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Formalism for Local Correction of Vertical Crabbing in Hadron Storage Ring

Derong Xu∗

Brookhaven National Laboratory
(Dated: July 26, 2024)

The Electron-Ion Collider (EIC) incorporates crab cavities in both the Electron Storage Ring
(ESR) and the Hadron Storage Ring (HSR) to achieve unprecedented luminosity goals. This tech-
nical note presents a formalism for the local correction of vertical crabbing in the HSR, addressing
the complexities introduced by the integration of crab cavities and the interplay between betatron
coupling and crabbing dispersion. Various strategies, including the use of skew quadrupoles and
adjustments of Twiss functions, are explored to compensate vertical crabbing to achieve optimal
beam-beam performance. The derived theoretical formulas offer practical guidance for minimizing
the required vertical crabbing corrections, and will be implemented in the HSR lattice design.

I. INTRODUCTION

The Electron-Ion Collider (EIC) incorporates crab cavities in both the Electron Storage Ring (ESR) and the Hadron
Storage Ring (HSR) to achieve its unprecedented luminosity goals [1]. In principle, the downstream crab cavities are
designed to compensate for the crabbing effect introduced by the upstream crab cavities, ensuring that the crabbing
tilt is confined within the Interaction Region (IR). This approach has been successfully implemented in the ESR by
strategically relocating one side crab cavities [2]. However, in the HSR, the crabbing is not fully closed.

The IR of the HSR is a complex and densely packed area, necessitating careful planning and precise engineering to
accommodate the array of essential components [3]. Among these, the crab cavities, occupying a length of 15 meters,
require a horizontal beta function (βx) of 1300 meters to provide crab kick for beams up to 275 GeV. Additionally, the
incorporation of spin rotators and the Siberian snake, essential for rotating and preserving the spin orientation, along
with the detector instrumentation, demand enough installation space. The dipoles at the IR are arranged to serve
multiple purposes: establishing the required crossing angle, separating collision products from the stored beam, and
preventing geometrical conflicts between different machines. In navigating these requirements, the horizontal phase
advance from the upstream to the downstream crab cavity has been finely tuned to 175◦. Nevertheless, this setup
falls 5◦ short of the ideal, resulting in crabbing leaking out of the IR. Given the intricate geometry and significant
beta function demands, relocating the crab cavity, as done in the ESR, is not feasible. Consequently, the HSR must
contend with the unavoidable leakage of crabbing.

The beam tilting can be described by the concept of crab dispersion, as detailed in reference [4]. Similar to the
definition of momentum dispersion, the crab dispersion can be defined as:

ζ∗ =

(
∂x

∂z
,
∂px
∂z

,
∂y

∂z
,
∂py
∂z

,

)T

(1)

To optimize beam-beam performance, it is essential to match the crab and momentum dispersion at the interaction
point (IP) defined by:

ζ∗ = (−θc, 0, 0, 0)T, η∗ = (0, 0, 0, 0)T (2)

where ζ, η denotes crab, momentum dispersion respectively. Weak-strong beam-beam simulations indicate large
tolerance in ζ∗2 and η∗2 . Nonetheless, the detector’s requirements for nearly equal horizontal and vertical divergences
necessitate precise adherence to these matching conditions. There are also some tolerances on other three dimensions,
ζ1,2,4 and η1,2,4. However, it is necessary to correct them to ideal values in the simulation to verify the capability of
our correction system. Therefore, Eq. (2) should be exactly matched in the design process.

When the vertical crabbing is included, a general procedure to correct dispersion and betatron coupling can be:

(1) Disable RF and Crab Cavities: Begin by turning off the RF and crab cavities. Initiate betatron decoupling
through the adjustment of skew quadrupoles to eliminate coupling effects.
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(2) Crabbing adjustment: Calculate the necessary horizontal and vertical crabbing based on linear model to
determine the optimal settings.

(3) Activate RF and Crab Cavities: Reactivate the RF and crab cavities. The momentum dispersion at these
cavities, along with a non-zero longitudinal tune, will disrupt the previously established conditions of Eq.(2).
Consequently, make minor adjustments to all available control knobs to re-align the system with Eq. (2).

(4) Fine-Tuning Outside IR: Adjust the control knobs located outside the Interaction Region (IR) to fine-tune the
working point, restoring the linear beam dynamics to the design value.

