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1 Introduction

Electron Ion Collider (EIC) requires cooling of protons at top energy (275
GeV) to achieve the average design luminosity. Such a cooler must be capable
of counteracting an IBS-driven emittance growth in proton bunches. The
Ring Electron Cooler (REC) is a candidate for the EIC top energy cooler.

The REC is a non-magnetized RF-based 150 MeV electron cooler, in
which electrons are kept in the storage ring and re-utilized for several million
turns. The REC is equipped with 18 damping wigglers, which keep elec-
trons’ emittance constant by counteracting both electrons’ IBS and a proton-
electron beam-beam scattering happening in the cooling section. These wig-
glers operate at a relatively low energy but must have a rather high field to
provide the required radiation cooling of electrons. As a result of this unique
range of parameters, the wigglers’ optics exhibits interesting features

The actual design parameters of the wigglers will be finalized in the REC
lattice optimization. For these studies we use tentative parameters listed in
Table 1

*seletskiy@bnl.gov
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Table 1: REC wigglers’ parameters

γ-factor 293
peak field (B0) [T] 2.4
wiggler period (λ) [m] 0.2
number of periods (Np) 20

2 Equations of motion

We consider motion in the wiggler’s reference frame, our x-axis is directed
in the wiggling direction, y-axis is orthogonal to the wiggling plane and z is
the direction along the wiggler’s axis. Then the motion equations are:

x′′ = −By

Bρ
+ y′Bz

Bρ

y′′ = Bx

Bρ
− x′Bz

Bρ

(1)

Equations (1) are valid in the approximation of x′ � 1 and y′ � 1. In
the Appendix A we show that for our parameters Eqs. (1) hold true.

The current design of the REC lattice requires small β-function in the
wiggling direction throughout the wiggler (βx ≈ 30 cm). Therefore, a wiggler
with a field distribution, producing focusing in the wiggling direction, is
needed. Below, we will consider motion for two examples of possible wiggler’s
fields.

2.1 Wiggler with sextupole field

A common representation of fields inside a wiggler with x-variation of By

field is [1]:

Bx = kx
ky
B0 sinh(kxx) sinh(kyy) sin(kz)

By = B0 cosh(kxx) cosh(kyy) sin(kz)
Bz = k

ky
B0 cosh(kxx) sinh(kyy) cos(kz)

(2)

where k = 2π/λ, and geometric parameters kx and ky are related via k2x+k2y =
k2.

Formulas (2) represent a wiggler with the poles shaped to produce a
parabolic dependence of By on x near the center of the wiggler. Thus, the
additional focusing in the x direction is happening due to a bunch going with
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an offset through a sextupole-like field. We will discuss this in more details
in the following sections.

Substituting Eq. (2) into Eq. (1) we get:

x′′ = −b cosh(kxx) cosh(kyy) sin(kz) + y′b k
ky

cosh(kxx) sinh(kyy) cos(kz)

y′′ = bkx
ky

sinh(kxx) sinh(kyy) sin(kz)− x′b k
ky

cosh(kxx) sinh(kyy) cos(kz)

(3)
where b = B0

Bρ
.

Below we will be making several assumptions to find an approximate
analytic solution of Eq. (3). All the assumptions will be justified later on.

First, we consider the x-equation in Eqs. (3). We omit the second
term (y′-term) in the x-equation, assuming that it is a small correction to a
particle’s trajectory. We further approximate cosh(kxx) ≈ 1 + k2xx

2/2 and
cosh(kyy) ≈ 1, again assuming that y2 term in cosh(kyy) expansion results
in a negligible correction.Then, we get:

x′′ = −b sin(kz)− b sin(kz)
k2xx

2

2
(4)

We notice that a solution of the equation x′′w = −b sin(kz), corresponding
to a wiggler with no gradient, is given by:

xw(z) =
b

k2
sin(kz) + xw(0) +

(
x′w(0)− b

k

)
z (5)

Setting xw(0) = 0 and x′w(0) = b/k we get for a fast oscillating part of
the x-trajectory: xw(z) = b

k2
sin(kz).

