
Brookhaven National Laboratory 

U.S. Department of Energy
USDOE Office of Science (SC), Nuclear Physics (NP)

Electron-Ion Collider

December 2024

P. Baxevanis

EIC hadron ring longitudinal stability simulations at injection

BNL-226418-2024-TECH

EIC-ADD-TN-114

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for
publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United
States Government purposes.



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



1

EIC hadron ring longitudinal stability simulations at injection

P. Baxevanis, A. Blednykh

Brookhaven National Laboratory, Upton, NY



2

I. INTRODUCTION

At the EIC injection energy (23.8 GeV for protons), the hadron beam experiences a rela-

tively strong space charge field. The corresponding wakefield, in conjunction with the wakes

from the RF cavities (i.e. the geometrical wakes), may become the cause of single-bunch

instabilities, both longitudinal and transverse. In this report, we focus on the longitudinal

stability aspect of this picture, using a simplified model for the ring.

II. LONGITUDINAL BEAM DYNAMICS

For the case of a single (regular) RF system, the longitudinal motion of the hadron beam

under the influence of wakefields can be modeled by the following equations ([1–3]):

dz

dt
= −cαη , dη

dt
=

1

α

ω2
s0

c
z − e2

γ0mcLR

∫ ∞
z

dz′nl(z
′, t)wl(z

′ − z) . (1)

Here, e and m are the charge and mass of the hadrons, γ0 = (1− β2
0)−1/2 is the relativistic

factor, z = zlab− cβ0t is the longitudinal position of a hadron relative to the bunch centroid,

η = ∆γ/γ0 is the energy deviation variable, ωs0 is the synchrotron frequency and α =

αc − 1/γ20 is the slippage factor (itself expressed in terms of the momentum compaction

factor αc = 1/γ2t , where γt is the transition gamma). For a sinusoidal RF voltage profile of

the form

VRF (t) = V0 sin(ωRF t) , (2)

where V0 is the voltage amplitude and ωRF/2π = fRF is the RF frequency, the synchrotron

frequency ωs0 is given by

ωs0 =

(
2παfRF eV0
mc2γ0T0β0

)1/2

,

where T0 = LR/(cβ0) is the revolution period for a ring of circumference LR (assuming

η = 0), the synchrotron tune being equal to νs = (ωs0T0)/2π. Moreover, nl(z, t) is the line

density of the hadron bunch - which satisfies the relation
∫∞
−∞ dz

′nl(z
′, t) = N , where N is

the total number of hadrons - while wl(s) is the longitudinal wake. The latter is expressed

in terms of the longitudinal impedance Zl(ω) via the relation

wl(s) =
1

2π

∫ ∞
−∞

dωZl(ω) exp(−iωs/c) . (3)
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From a physical point of view, in the context of our notation −qtqswl(s)/c expresses the

longitudinal momentum kick from a source particle with charge qs to a trailing (test) particle

with charge qt located a distance s behind the source. It is also worth noting that, in the

second term on the RHS of the energy equation in Eq. (1) - which expresses the energy

change due to the wakefields, the lower integration limit has to be switched from z to −∞

for a wake wl(s) that does not vanish for negative s (such as the space charge wake to be

discussed later).

In the case of zero wake, the phase space density of a bunch with a Gaussian energy

profile that is matched to the RF system is of the form

f(z, η) ∝ exp

(
− z2

2σ2
z0

− η2

2σ2
η

)
, (4)

where ση is the rms energy spread and σz0 = αcση/ωs0 is the unperturbed rms bunch length.

Under the influence of the wake, the equilibrium longitudinal profile of the beam (but not

its energy profile) is distorted. The new longitudinal profile F0(z) satisfies the Häıssinski

equation, namely

F0(z) = exp

(
− z2

2σ2
z0

+
e2

γ0mc2ασ2
ηLR

∫ z

0

dz′
∫ ∞
z′

dz′′nl(z
′′)wl(z

′′ − z′)
)
, (5)

where the equilibrium line density nl is given by nl(z) = NF (z) = NF0(z)/
∫∞
−∞ dz

′F0(z
′).

