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Abstract

The beamline at the NASA Space Radiation Laboratory (NSRL)
is equipped with a range of magnets, including dipole magnets, dipole
corrector magnets, quadrupole magnets, sextupole magnets, and oc-
tupole magnets. The magnet transfer function defines the relation-
ship between the power supply currents and the corresponding magnet
strengths. This note presents the measurements of the transfer func-
tions for the dipole correctors and quadrupole magnet in the NSRL
beamline.

1 Introduction
As illustrated in Fig. 1, The beamline comprises three dipole magnets forming
a 20° bends, nine quadrupole magnets (Q1–Q9), and two octupole magnets
(Oct1 and Oct2). The octupole magnets are positioned upstream of Q5 and
Q6, respectively, and are adjustable to achieve a uniform rectangular beam
distribution on the target [1, 2]. The optical design of the beamline ensures an
achromatic beam following the 20° dipole bend, which is essential for main-
taining beam uniformity as momentum-dependent motion at the octupole
entrances can affect distribution uniformity. Upon traversing the foil, the
transverse phase space distribution of the beam transforms into a Gaussian
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Figure 1: NSRL beamline with different magnet and current set up in the
operational mode.

Figure 2: Schematic drawing of the NSRL beamline showing different magnet
components and SWICs.
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distribution at the entrance of the D6 septum [3, 4]. This Gaussian distribu-
tion, after passing through the various magnets along the NSRL beamline,
facilitates the generation of uniform beam distributions at the NSRL tar-
get [1], which is critical for the success of various beam experiments.

Additionally, a set of dipole correctors is installed along the NSRL beam-
line. The horizontal dipole correctors, designated as RD70, RD137, RD178,
and RD250, and the vertical dipole correctors, designated as RP13, RP73,
RP140, RP181, and RP253, respectively, serve to center the beam in the hor-
izontal and vertical planes. To achieve this centering, specific currents, typi-
cally on the order of a few amperes, are supplied to these corrector magnets.
The relationship between the applied currents and the resulting magnetic
fields of these correctors is critical for defining their strengths. Therefore,
it is necessary to characterize the magnetic field response to various current
values to precisely determine the corrector strengths.

To establish a precise correlation between currents and the magnetic field
strengths of the NASA Space Radiation Laboratory (NSRL) beamline mag-
nets, it is essential to define a transfer function for each magnet type. This
note outlines a detailed experimental methodology for determining the mag-
netic field strengths of the dipole corrector and quadrupole magnets.

2 Transfer Function
The transfer function is defined by [5]

BL/I [Tm/A] for a dipole
GL/I [T/A] for a quadrupole,

(1)

where B and G are the dipole magnetic field and quadrupole gradient re-
spectively. L is the length of the magnet and I is the current in amps. In
principle, magnet transfer function is ideally constant. However in reality
this may not be true because of saturation of current.

Let us consider the following derivation starting from Lorentz force equa-
tion,

F = dp

dt
= q(E + V × B), (2)

where symbols have their usual meanings and F, p, E, V , and B are vectors.
Let us consider the dipole magnet which bends the beam trajectory by angle
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θ. Then Eq. 2 can be written as

dp

dt
= p0

dθ

dt

= p0
dθ

ds
· ds

dt

qvzB = p0
dθ

ds
· vz

∆θ = BL

Bρ
; ds = L, Bρ = p0/q.

(3)

Now the dipole magnet transfer function is obtained as

BL

I
= ∆θ

∆I
· Bρ (4)

For quadrupole magnet, ∆θ is defined by the quadrupole field strength k,

∆θ = x

1/k
= kx = BL

Bρ
= GxL

Bρ

GL = k · Bρ

GL

I
= Bρ · ∆k

∆I

(5)

Eq. (4) and Eq. (5) will be used to calculate the dipole manget and quadrupole
magnet transfer functions from the beam measurements.