Next, we assume that the second right-hand-side term of Eq. (4) f(x) =
b sin(kz)k2xx

2/2 is a small perturbation of xw(z). Therefore, we substitute

f(x) with f(x) ≈ 〈f(xw)〉 + 〈df(xw)
dx
〉x = 0 + b2k2x

2k2
x, where averaging is per-

formed over a wiggling period. As a result, Eq. (4) becomes:

x′′ = −b sin(kz)− b2k2x
2k2

x (6)

Solution of Eq. (6) is given by:

x = 2bk2

2k4−b2k2x
sin(kz) + x0 · cos

(
bkx√
2k
z
)

+

+
√
2k
bkx

(
x′0 − 2bk3

2k4−b2k2x

)
sin
(
bkx√
2k
z
) (7)
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where x0 = x(0) and x′0 = x′(0). Since b2k2x � k4, we can further simplify
Eq. (7):

x =
b

k2
sin(kz) + x0 · cos

(
bkx√

2k
z

)
+

√
2k

bkx

(
x′0 −

b

k

)
sin

(
bkx√

2k
z

)
(8)

Equation (8) is the sought-for approximate analytic solution for the mo-
tion in the wiggling plane.

To find an equation of motion in y direction we, first, approximate the y
differential equation in Eq. (3) with:

y′′ = bk2xxy sin(kz)− bkx′y cos(kz) (9)

Next, we substitute x and x′ defined by Eq. (8) with x′0 = b/k into Eq.
(9) and average all fast-oscillating terms over the wiggling period:

y′′ +
b2

2

(
1− k2x

k2

)
y = 0 (10)

Solution of Eq. (10) is:

y = y0 cos

(
b
√
k2 − k2x√

2k
z

)
+ y′0

√
2k

b
√
k2 − k2x

sin

(
b
√
k2 − k2x√

2k
z

)
(11)

Equation (11) gives the approximate analytic solution for the motion in
the plane orthogonal to the wiggling one.

Comparison of Eqs. (8) and (11) to numerical integration of Eq. (3) (see
Fig. 1) shows a good agreement between the derived analytic approxima-
tion and the solution of the exact equations of motion. This validates the
assumptions made in derivation of Eqs. (8) and (11).

2.2 Wiggler with quadrupole field

Another possible representation of a wiggler with focusing, which was con-
sidered for the REC, is given by:

Bx = B0 cos(kqx) sinh(kqy)
By = B0 cosh(ky) sin(kz) +B0 sin(kqx) cosh(kqy)
Bz = B0 sinh(ky) cos(kz)

(12)
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Figure 1: Numerical solution of equations of motion (3) and analytic approx-
imations Eqs. (8), (11). The calculations are performed for kx = 15 [m−1]
and x′0 = b/k.

Equations (12) correspond to a wiggler without gradient (represented by
terms with k) inserted into a quadrupole (represented by terms with kq),
which provides focusing in x direction.

Substituting Eq. (12) into Eq. (1) we get:

x′′ = −b(cosh(ky) sin(kz) + sin(kqx) cosh(kqy)) + y′b sinh(ky) cos(kz)
y′′ = b cos(kqx) sinh(kqy)− x′b sinh(ky) cos(kz)

(13)
Next, we are employing the same assumptions that were made in Section

2.1 and we get the following approximate equations of motion:
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x′′ = −b sin(kz)− bkqx
y′′ = (bkq − x′bk cos(kz))x

(14)

A solution for x-equation in (14) is given by:

x =
b

k2 − bkq
sin(kz) + x0 cos(

√
bkqz) +

(
x′0 −

bk

k2 − bkq

)
sin(
√
bkqz)√
bkq

(15)

Assuming that b� k2/kq, we get:

x =
b

k2
sin(kz) + x0 cos(

√
bkqz) +

(
x′0 −

b

k

)
sin(
√
bkqz)√
bkq

(16)

After substituting Eq. (16) into y-equation in (14), using x′0 = b/k, and
averaging the fast-oscillating terms, we obtain:

y = y0 cos

(√
b2

2
− bkqz

)
+ y′0

1√
b2

2
− bkq

sin

(√
b2

2
− bkqz

)
(17)

Equations (16) and (17) represent an approximate analytic solution for
the motion in the wiggler with quadrupole focusing.

Particle trajectories described by Eqs. (16) and (17) are in a good agree-
ment with numerical integration of Eq. (13) (see Fig. 2).