The analytical expressions presented above can be readily extended for the case of a

double RF system, an option that may be used to generate a flatter longitudinal profile. In

particular, for an RF voltage of the form

VRF (t) = V0 sin(ωRF t)−
V0
2

sin(2ωRF t) , (6)

which incorporates a second-harmonic contribution in order to generate a quartic potential

well (to leading order), the longitudinal equations of motion become ([1])

dz

dt
= −cαη , dη

dt
=

eV0
2γ0mc2T0

(
ωRF z

β0c

)3

− e2

γ0mcLR

∫ ∞
z

dz′nl(z
′, t)wl(z

′ − z) , (7)

while the new Haissinski equation is

F0(z) = exp

(
− z4

4σ4
+

e2

γ0mc2ασ2
ηLR

∫ z

0

dz′
∫ ∞
z′

dz′′nl(z
′′)wl(z

′′ − z′)
)
, (8)

with nl(z) = NF (z) = NF0(z)/
∫∞
−∞ dz

′F0(z
′) and

σ = c

(
γ0mc

2T0ασ
2
ηβ

3
0

4π3eV0f 3
RF

)1/4

. (9)
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In the context of this study, the main impedance sources are the RF cavities and space

charge, with the latter being particularly important at injection energy. The (purely induc-

tive) longitudinal space charge impedance for the whole ring is given by

Zl,SC(ω) = −iωL = iZ0Λ
LRω

2πγ20c
, (10)

where L is the total inductance and Z0 ≈ 377 Ω is the vacuum impedance. The form factor

Λ is given by Λ = 1/2 + log(b/a), if one assumes a round beam pipe of radius b and a flattop

transverse profile for the beam with radius a. For a Gaussian transverse profile with an

rms beam size a, the form factor becomes Λ ≈ −0.05 + log(b/a). This simple analytical

formula for Zl,SC is valid for ω � γ0c/b. Moreover, the point charge - to - point charge wake

associated with the inductive space charge impedance is given by wl(s) = Lc2δ′(s), where

δ(s) is the delta function. For this particular wake, the Haissinski equation can be further

simplified. For example, assuming a regular RF system and neglecting impedance sources

other than space charge, the equilibrium longitudinal profile satisfies the relation

F0(z) = exp

(
− z2

2σ2
z0

− e2NL̂

γ0mασ2
η

F0(z)∫∞
−∞ dz

′F0(z′)

)
, (11)

where L̂ = L/LR = −Z0Λ/2πγ
2
0c is the inductance per unit length along the ring. An

entirely analogous relations is valid for the case of the double RF system.

Lastly, it needs to be clarified that, although this study does not consider transverse

instabilities (such as those driven by transverse wakes), a simple, smooth focusing model has

been assumed for the betatron oscillations of the hadrons. According to this approximation,

the constant beam sizes σx,y are given by σx,y = (εx,yβx,y)
1/2, where βx,y are the average beta

functions and εx,y are the transverse emittance values. Since the space charge impedance

calculation that was presented earlier relies on a round beam, one can typically take σ ≡

a ≈ (σxσy)
1/2, assuming that the size asymmetry between x and y is not too large.

III. STABILITY STUDIES

Confining our attention to protons from now on, the main parameters for the system

configuration under study are listed in Table I. Fig. 1 plots the real and imaginary part

of the geometrical impedance Zl,g(ω), while also comparing them to the (purely imaginary)

space charge impedance. As is evident, the space charge impedance contribution is the
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TABLE I: Stability study parameters

Parameter Value

Energy spread ση 7.4× 10−4

RMS bunch length σz0 (m)/single RF system 1

RF voltage V0 (kV) 40

RF frequency fRF (MHz) 24.61

Transition gamma γt 22.7

Injection gamma γ0 25.36

Momentum compaction factor αc 1.94× 10−3

Proton normalized emittance γ0εx,y (mm-mrad) 0.5 / 0.3

Proton average beta function βx,y (m) 29.8 / 26.7

Proton transverse rms beam size σx,y (mm) 0.76 / 0.56

Ring circumference LR (km) 3.83

Average beam pipe radius b (mm) 24

Average beam radius a (mm) 0.66

predominant one. However, one must still use both sources of impedance in order to generate