2.1 Transfer function for vertical correctors
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Figure 3: BL/I versus I plot for all vertical correctors. At higher current
value, all vertical corrector magnets transfer function converges to about
0.00023 (T-m/A), except for rp13 corrector. This is explained in section 4.
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2.2 Transfer function for horizontal correctors

Figure 4: BL/I versus I plot for all horizontal correctors. At higher current,
all horizontal correctors transfer function converges to about 0.00023 (T-
m/A).
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3 Quadrupole Magnets Transfer Function
There are 9 quadrupole magnets in the NSRL beam line. The distance be-
tween the quadrupoles and the corresponding multi-wires location in the
beamline is presented in Table 3. Figure 5 shows the rQ1 quadrupole trans-
fer function measured with beam profile displacement at multi-wire MW063
and MW090 respectively. The value of the quadrupole transfer function is
about 0.0057 T/m. The details on the procedure to calculate the quadrupole
transfer function including a model for one-turn transfer map is presented in
Appendix. C.2.

Figure 5: Transfer function for rq1 quadrupole

All quadrupoles in the NSRL beamline are the same and they should
have the same transfer function as the first quadrupole rQ1. Due to a limit
to the experimental time available for the beam experiment, we are unable
to measure all quadrupoles transfer function at this point.
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4 Result and Discussion
We measured the transfer function of all five vertical correctors (RP13, RP73,
RP140, RP181, and RP253) and all four horizontal correctors (RD70, RD137,
RD178, and RD250) in the NSRL beamline, following the experimental pro-
cedure outlined in the previous section. We utilized Silicon ions with a kinetic
energy of 613.85 MeV per nucleon at the beginning of the NSRL beamline.
The rigidity Bρ = 8 T-m for Q = 14, and β ∗ γ = 1.38.

The mean value of the transfer function for RP13 was approximately
0.00029 T-m/A. For all other correctors, the transfer function values con-
verged close to 0.00023 T-m/A at higher currents, as illustrated in Fig. 3.

Notably, the total length, aperture and number of turns of RP13 and
other vertical correctors differed. While RP13 had a total length of 2 ×
0.2032 m, the other vertical correctors shared a total length of 2 × 0.31496
m. Additionally, RP13 had a magnet aperture of 5 inches, whereas other
correctors had an aperture of 8 inches. We approximated the relationship as
follows:

BLIrp13

BLIrp73
= Lrp13

Lrp73
× Aperrp73

Aperrp13
× Nrp73

Nrp13
= 0.00029

0.00023 ≈ 1.3. (6)

From the above relationship, we get the following relationship between the
number of turns of coils in rp13 and rd73 as

Nrp73

Nrp13
≈ 1.25. (7)

BNL archive document shows that there are 32 turns per coil in all dipoles
in the beam line except rp13. If it is true, to meet the ratio of number of
coils defined in Eq. (7), Nrp13 ≈ 25.

On average all horizontal and vertical correcotrs transfer function is about
0.00023 T-m/A except for rp13 which has a value of about 0.00029 T-m/A
due to different physical dimensions and the number of turns in the coil of
the magnet. Quadrupole magnet transfer function from the measurement is
about 0.0057 (T/A).

5 Acknowledgment
The authors would like to thank Vincent Schoefer at Collider Accelerator De-
partment at BNL for the valuable discussions on quadrupole transfer function
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measurements.
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A Multi-wire
To measure the beam profile along the NSRL beamline, multi-wires, also
referred to as Segmented Wire Ion Chambers (SWICs), are positioned at
various locations. The NSRL beamline includes five multi-wires (with four
shown in Fig. 1). These multi-wires measure both horizontal and vertical
beam profiles, with each plane consisting of 32 equally spaced wires. The
spacing of these wires is utilized when fitting the profile of a Gaussian beam
at the corresponding multi-wire location using the following algorithm.

