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Data

The effect of current in the horizontal sextupoles
on stopband corrections is documented. Corrector
settings using DLFSC and SN26 were found that
corrected the normal sextupole lines 3Qz = 26
and Qx+2Qv = 26 as a function of current in the
horizontal sextupoles. It was found that the skew
sextupole lines 3Qy = 26 and 2Qy + Qv = 26
were not affected by the current in the horizontal
sextupoles. Figures 1 through 4 show the settings

of the ortho counts which simultaneously correct

the sine and cosine components of the two normal
lines as a function of current in the horizontal sex-
tupoles (IHS) in units of 10 amps. Estimated one
sigma error bars are 50 counts. The DLFSC cor-
rection was 700 at all times. Note that the vertical
“scales are different on each plot. Below the plots
are the least squares fit values and one standard
deviation errors obtained from fitting the function

Corr = 0 + cl(IHS/10) + 2(THS/10, (1)
where Corr is SY26, CY26, SX26, or CX26 in

counts. The ortho constants on the ring/sn26
page are the current increments in milliamps for
an increment of 100 in the corresponding cor-
rection. Figure 5. shows the variation in the
four quadrupole supplies needed to correct the
2Qy = 17 resonance as the current in the hori-

zontal sextupoles is varied. Estimated one sigma

error bars are 50 counts = 0.25 amps. The af-
fect of the horizontal sextupoles on the 2Qvy = 17
resonance was not studied.

“Analysis
For analysis purposes, consider the stopband driv-
ing terms created by the correction currents [1],
2x
; S
21 (2R)V?[ng|!|ny |! o
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exp {i[napz + nypy +
(P— anz —ny@y)0]}.

k(ng,ny) =

In equation (2) N = 3, P = 26, n, = 3, and
n, = 0 for the 3Q); = 26 resonance. For the Q. +
2Q, = 26 resonance n, = 1 and n, = 2. These
resonances are due to the sextupole field

R? 9°B,

E(0) = (Bp) 0z

(3)

The goal of the analysis is to find lattice errors
using the measured values of k. In particular the
strong dependence of $X26 and CX26 on IHS?
needs to be understood. At this point in time the
only situation I know of which would lead to a
nearly quadratic dependence of correction on the
current in the sextupoles involves a closed orbit
which is badly offset in some of the sextupoles.
For a 5cm offset in one horizontal sextupole, MAD
calculations predict a variation in the 3Q, = 26
stopband strength which matches the data. The
predicted variation in the 2@, +@. = 26 stopband
is about a factor of 15 smaller than the measure’

. variation. Given that the measured variation in

the second case is an order of magnitude smaller
than the variation in the 3@, = 26 case, and the
model is imperfect, the disagreement is not too
worrisome. The best locations for the offset sex-
tupole are in B, E, H, and K with a difference
between calculated and measure phases ~ 20°.

Additionally, one needs to consider the changes
in the correction of the 2Q), = 17 resonance with
ne =2, P =17, N = 2. For an orbit offset of 5cm
in a single sextupole the integrated quadrupole
strength is 33Gauss/Amp. For the quadrupoles in
the correction strings the integrated quadrupole
strength is 41Gauss/Amp. An order of magni-
tude estimate for the change in quadrupole cor-
rection current with current in the sextupoles is

.A.Iq41NQ = AlIg33 where Ng ~ 8 is the ef-

1

fective number of quadrupoles used in the cor-
rection. For Als = 6Amps the predicted value
is Alq = 0.5Amp while the measured value is
Alg ~ 3Amps. A more careful accounting of the
phase and (3 weighted averages shows that the ob-
served variation in the 2@Q), = 17 stopband is only

(2) twice as large as that predicted by the model.
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Figure 1: SY26 correction .vs. IHS/10, weighted
rms = 11

The factor of two discrepancy does not seem too
serious. As the 2Q); = 17 resonance is approached
any errors will cause large excursions in B,. The
 stopband strength will be due to both the gradi-
ent at the sextupole as well as the § and phase
weighted averages in i.e. the combined function
magnets at all locations around the ring. .1 ex-
pect that the correction strings would create just
as severe a 3 function modulation as the offset in
the sextupole but have no proof. Additionally, a
5cm offset is very large indeed. Smaller offsets in
several sextupoles would also do the job but the
phases would have to be right. The relative size
of the sextupole and quadrupole stopbands might
change as well.
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Figure 2: CY26 correction .vs. IHS/10, weighted
rms = 43
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Figure 3: SX26.correction .vs. IHS/10, weighted
rms = 40 ‘



1500 2000

1000

o

©o R

(V]

<

)
Dl 4 1 .

0.0 0.5 1.0 1.5

. IHS/10

c0 cl c2

111 -118 882

de0’ del dc2

39 110 70

Figure 4: CX26 correction .vs. IHS/10, weighted
rms = 40
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Figure 5: QN17 currents .vs. IHS, A=QVF,
O=QVC, +=QHC, x = QHF. '