the correct particle distribution that satisfies the Häıssinski profiles mentioned earlier in the
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FIG. 1: Impedance profiles used for the longitudinal stability simulations: the left-hand panel

shows the geometrical impedance, while the right-hand panel also plots the imaginary part of the

space charge impedance.
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FIG. 2: Scaled longitudinal (Häıssinski) profiles for various average currents I0 (single RF sys-

tem,
∫∞
−∞ dzF (z) = 1). The left-hand panel includes both the geometrical and the space charge

impedance, while its right-hand counterpart only takes into account the space charge effect.

text. This becomes evident from Figs. 2-3, where we plot the scaled longitudinal profiles

F (z) for various values of the average bunch current I0 = eNβ0c/LR, both for the single

and the double RF system cases. The inclusion of the geometrical impedance qualitatively

modifies the longitudinal equilibrium profile, adding a characteristic asymmetry and making

the profile less sharp than in the case of pure space charge. Moreover, we note that - as
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FIG. 3: Scaled longitudinal (Häıssinski) profiles for various average currents I0 (double RF sys-

tem,
∫∞
−∞ dzF (z) = 1). The left-hand panel includes both the geometrical and the space charge

impedance, while its right-hand counterpart only takes into account the space charge effect.
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FIG. 4: ELEGANT simulations for various average current values/single RF system: the left-hand

panel shows the variation of the rms bunch duration σt over many revolutions, while the right-hand

panel plots the evolution of the rms energy spread.

expected - the double RF system produces a longer bunch with a flatter longitudinal profile.

To examine the stability of these equilibrium distributions, we perform parallel ELE-

GANT simulations (Ref. [4]) using the previously-described Häıssinski solutions as input

(specifically, those which include both sources of impedance). The tracking is done for up

to 2× 105 turns, and key quantities such as the rms bunch duration and the energy spread

0.0 0.5 1.0 1.5 2.0
Turns (105)

4.85

4.90

4.95

5.00

5.05

5.10

t(
s)

1e 9
no wake
I0 = 3 mA
I0 = 5 mA
I0 = 6 mA
I0 = 7 mA

0.0 0.5 1.0 1.5 2.0
Turns (105)

7.30

7.35

7.40

7.45

7.50

7.55

7.60

(1
0

4 )

no wake
I0 = 3 mA
I0 = 5 mA
I0 = 6 mA
I0 = 7 mA

FIG. 5: ELEGANT simulations for various average current values/double RF system: the left-hand

panel shows the variation of the rms bunch duration σt over many revolutions, while the right-hand

panel plots the evolution of the rms energy spread.
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are monitored in order to check for longitudinal instabilities. From the relevant results,

which are presented in Figs. 4-5, one observes that ramping up the current to 7 mA leads

to i) a slow, relatively modest average growth for the energy spread and bunch length over

time and ii) an initial slight drop in the bunch length (driven by the space charge), even-

tually counterbalanced by the geometrical impedance as the current increases. Overall, one

may reasonably conclude that this system configuration is longitudinally stable for average

currents up to a factor of two larger than the nominal value of 3.5 mA.

IV. CONCLUSIONS

In this study, we have investigated the single-bunch longitudinal stability of the EIC

proton beam at injection energy (23.8 GeV). Using a simplified model for the ring and

taking into account the main sources of impedance (space charge and RF cavities), we

generate the Häıssinski equilibrium profiles for various values of the average current and

use them as input for parallel simulations using the ELEGANT particle tracking code. The

results of these simulations show that the proton beam remains longitudinally stable for

average currents of up to 7 mA.
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solutions and running the ELEGANT simulations, as well as M. Blaskiewicz for useful dis-

cussions regarding longitudinal instabilities. This work is supported by Brookhaven Science

Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.

[1] S. Y. Lee, Accelerator Physics (World Scientific, 1999).

[2] A. W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New

York, 1993).

[3] A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, eds., Handbook of accelerator physics

and engineering (Singapore, 2013), 2nd ed.

[4] M. Borland, Tech. Rep. LS-287, Argonne National Laboratory (2000).