3 Optical functions

In this section we will switch to the reference frame tied to a beam trajec-
tory through the wiggler. Now, we will use symbols x, x′, y, y′ to describe
particles’ motion in the trajectory frame and x̃, x̃′, ỹ, ỹ′ to describe motion in
the wiggler’s frame. Although this switch makes things more confusing for a
reader, it simplifies both the notations used below and the authors life.

3.1 Optical functions in a wiggler with sextupole field

First, we rewrite Eq. (8) in the new notations:
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Figure 2: Numerical solution of equations of motion (13) and analytic ap-
proximations Eqs. (16), (17). The calculations are performed for kq = 1.5
[m−1] and x′0 = b/k.

x̃ =
b

k2
sin(kz) + x̃0 · cos

(
bkx√

2k
z

)
+

√
2k

bkx

(
x̃′0 −

b

k

)
sin

(
bkx√

2k
z

)
(18)

Then, the undisturbed beam trajectory in a wiggler is given by:

x̃ut =
b

k2
sin(kz)−

√
2

kx
sin

(
bkx√

2k
z

)
(19)

Next, we observe that for our parameters the displacement x in the trajec-
tory frame is well approximated by a displacement x̂ from x̃ut in the wiggler
frame, as illustrated by Fig. 3. Indeed, simple considerations show that:
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x = x̂ cos
(
arctan

(
∂x̃
∂z

))
= x̂ cos

(
arctan

(
b
k

cos(kz)
))
≈

≈ x̂
(

1− b2

2k2
cos2(kz)

) (20)

This shows that the difference between x and x̂ is less than ≈ 1%.

Figure 3: Relation between horizontal motion in the wiggler frame and the
beam trajectory frame.

Finally, assuming x̃0 = x0 and x̃′0 = b
k

+ x′0, we get from Eq. (18):

x = x0 cos

(
bkx√

2k
z

)
+ x′0

√
2k

bkx
sin

(
bkx√

2k
z

)
(21)

From Eq. (21) we obtain the transport matrix for a wiggling plane:

Mx =

 cos
(
bkx√
2k
L
) √

2k
bkx

sin
(
bkx√
2k
L
)

− bkx√
2k

sin
(
bkx√
2k
L
)

cos
(
bkx√
2k
L
)  (22)

where wiggler’s length L = Npλ.
Similarly, for an orthogonal plane, Eq. (11) gives:

My =

 cos

(
b
√
k2−k2x√
2k

L

)
√
2k

b
√
k2−k2x

sin

(
b
√
k2−k2x√
2k

L

)
− b
√
k2−k2x√
2k

sin

(
b
√
k2−k2x√
2k

L

)
cos

(
b
√
k2−k2x√
2k

L

)
 (23)

Equations (22) and (23) show that our wiggler is a thick lens. The
matched beta-functions for such a wiggler are given by:
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βx =

√
2k

bkx
; βy =

√
2k

b
√
k2 − k2x

(24)

From Eq. (25), the required βx = 30 cm is achieved for kx = 30.9 m−1

(which gives βy = 1.6 m). Notice that, for the parameters listed in Table
1, k = 31.4 m−1. In other words, the needed focusing in the wiggling plane
requires kx → k.

The phase advances in the wiggler are:

φx =
bkx√

2k
Npλ; φy =

b
√
k2 − k2x√

2k
Npλ (25)

From Eq. (25) number of betatron oscillations per wiggler depends on
particle’s relative momentum δ as:

Qx = 1
2π

b
1+δ

kx√
2k
Npλ ≈ 1

2π

bkxNpλ√
2k

(1− δ)

Qy = 1
2π

b
1+δ

√
k2−k2x√
2k

Npλ ≈ 1
2π

b
√
k2−k2xNpλ√

2k
(1− δ)

(26)

The resulting chromaticities are given by:

ηx = ∂Qx

∂δ
= − 1

2π

B0Npλ√
2Bρ

kx
k

ηy = ∂Qy

∂δ
= − 1

2π

B0Npλ√
2Bρ

√
k2−k2x
k

(27)

This gives ηx = −2.1 and ηy = −0.5 for kx found above.
Equations (22)-(27) show that for the parameters of interest, when kx

becomes close to k, ηy → 0. So, with a limited contribution to chromaticity
in a wiggling plane for each wiggler, wiggler’s contribution to chromaticity
in the orthogonal plane can be made negligibly small.