#odd spacing example
num = 32
spacing_x = 1.5
xstart = -((num / 2) * spacing_x)
if num % 2 == 0:

xstart += (spacing_x / 2)
x = xstart + np.arange(num) * spacing_x
x
array([-23.25, -21.75, -20.25, -18.75, -17.25, -15.75, -14.25, -12.75,

-11.25, -9.75, -8.25, -6.75, -5.25, -3.75, -2.25, -0.75,
0.75, 2.25, 3.75, 5.25, 6.75, 8.25, 9.75, 11.25,

12.75, 14.25, 15.75, 17.25, 18.75, 20.25, 21.75, 23.25])
#Even spacing example
num = 32
spacing_x = 6.0
xstart = -((num / 2) * spacing_x)
if num % 2 == 0:

xstart += (spacing_x / 2)
x = xstart + np.arange(num) * spacing_x
x
array([-93., -87., -81., -75., -69., -63., -57., -51., -45., -39., -33.,

-27., -21., -15., -9., -3., 3., 9., 15., 21., 27., 33.,
39., 45., 51., 57., 63., 69., 75., 81., 87., 93.])

The array represents the Gaussian profile length in mm, equally spaced
from the center.
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Multi-wire X spacing (mm) Y spacing (mm)
MW063 6.0 6.0
MW090 1.5 6.0
MW158 6.0 1.5
MW188 3.0 6.0
MW302 12.0 12.0

Table 1: Different multi-wire spacing in the NSRL.

B Magnets distance from multi-wires

B.1 Dipole corrector magnets from the multi-wires

Table 2: Distance between dipole corrector magnets and the multi-wires.

rp13 distance from SWIC063 15.0346917 m
rd70 distance from SWIC090 7.756 m
rp73 distance from SWIC090 6.8416
rd137 distance from SWIC158 8.9144 m
rp140 distance from SWIC158 8.0 m
rp140 distance from SWIC188 16.44 m
rd178 distance from SWIC188 4.9144 m
rp181 distance from SWIC188 4.0 m
rd250 distance from SWIC302 16.9144 m
rd250 distance from SWIC302 16.0 m

B.2 Quadrupole magnets from the multi-wires
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Table 3: Distance between quadrupoles and the multi-wires.

rq1 distance from SWIC063 1.0 m
rq2 distance from SWIC090 8.90926 m
rq3 distance from SWIC158 12.67706 m
rq4 distance from SWIC158 10.09306 m
rq5 distance from SWIC188 6.09306 m

C Experimental Procedure

C.1 Dipole corrector transfer function
The following setup was used in our experiment:

• All magnets, except the one for which the transfer function is being
measured, are turned off (set to stand-by mode).

• The current in the magnet is varied from an initial value to a final value
within the operational limits.

• For each current value, the corresponding beam profiles are recorded
using the first multi-wire detector located immediately downstream of
the magnet. For example, when varying currents in the RP13 corrector,
the beam profile is observed at the multi-wire MW063 location for the
various current settings.

• As the current varies, the beam profile shifts in the observed multi-wire.

• This process is repeated for each dipole corrector magnet.

Figure 6 illustrates the beam profile displacement at the multi-wire resulting
from the variation in current applied to the magnet. Let θ be the angle by
which the beam deviates passing through the magnet, and the beam profile
displaces by ∆x m as shown in Fig 6. The approximate relationship between
the angle θ and the displacement ∆x is given by

∆θ = ∆x

L
, (8)

where L is the distance between magnet and the multi-wire location along
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Figure 6: Beam profile displacement at the multi-wire resulting from the
variation in current applied to the magnet.

the beamline. Furthermore, in terms of the magnetic field B and the ring
radius ρ, the angle θ can be expressed as

Bl

Bρ
= ∆θ = ∆x

L
from Eq. (4), (9)

where l is the magnet length. The beam rigidity Bρ for the given ion species
is defined by [6]

Bρ = k

(
mc2

Q

)
βγ, (10)

where k = 109/c, mc2 is the rest mass energy given in GeV/c and βγ are the
relativistic energy factor,and c is the speed of light in vacuum respectively.
Hence, for each profile displacement corresponding to a specific current value
I, the quantity Bl/I can be calculated.

