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1 Non-Moving Charges

The electric potential and field from a stationary charge q1 placed at the origin are

V (x) =
1

4πϵ0

q1
|x|

and E(x) = −∇V =
1

4πϵ0

q1
|x|3

x.

The force on another charge q2 at position x is then

F2 = q2(E+ v2 ×B) =
1

4πϵ0

q1q2
|x|3

x,

where B = 0 because the non-moving charge q1 produces no magnetic field.

2 Transforming the Four-Potential

The electromagnetic four-potential is Aµ = (1cV,A), which transforms as a four-vector under
Lorentz transformations. Let primes (′) denote the rest frame of charge q1. In this frame,

A′µ(x′µ) =

(
1

4πϵ0c

q1
|x′|

,0

)
=

1

4πϵ0c

q1
|x′|

(1,0).

If this charge is travelling at velocity v1 = βc, the (inverse) Lorentz transformation is

xµ =

[
γ γβT

γβ I + γ−1
β2 ββT

]
x′µ,

where β = |β| and γ = (1− β2)−
1
2 . The same transformation gives Aµ(xµ) from A′µ(x′µ), so

Aµ(xµ) =
1

4πϵ0c

q1
|x′|

(γ, γβ).

The forward Lorentz transformation on xµ = (ct,x) gives

x′µ =

(
γct− γβ · x,−γctβ + x+

γ − 1

β2
(β · x)β

)
,

thus x′ = −γctβ + x+ γ−1
β2 (β · x)β.
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3 Deriving the Fields

The field tensor is Fµν = ∂µAν − ∂νAµ, where ∂µ = (1c∂t,−∇). The four-potential is a function
of x′, so first calculate the derivatives

∂0x′i = −γβi

∂jx′i = −
(
δij +

γ − 1

β2
βiβj

)
.

Next observe that

∂µ|x′| =
∑
i

∂|x′|
∂x′i

∂µx′i =
∑
i

x′i

|x′|
∂µx′i

and use the chain rule to get

∂µAν =
1

4πϵ0c

−q1
|x′|2

(γ, γβ)ν
∑
i

x′i

|x′|
∂µx′i

=
1

4πϵ0c

−q1
|x′|3

(γ, γβ)ν
∑
i

x′i
(
−γβi,−

(
ei +

γ − 1

β2
βiβ

))µ

=
1

4πϵ0c

q1
|x′|3

(γ, γβ)ν
(
γx′ · β,x′ +

γ − 1

β2
(x′ · β)β

)µ

.

The fields and forces on the particles will be evaluated at t = 0, so there are simpler expressions
for

x′ = x+
γ − 1

β2
(β · x)β,

x′ · β = x · β + (γ − 1)(β · x) = γβ · x,

x′ +
γ − 1

β2
(x′ · β)β = x+

γ − 1

β2
(β · x)β +

γ − 1

β2
(γβ · x)β

= x+
(γ − 1)(γ + 1)

β2
(β · x)β = x+ γ2(β · x)β.

This means at t = 0,

∂µAν =
1

4πϵ0c

q1
|x′|3

(γ, γβ)ν(γ2β · x,x+ γ2(β · x)β)µ.

The electric field is
1

c
Ei = F i0 = ∂iA0 − ∂0Ai

⇒ E =
1

4πϵ0

q1
|x′|3

(γ(x+ γ2(β · x)β)− γβ(γ2β · x))

=
1

4πϵ0

q1
|x′|3

(γx+ γ3(β · x)β − γ3(β · x)β)

=
1

4πϵ0

q1
|x′|3

γx.

The x component of the magnetic field is

Bx = F zy = ∂zAy − ∂yAz
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⇒ Bx =
1

4πϵ0c

q1
|x′|3

(γβy(z + γ2(β · x)βz)− γβz(y + γ2(β · x)βy))

=
1

4πϵ0c

q1
|x′|3

(γβyz − γβzy).

This is true cyclically x → y → z → x, so

B =
1

4πϵ0c

q1
|x′|3

γβ × x.

4 Evaluating the Force

Taking these results together, the force on charge q2 at position x, travelling at velocity v2 is

F2 = q2(E+ v2 ×B)

=
1

4πϵ0c

q1q2
|x′|3

(cγ1x+ v2 × (γ1β1 × x))

=
1

4πϵ0

q1q2
|x′|3

γ1(x+ β2 × (β1 × x))

=
1

4πϵ0

q1q2
|x′|3

γ1(x+ (β2 · x)β1 − (β2 · β1)x),

where x′ = x+ γ1−1
β2
1
(β1 · x)β1.

5 Check: using the E, B field transformation rules

In the rest frame of charge q1,

E′(x′) =
1

4πϵ0

q1
|x′|3

x′

and B′ = 0. The field transformation rules are

E∥ = E′
∥,

B∥ = B′
∥,

E⊥ = γ(E′
⊥ − v ×B′),

B⊥ = γ

(
B′

⊥ +
1

c2
v ×E′

)
,

where ∥ and ⊥ denote the components parallel and perpendicular to v respectively.

E = E∥ +E⊥ = E′
∥ + γE′

⊥

=
1

4πϵ0

q1
|x′|3

(
1

β2
(x′ · β)β + γ

(
x′ − 1

β2
(x′ · β)β

))
=

1

4πϵ0

q1
|x′|3

(
γx′ − γ − 1

β2
(x′ · β)β

)
.

Using the formulae for x′ in terms of x at t = 0 from a previous section,

E =
1

4πϵ0

q1
|x′|3

(
γ

(
x+

γ − 1

β2
(β · x)β

)
− γ − 1

β2
(γβ · x)β

)
=

1

4πϵ0

q1
|x′|3

γx.
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For the magnetic field,

B = B∥ +B⊥ = 0 + γ
1

c2
v ×E′

=
1

4πϵ0

q1
|x′|3

γ
1

c2
v × x′

=
1

4πϵ0c

q1
|x′|3

γβ × x,

where we have used v × x′ = v × x since v ∥ β and x′ and x only differ by a multiple of β.
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