The dispersion in the wiggler is defined by Eq. (19) and, again assuming
x̃′0 = b

k
+ x′0, is given by:

Dx = − B0

k2Bρ
sin(kz), D′x = − B0

kBρ
cos(kz) (28)

Another observation is that for small b = B0/(Bρ), the wiggler becomes
a short lens with average focusing parameters given by:

〈Kx〉 =
B2

0

2(Bρ)2
k2x
k2
, 〈Ky〉 =

B2
0

2(Bρ)2

(
1− k2x

k2

)
(29)
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Equation (29) is a well known formula for wigglers operated at high en-

ergy, which provides 〈Kx〉+ 〈Ky〉 =
B2

0

2(Bρ)2
.

3.2 Optical functions in wiggler with quadrupole field

For the wiggler with quadrupole focusing (described in Section 2.2) we repeat
the steps outlined in the previous section and obtain the following expressions
for the transfer matrices:

Mx1 =

(
cos
(√

bkqL
)

1√
bkq

sin
(√

bkqL
)

−
√
bkq sin

(√
bkqL

)
cos
(√

bkqL
) )

(30)

My1 =

 cos

(√
b2

2
− bkqL

)
1√

b2

2
−bkq

sin

(√
b2

2
− bkqL

)
−
√

b2

2
− bkq sin

(√
b2

2
− bkqL

)
cos

(√
b2

2
− bkqL

)

(31)

From these equations, the matched beta-functions are given by:

βx1 =
1√
bkq

; βy1 =
1√

b2

2
− bkq

(32)

The phase advances in the wiggler are:

φx1 =
√
bkqNpλ; φy1 =

√
b2

2
− bkqNpλ (33)

The respective chromaticities are given by:

ηx1 = −
√
B0kqNpλ

4π
√
Bρ

ηy1 = − B0Npλ

2π
√
2Bρ

1−kqBρ/B0√
1−2kqBρ/B0

(34)

According to Eqs. (32)-(34) the required βx1 = 30 cm corresponds to
kq = 2.3 m−1, βy1 = 1.6 m, ηx1 = −1.1 and ηy1 = −5.9. So, in comparison
to the wiggler with quadratic focusing, for the same β-functions the wiggler
with linear focusing produces an order of magnitude larger chromaticity in
y-plane.
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This effect becomes more dramatic if one tries to make the focusing in
the wiggling direction even tighter. Indeed, equating βx and βx1 we get:

kq =
bk2x
2k2

(35)

Therefore, from point of view of focusing properties of the wigglers, kx → k
is equivalent to kq → b/2. This means that while ηy → 0 for the wiggler with
quadratic focusing, for the linear focusing case ηy1 →∞. We will discuss the
physics behind this result in the next section.

Finally, once again, we notice that for the small parameter b:

〈Kx1〉 = bkq, 〈Ky1〉 =
b2

2
− bkq (36)

which gives 〈Kx1〉+ 〈Ky1〉 =
B2

0

2(Bρ)2
.

3.3 Chromaticities in case of strong focusing in wig-
gling direction

In Sections 3.1 and 3.2 we showed that in case of strong focusing in the
wiggling direction, the chromaticity in the wiggling direction is limited for
wigglers with both the quadratic and linear focusing. Yet, the chromaticities
in the orthogonal direction exhibit very different behaviors. While for the
wiggler with quadratic focusing the chromaticity in y-direction approaches 0,
for the wiggler with linear focusing (producing the very same focal strength)
ηy →∞. Let us explore what is behind this difference.

The equation of motion (1) for y contains two terms, which have different
physical meaning.

The term x′Bz

Bρ
represents a fringe focusing from wiggler’s dipoles. Since,

according to Maxwell’s equations, fringes have a non-zero Bz field, a particle
with a non-zero x′ experiences a force in y direction. In the wiggler with
sinusoidal By field, Bz field must be sinusoidal as well. One can say that
the wiggler introduces a “continuous edge effect” and therefore the focusing
from x′Bz

Bρ
term is rather strong.

The term Bx

Bρ
represents an additional focusing due to a non-zero Bx field.