C.2 Quadrupole magnet transfer function
Under thin lens approximation, We vary rp13 corrector currents to -25,-50,
0 amps and rq1 quadrupole currents to 300, 350, and 250 amps respectively.
Taking one -turn transfer map starting at rp13 to the multi-wire location
MW063, one can write in Mathematica using thin lens approximation:
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Q1 = {{1, 0}, {k1, 1}};
Q2 = {{1, 0}, {k2, 1}};
D1 = {{1, d1}, {0, 1}};
D2 = {{1, d2}, {0, 1}};

where k1 and k2 are the quadrupole strengths for different current values,
d1 and d2 are drift between MW063 and rq1 and between rp13 and rq1
respectively. We assume the rp13 corrector is at a constant current which
gives kick θ. Let us suppose the initial position and angle be (x0, xp0), then
we write in the matrix form:

v0 = {{x0}, {xp0}};

vc = {{x0},{xp0+θ};

Now one-turn transfer map starting from rp13 corrector to the multi-wire
MW063 for one value of quadrupole current can be written as

M1 = D1.Q1.D2 (11)

Similarly, for the same rp13 corrector setting and for different quadrupole
current setting, the one-turn transfer map becomes

M2 = D1.Q2.D2 (12)

Then,

vf1 = M1 . vc
(1 + d1 k1) x0 + (d1 + d2 (1 + d1 k1)) (xp0+θ), k1 x0 + (1 +

d2 k1) ((xp0+θ)

vf2 = M2 . vc
(1 + d1 k2) x0 + (d1 +

d2 (1 + d1 k2)) (xp0+θ), k2 x0 + (1 +
d2 k2) (xp0+θ)

We observe dx in the multi-wire MW063 for each case and match it in the
model.

dx = vf2[[1, 1]] - vf1[[1, 1]]
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And simplifying, we ger
dx = -d1 (k1 - k2) (x0 + d2 (xp0+θ).
For two values of quadrupole strengths and two different rp13 settings,

we can write two equations as

dx1

−d1(k1 − k2)
= (x0 + d2(xp0 + θ1)) (13)

dx2

−d1(k1 − k2)
= (x0 + d2(xp0 + θ2)) (14)

Subtracting the above two equations,

∆k = (∆x)1 − (∆x)2

d1d2(θ1 − θ2)
; ∆k = (k2 − k1) (15)

Since ∆k/∆I = ∆k/∆x.∆x/∆I. Dividing the above Eq. (15) by ∆I gives

∆k

∆I
= (∆x)1 − (∆x)2

∆Id1d2(θ1 − θ2)
; ∆k = (k2 − k1) (16)

This gives the change in quadrupole strength with the change in the quadrupole
currents.
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D Error Analysis
From Eq. (8), we can write

∆θ = ∆x

L
, (17)

and ∆θ is a function of a power supplies current I defined as

∆θ = CdI, (18)

where C is the calibration constant. Combining Eq. (17) and Eq. (18), we
can write,

C = ∆x

LdI
. (19)

It shows that C is a function of independent variables x, L and I. If we
assume that the uncertainties are relatively small, then we add the errors
as [7]

(∆C)2 =
(

∂C(∆x, L, dI)
∂(∆x) ∆(∆x)

)2

+
(

∂C(∆x, L, dI)
∂L

∆L

)2

+(
∂C(∆x, L, dI)

∂(dI) ∆(dI)
)2

.

