 2πn to t = 2π(n + 1) for any integer n. Thus, the
long term dynamics from t = 0 to t = 2πn are determined by Mn.

For stable dynamics, the two eigenvalues of M must be on the complex unit circle e±iϕ for
some phase advance ϕ. The trace of a matrix is equal to the sum of its eigenvalues, so

tr(M) = a(2π) + d(2π) = 2 cos(ϕ).

The value of this trace determines the strength of the focussing, with tr(M)=2 (ϕ = 0) meaning
no focussing and tr(M)=−2 (ϕ = π) meaning the maximum focussing possible before instability.

This note will derive an expression for tr(M) and ϕ as functions of the time-rescaled k. This
gives the long-term dynamical frequencies as a function of applied focussing strength.

It is also possible to find an ‘effective focussing strength’, which is the constant focusing
strength (simple harmonic motion) that would give the same frequency:

ẍ = −keffx ⇒ x = A sin(
√

kefft) +B cos(
√

kefft) ⇒
√

keff2π = ϕ.

5 Expansion in Powers of k

The time derivatives of a, b, c, d seem to form a coupled system but expanding in powers of k
makes the calculation easier. If a =

∑∞
n=0 ank

n and similarly for b, c, d, then equating powers of
k gives

ȧn = cn, ḃn = dn, ċn = sin(t)an−1, ḋn = sin(t)bn−1,

with ċ0 = ḋ0 = 0. Writing the integrals explicitly gives, for n ≥ 1,

an =

∫ t

0
cn dt, bn =

∫ t

0
dn dt, cn =

∫ t

0
sin(t)an−1 dt, dn =

∫ t

0
sin(t)bn−1 dt.
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The initial values imply that c0 = 0 and d0 = 1 for all t because these have derivative zero.
There is also

a0 = 1 +

∫ t

0
c0 dt = 1 and b0 =

∫ t

0
d0 dt = t.

Then c1 = 1− cos(t) and d1 = sin(t)− t cos(t), and so on, alternating between a, b and c, d.

Successive approximations to the phase advance can be calculated from

2 cos(ϕ) = tr(M) = a(2π) + d(2π) =
∞∑
n=0

(an(2π) + dn(2π))k
n.

Note that [
a0 b0
c0 d0

]
=

[
1 t
0 1

]
is just the transfer matrix of a drift with no focussing force, as expected for the k0 term.

6 Start of Calculation

We already have the k0 coefficient

a0(2π) + d0(2π) = 1 + 1 = 2.

a1 = t− sin(t)

b1 = 2− t sin(t)− 2 cos(t)

The k1 coefficient is
a1(2π) + d1(2π) = 2π + (−2π) = 0.

c2 = −1
2 t+ sin(t) + 1

4 sin(2t)− t cos(t)

d2 =
11
8 −

1
4 t

2 + 1
4 t sin(2t)− 2 cos(t) + 5

8 cos(2t)

a2 = 2− 1
4 t

2 − t sin(t) + 1
4 sin

2(t)− 2 cos(t)

The k2 coefficient is

a2(2π) + d2(2π) = (−π2) + (−π2) = −2π2.

The integrals are probably best done by computer algebra system beyond this point. Al-
though, approximating tr(M) ≃ 2− 2π2k2 already gives a reasonable approximation to the real
value as shown in Figure 1.

Odd powers of k have coefficients of zero because replacing k sin(t) by −k sin(t) in the
differential equation just shifts the time axis by π, so long term behaviour should be identical
on changing the sign of k, making the phase advance an even function of k.