In our case it is a defocusing term, because we need focusing in x direction.
Equations (8), (16) give the following expression for the beam trajectory

through the wiggler (assuming x0 = 0, x′0 = b/k):
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x =
b

k2
sin(kz) (37)

On the other hand, Eqs. (2), (12) show that for both types of considered
wigglers:

Bz ≈ y · kB0 cos(kz) (38)

Therefore, the “edge-focusing term” averaged over the wiggler’s period
provides: 〈

x′
Bz

Bρ

〉
≈ y〈b2 cos2(kz)〉 = y

b2

2
(39)

The additional defocusing (in y-direction) term Bx

Bρ
differs for the two

types of wigglers.
For the wiggler with the fields given by Eq. (2), field Bx can be approxi-

mated by:

Bx ≈ y · xk2xB0 sin(kz) (40)

Hence, the additional defocusing term for such a wiggler is:〈
Bx

Bρ

〉
≈ y〈xk2xb sin(kz)〉 = y

〈
k2xb

2

k2
sin2(kz)

〉
= y

b2

2

k2x
k2

(41)

As Eqs. (39) and (41) show, for a wiggler with sextupole-like field both
the edge-focusing and the additional focusing have the same dependence on
b, that is the same dependence on a relative momentum offset δ for an off-
momentum particle. This results in equation of motion (10): y′′ + κ2yy = 0

with κ2y = b2(k2−k2x)
2k2

. Since the phase advance per wiggler is simply κyL,
it is proportional to b or to (1 + δ)−1, which gives formulas (26) and (27).
Therefore, as focusing in y-direction is getting zeroed (κy → 0), in other
words, as the motion in y-direction through the wiggler becomes equivalent
to the motion in a drift, the chromaticity ηy approaches zero.

For the wiggler with quadrupole focusing the situation is different. Equa-
tion (12) gives:

Bx ≈ y · kqB0 (42)

Therefore, the additional focusing term for such a wiggler is:
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Bx

Bρ
= y · kqb (43)

which means that the wiggler’s edge-focusing term (39) depends on δ as
∝ (1+δ)−2 while the additional focusing term has a dependence ∝ (1+δ)−1.
The respective equation of motion in y-direction is y′′+ κ2y1y = 0 with κ2y1 =
b2

2
− bkq. Then, the wiggler’s chromaticity ηy1 = L

2π

∂κy1
∂δ

∣∣∣
δ=0

is given by Eq.

(34). This means that as κy1 → 0, the chromaticity in y-direction ηy1 →∞.
Figure 4 shows the plots of y-chromaticities in the wigglers with two types

of additional focusing considered above.

Figure 4: y-chromaticity in a wiggler with the sextupole-like (left plot) and
quadrupole (right plot) additional focusing.

4 Conclusion

The EIC Ring Electron Cooler utilizes 4 meter long wigglers with high field
and at a relatively low beam energy (b = B0

Bρ
= 4.8 m−1). We showed

that such a wiggler works as a thick lens in both the wiggling plane and the
orthogonal one. The phase advance through these wigglers is substantial. As
a result, one has to pay a special attention to the choice of additional focusing
inside the wiggler, so that the wiggler’s contribution to chromaticity is kept
small.
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We derived explicit analytic formulas for chromaticities of the wigglers
with two possible field configurations.

For the wiggler with a sextupole field (2), where an additional focusing
is provided by a beam moving with an offset in each pole, the contributions
to chromaticities in both planes are small (27).

For the wiggler where focusing is provided by a quadrupole field (12) the
chromaticity in the plane orthogonal to the wiggling plane becomes infinitely
large as the focusing in that plane is approaching zero (34).

Since the Ring Electron Cooler lattice requires wigglers with a strong
focusing in the wiggling plane and preferably zero focusing in the orthogonal
plane, we need to make the wiggler’s field as close as possible to the field
given by Eq. (2).
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A Exact and approximate equations of mo-

tion

In this section we are considering whether Eqs. (1), which assume small x′

and y′ are applicable to our parameters. The equations of motion obtained
directly from Lorentz force and Newton’s equations are:

x′′ =

√
1+x′2+y′2

Bρ
[y′Bz −By − x′(x′By − y′Bx)]

y′′ =

√
1+x′2+y′2

Bρ
[x′Bz −Bx − y′(x′By − y′Bx)]

(44)

For x′ � 1, y′ � 1 Eqs. (44) becomes Eqs. (1).
Whether Eqs. (44) can be substituted with Eqs. (1) depends on how

small x′2 is, since for our wigglers y′ is obviously small.
Our first observation is that max(x′) ≈ b/k is probably a reasonable

approximation. Then we can assume that throughout the wiggler x′2 . 0.02,
which suggests that a trajectory derived from Eqs. (1) must be a decent
approximation of the actual physical trajectory through the wiggler.