(20)

∆x = x − x0, where x is the centroid of the Gaussian beam profile and x0
is the centroid of the reference Gaussian beam profile for 0 A power supply
current. The uncertainty in ∆x is calculated as

∆(∆x)2 = (∆x)2 + (∆x0)2. (21)

Since L is the fixed distance between the magnet of consideration and the
multi-wire along the beam line, we consider L as a fixed parameter. Hence
Eq. (20) takes the form:

(∆C)2 =
(

∂C(∆x, L, dI)
∂(∆x) ∆(∆x)

)2

+
(

∂C(∆x, L, dI)
∂(dI) ∆(dI)

)2

. (22)

In our studies, we are taking a fixed power supplies set points. It means, all
uncertainties basically arise from beam profile measurement. Hence error on
the calibration constant C can be written as

(∆C)2 =
(

∂C(∆x, L, dI)
∂(∆x) ∆(∆x)

)2

. (23)

16



References
[1] N Tsoupas et al. “Uniform particle beam distributions produced by

octupole focusing”. In: Nuclear science and engineering 126.1 (1997),
pp. 71–79. url: https://www.tandfonline.com/doi/abs/10.13182/
NSE97-A24458.

[2] Nicholaos Tsoupas et al. “Results from the Commissioning of the NSRL
Beam Transfer Line at BNL”. In: Proceedings of the 2004 European Par-
ticle Accelerator Conference, Luzern. 2004. url: https://accelconf.
web.cern.ch/e04/PAPERS/THPLT183.PDF.

[3] Bhawin Dhital et al. Beam Scattering Through Foil at NSRL. Tech. rep.
Brookhaven National Laboratory (BNL), Upton, NY (United States),
2024. url: https://www.osti.gov/servlets/purl/2336584/.

[4] B. Dhital et al. “Bmad based particle tracking simulation for slow reso-
nant extraction”. In: Proc. 15th International Particle Accelerator Con-
ference (Nashville, TN). JACoW Publishing, Geneva, Switzerland, May
2024, pp. 1164–1167. isbn: 978-3-95450-247-9. doi: 10.18429/JACoW-
IPAC2024- TUPC69. url: https://indico.jacow.org/event/63/
contributions/3780.

[5] Fulvia Pilat. ATR Magnet Transfer Functions. Tech. rep. Brookhaven
National Lab.(BNL), Upton, NY (United States), 1995. url: https:
//www.bnl.gov/isd/documents/82915.pdf.

[6] Christopher Gardner. Notes on calculating various parameters of ions
circulating in Booster and destined for NSRL. Tech. rep. Brookhaven
National Lab.(BNL), Upton, NY (United States), 2019. url: https:
//www.osti.gov/servlets/purl/1545591/.

[7] John Robert Taylor and William Thompson. An introduction to error
analysis: the study of uncertainties in physical measurements. Vol. 2.
Springer, 1982.

[8] K Brown et al. “Design of a resonant extraction system for the AGS
booster”. In: Proceedings of the 1999 Particle Accelerator Conference
(Cat. No. 99CH36366). Vol. 2. IEEE. 1999, pp. 1270–1272. url: https:
//ieeexplore.ieee.org/abstract/document/795518.

17

https://www.tandfonline.com/doi/abs/10.13182/NSE97-A24458
https://www.tandfonline.com/doi/abs/10.13182/NSE97-A24458
https://accelconf.web.cern.ch/e04/PAPERS/THPLT183.PDF
https://accelconf.web.cern.ch/e04/PAPERS/THPLT183.PDF
https://www.osti.gov/servlets/purl/2336584/
https://doi.org/10.18429/JACoW-IPAC2024-TUPC69
https://doi.org/10.18429/JACoW-IPAC2024-TUPC69
https://indico.jacow.org/event/63/contributions/3780
https://indico.jacow.org/event/63/contributions/3780
https://www.bnl.gov/isd/documents/82915.pdf
https://www.bnl.gov/isd/documents/82915.pdf
https://www.osti.gov/servlets/purl/1545591/
https://www.osti.gov/servlets/purl/1545591/
https://ieeexplore.ieee.org/abstract/document/795518
https://ieeexplore.ieee.org/abstract/document/795518

