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1 Turning an End Field on its Side

A previous note derived the following expression for a magnetic field that is order n rotationally
symmetric about the z axis:

B =
∞∑
j=0

Cnjr
n+2j−1

 ((n+ j) sin((n− 1)θ + ψ) + j sin((n+ 1)θ + ψ))f (2j)(z)

((n+ j) cos((n− 1)θ + ψ)− j cos((n+ 1)θ + ψ))f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)

 .
Here, r =

√
x2 + y2,

Cnj =
j∏

i=1

−1

(n+ 2i)2 − n2
=

j∏
i=1

−1

4(n+ i)i
=

(−1
4)

jn!

(n+ j)!j!

and f(z) is proportional to the strength variation of the 2n-pole along the z axis. ψ = 0 gives
normal orientation and ψ = π

2 the skew orientation.

The idea of this note is to reinterpret (x, y) as the plane of a ring with superperiodicity
n, making z the ‘vertical’ or out-of-plane axis. The vertical Bz component is oscillatory but
can be supplemented by a constant field in that direction, producing something similar to ‘field
flutter’ in cyclotrons, including the alternating gradients that keep the beam stable. Normally
it is desired that the z = 0 ring plane only has field perpendicular to it, meaning Bx = By = 0
there. This can be guaranteed by making f(z) an odd function, so that f (2j)(0) = 0 for all j.

2 f with Order 1

The simplest case with f(z) an odd polynomial is f(z) = az. As f ′′ and all higher derivatives
are zero, only the j = 0 term is nonzero. Note that Cn0 = 1 and then

B = rn−1

 n sin((n− 1)θ + ψ)az
n cos((n− 1)θ + ψ)az

r sin(nθ + ψ)a

 .
The peak strength of the dipole field on the midplane is arn and the peak gradient is anrn−1.

This field model has the advantage of being very simple. It is also the field of a scaling
FFA with field index k = n and a cell with sinusoidally-varying focussing (not a very efficient
machine as the reverse bending nearly equals the bending). If more complex cells are desired,
terms replacing n with 2n, 3n, etc. can add longitudinal harmonics to the periodic cell.
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One disadvantage of this field model for larger beams is that it also has a sextupole d2Bz

dr2
of

peak strength an(n− 1)rn−2 that leads to nonlinear beam transport.

3 f with Order 3

The second simplest case is f(z) = az + bz3. Now the j = 0, 1 terms are the only nonzero ones.
Cn1 =

−1
4(n+1) and

B = rn−1

 n sin((n− 1)θ + ψ)(az + bz3)
n cos((n− 1)θ + ψ)(az + bz3)

r sin(nθ + ψ)(a+ 3bz2)



+
−1

4(n+ 1)
rn+1

 ((n+ 1) sin((n− 1)θ + ψ) + sin((n+ 1)θ + ψ))6bz
((n+ 1) cos((n− 1)θ + ψ)− cos((n+ 1)θ + ψ))6bz

r sin(nθ + ψ)6b

 .
The peak strength of the dipole field on the midplane is now arn− 6b

4(n+1)r
n+2. The peak gradient

is anrn−1− 3b(n+2)
2(n+1) r

n+1 and the peak sextupole d2Bz

dr2
is an(n− 1)rn−2− 3b(n+2)

2 rn. To make the
sextupole zero at radius r = R, it is required that

an(n− 1) =
3b(n+ 2)

2
R2 ⇒ b =

2n(n− 1)

3(n+ 2)R2
a.

This makes the peak dipole field at radius r = R equal to

aRn − 6

4(n+ 1)

2n(n− 1)

3(n+ 2)R2
aRn+2 =

(
1− n(n− 1)

(n+ 1)(n+ 2)

)
aRn

and the peak gradient at r = R equal to

anRn−1 − 3(n+ 2)

2(n+ 1)

2n(n− 1)

3(n+ 2)R2
aRn+1 =

(
1− n− 1

n+ 1

)
anRn−1.

4 General Case

Higher order polynomials may be useful for cancelling octupole and higher nonlinearities. For
odd f(z), the field on the midplane is

Bz(z = 0) =
∞∑
j=0

Cnjr
n+2j sin(nθ + ψ)f (2j+1)(0).

The peak ith radial derivative field is then

B
(i)
z,peak =

∞∑
j=0

Cnj
(n+ 2j)!

(n+ 2j − i)!
rn+2j−if (2j+1)(0).

If f(z) =
∑K

k=0 a2k+1z
2k+1 then f (2j+1)(0) = (2j+1)!a2j+1 for j ≤ K and zero otherwise, giving

B
(i)
z,peak =

K∑
j=0

Cnj
(n+ 2j)!

(n+ 2j − i)!
rn+2j−i(2j + 1)!a2j+1.
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Typically a radius r = R will be chosen at which several (K+1) of the B
(i)
z,peak are specified (e.g.

nonzero gradient i = 1, some higher multipoles zero). The values of Rna2j+1 can be obtained
by solving the linear system

B
(i)
z,peak =

K∑
j=0

(−1
4)

jn!

(n+ j)!j!

(n+ 2j)!

(n+ 2j − i)!
R2j−i(2j + 1)!(Rna2j+1).

The factor Rn can be too large for the computer precision, so is included in the coefficient value.
The field can then be calculated with the rescaled formula

B =

(
r

R

)n ∞∑
j=0

Cnjr
2j−1

 ((n+ j) sin((n− 1)θ + ψ) + j sin((n+ 1)θ + ψ))Rnf (2j)(z)

((n+ j) cos((n− 1)θ + ψ)− j cos((n+ 1)θ + ψ))Rnf (2j)(z)

r sin(nθ + ψ)Rnf (2j+1)(z)

 .
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