To check whether a simple analytic expression (8) (derived from Eqs.
(1)) is a valid simplification of Eqs. (44) we compare the trajectory given by
Eq. (8) to the numerical solution of Eq. (44)) obtained for x0 = 0, x′0 =
−b/k, y0 = 0, y′0 = 0 (see Fig. 5). The calculations were performed for
kx = 30.9 m−1. It is worth mentioning that we checked that a similar level
of agreement is achieved for both kx and k being varied in a wide range.

Remembering that Eq. (8) is not an exact solution of Eqs. (1) but
rather is an approximation, it is interesting to compare numerical solutions
of Eqs. (1) and (44). The agreement between trajectories obtained from
these equations becomes even better (see Fig. 6).

By the way, a “slow” extra-wiggling of trajectory that we see in numerical
solutions of Eqs. (1) and (44) comes from the fact that the “true” optimal
entrance angle is not x′0 = b/k but rather is x′0 = (2bk3)/(2k4− b2k2x), as Eq.
(7) shows.
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Figure 5: Comparison of numeric integration of Eq. (44) to an analytic
trajectory given by Eq. (8).
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Figure 6: Comparison of numeric integration of exact equations of motion
(44) and equations of motion (1).

B Motion in case of kx > k

For kx > k the fields (2) can be rewritten as:

Bx = kx√
k2x−k2

B0 sinh(kxx) sin(
√
k2x − k2y) sin(kz)

By = B0 cosh(kxx) cos(
√
k2x − k2y) sin(kz)

Bz = k√
k2x−k2

B0 cosh(kxx) sin(
√
k2x − k2y) cos(kz)

(45)

Using the assumptions made in Section 2.1 we again can approximate
fields (45) by:

Bx ≈ B0k
2
xxy sin(kz)

Bz ≈ B0kzy cos(kz)
(46)

Also, we again obtain the trajectory in the wiggling plane:
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x ≈ b
k2

sin(kz)
x′ ≈ b

k
cos(kz)

(47)

Substituting Eqs. (46) and (47) into Eq. (1) and averaging over the fast
oscillations in x, we get a familiar expression for y-motion:

y′′ +
b2

2

(
k2 − k2x
k2

)
y = 0 (48)

Equation (48) describes an oscillator for kx < k, a motion in a drift for
kx = k, and an exponential growth for kx > k, which is given by (assuming
y′0 = 0):

y = y0 cosh

(
b
√
k2x − k2√

2k
z

)
(49)

To check the range of applicability of Eq. (49) we compare it to a nu-
merical solution of Eq. (1) with the fields given by Eq. (45). Results of the
comparison are shown in Fig. 7 .

As one can see, while kx is close to k the analytic approximation (49)
holds true. Yet, if we further increase kx, the agreement with analytic ap-
proximation breaks down.

So, why is this happening? – This is happening because for an ex-
ponentially growing y at some point z1 along the wiggler the argument
y(z1)

√
k2x − k2z becomes so large that the linear expansion of cos and sin

in Eq. (45) becomes invalid. Hence, a rule of thumb criteria for applicability
of analytic Eq. (49) is:

y0

√
k2x − k2

2
exp

(
b
√
k2x − k2√

2k
L

)
.
π

4
(50)

For the case of REC wigglers we can assume βy ≈ 3 m inside the wiggler
and y-emittance εy ≈ 8 nm. It is reasonable to assume that the maximum
y0 ≈ 6

√
βyεy ≈ 1 mm. Thus, as Fig. 7 shows, we expect Eq. (49) to be

valid in the vicinity of kx = k.
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Figure 7: Numerical solution and an approximate analytic solution of the
equations of motion for various kx.
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