7 General Terms

It appears the general terms look like p(t) sin(mt) + q(t) cos(mt) for some polynomials p, q and
m ≥ 0. The m = 0 cos term gives the non-sinusoidal polynomial parts. The integral of this term
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Figure 1: Approximation of tr(M) up to the k2 term.

also has the form P (t) sin(mt) +Q(t) cos(mt) where the new polynomials P,Q can be found by
a recurrence relation. Write p(t) =

∑N
n=0 pnt

n and similarly for q, P,Q, then

d
dt(P (t) sin(mt) +Q(t) cos(mt)) =

∑N
n=0

d
dt(Pnt

n sin(mt) +Qnt
n cos(mt))

=
∑N

n=0(nPnt
n−1 −mQnt

n) sin(mt) + (nQnt
n−1 +mPnt

n) cos(mt)

=
∑N

n=0((n+ 1)Pn+1 −mQn)t
n sin(mt) + ((n+ 1)Qn+1 +mPn)t

n cos(mt)

=
∑N

n=0 pnt
n sin(mt) + qnt

n cos(mt),

where by convention, PN+1 = QN+1 = 0. Equating coefficients gives

pn = (n+ 1)Pn+1 −mQn, qn = (n+ 1)Qn+1 +mPn,

therefore

Pn =
1

m
(qn − (n+ 1)Qn+1), Qn =

1

m
((n+ 1)Pn+1 − pn).

The recurrence can be started with PN = qN
m and QN = −pN

m then evaluated downwards to
n = 0. The exception is m = 0 when the usual polynomial integration Pn = pn−1

n and Qn = qn−1

n
should be used.

Besides integrating, the other operation that happens in the calculation is multiplication by
sin(t). This can be dealt with by the trigonometrical product formulae

sin(t) sin(mt) =
1

2
cos((m− 1)t)− 1

2
cos((m+ 1)t)

sin(t) cos(mt) = −1

2
sin((m− 1)t) +

1

2
sin((m+ 1)t).

Overall, a matrix entry function is represented on a computer as

an =
M∑

m=0

panm(t) sin(mt) + qanm(t) cos(mt) =
M∑

m=0

N∑
j=0

panmjt
j sin(mt) + qanmjt

j cos(mt)

with arrays of coefficients (p, q)(a,b,c,d)nmj . For n = 0, the upper limits are N = 1 and M = 0
and these can increase by one each time n does.
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8 Computer Algebra Calculation

Using the general formulae above, a computer algebra calculation gives the trace as

tr(M) = 2 cos(ϕ) = a(2π) + d(2π) =

(+2) k0

+
(
−2π2

)
k2

+
(
−25

8 π
2 + 1

3π
4
)
k4

+
(
−1169

144 π
2 + 25

24π
4 − 1

45π
6
)
k6

+
(
−16824665

663552 π2 + 24329
6912 π

4 − 5
48π

6 + 1
1260π

8
)
k8

+
(
−104550461873

1194393600 π2 + 25241465
1990656 π

4 − 14977
34560π

6 + 5
1008π

8 − 1
56700π

10
)
k10

+
(
−1383860829361699

4299816960000 π2 + 343096621171
7166361600 π4 − 7069153

3981312π
6 + 35579

1451520π
8 − 5

36288π
10 + 1

3742200π
12
)
k12

+
(
−29289023958538918009

23702740992000000 π2 + 150905495534989
806215680000 π4 − 131109204649

17915904000 π
6+

9427513
83607552π

8 − 10301
13063680π

10 + 1
399168π

12 − 1
340540200π

14
)
k14 +O(k16).

The final k14 term is of similar magnitude to the double precision rounding error, so this should
suffice for most numerical calculations.

9 Conclusion

If the polynomial above is donated T (k) ≃ tr(M) = 2 cos(ϕ), then the phase advance per period
can be calculated with ϕ ≃ arccos(12T (k)).

The effective focussing strength satisfies
√
keff2π = ϕ and so

keff =

(
ϕ

2π

)2

≃

(
arccos(12T (k))

2π

)2

.

Finally, considering the non-time-rescaled equation of motion ẍ = k sin(ωt)x, the subtitutions
k ← k

ω2 and 2π ← 2π/ω give

keff ≃ ω2

(
arccos

(
1
2T
(

k
ω2

))
2π

)2

.
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