Among them, step (1) addresses the betatron coupling, while step (2) is focused on correcting dispersion. In step
(3), the combined effects of crab and momentum dispersion are considered; these effects are small in the HSR due to
the significant separation between the longitudinal and transverse tunes. Step (4) involves adjustments using knobs
located outside the IR, which do not interfere with the processes of the preceding steps.

Horizontal crab dispersion is directly matched by the crab cavities. However, matching the vertical crab dispersion
requires additional knobs to introduce the coupling between the vertical and longitudinal plane. One way is to use the
skew quadrupoles positioned between crab cavities, and the other way is to install additional vertical crab cavities.
This technical note focuses on correction with vertical crab cavities, proposing a formalism to compute the necessary
vertical voltage for these cavities. Through the derived equations, we will identify most effective knobs that can reduce
the vertical crab cavity voltage, simplifying the implementation of the crabbing correction scheme. The theoretical
formulation delivers crucial insights that will guide the lattice design.

II. MODEL

Several factors contribute to vertical crabbing at the IP, which requires correction. One significant source is the
detector solenoid in the EIC, which has a length of 4 m and an integrated strength of up to 12 T ·m. For a 275 GeV
proton beam, this solenoid introduces a rotation of 6.5 mrad around the longitudinal axis.

Another factor is the proposed tilt of the ESR. In the EIC design, the ESR plane is planned to be rotated by about
200 µrad around the axis that connects from IP6 to IP8 to minimize interference between different storage rings
while preserving polarization. As calculated in [5], the dynamic effect of a 200 µrad tilt in the ESR is equivalent to
a −4 mrad rotation around the longitudinal axis before the IP, and another 4 mrad rotation after the IP. Unlike the
effect from the detector solenoid, the impact of the geometry tilting does not scale with particle energy.

Figure 1 illustrates the local crabbing scheme within the HSR. In this diagram, the yellow blocks labeled ”CCB” and
”CCA” represent the crab cavities positioned before and after the Interaction Point (IP), respectively. Throughout
this note, curly letters denote the linear 6-by-6 transfer matrices. In Fig. 1, Mb,a,r represent the transfer maps from
CCB to IP, from IP to CCA, and from CCA back to CCB, respectively. The symbols ϕb,a indicate the rotations
around the longitudinal axis before and after the IP, which may result from the ESR tilt, the detector solenoid, or a
combination of both. Table I presents the numerical calculation results of ϕb,a at various energies.

CCA CCB

IP

MbMa

Mr

ϕa ϕb

FIG. 1: Schematic of crab crossing
scheme.

TABLE I: Rotation angle at different energies.

Energy Rotation Tilting ESR Detector Solenoid Both
GeV - mrad mrad mrad

275
ϕb −4.0 3.3 −0.7
ϕa 4.0 3.3 7.3

100
ϕb −4.0 9.0 5.0
ϕa 4.0 9.0 13.0

41
ϕb −4.0 21.9 17.9
ϕa 4.0 21.9 25.9
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III. FORMULA

Without considering longitudinal oscillations, the crab dispersion generated by the thin crab cavity (either CCB or
CCA in Fig. 1) is expressed as:

ζb(a) =

[
0,

λb(a),x√
βb(a),xβ∗

x

, 0,
λb(a),y√
βb(a),yβ∗

y

]T

(3)

where β∗
x,y are β functions at the IP, and λb(a),x(y)/

√
βb(a),x(y)β

∗
x(y) denoting the horizontal and vertical kick strength.

The lattice related parameters
√
βb(a),x(y)β

∗
x(y) are used to normalize the crab cavity strength for simplicity.

Let Mb,a,r be the 4-by-4 blocks of linear transfer matrices Mb,a,r depicted in Fig. 1. Mb and Ma can be expressed
in terms of Twiss functions as follows:

Mb =



√
β∗
x

βb,x
(cosψb,x + αb,x sinψb,x)

√
βb,xβ∗

x sinψb,x 0 0

− sinψb,x+αb,x cosψb,x√
βb,xβ∗

x

√
βb,x

β∗
x

cosψb,x 0 0

0 0
√

β∗
y

βb,y
(cosψb,y + αb,y sinψb,y)

√
βb,yβ∗

y sinψb,y

0 0
− sinψb,y+αb,y cosψb,y√

βb,yβ∗
y

√
βb,y

β∗
y

cosψb,y


(4)

Ma =



√
βa,x

β∗
x

cosψa,x
√
βa,xβ∗

x sinψa,x 0 0

− sinψa,x−αa,x cosψa,x√
βa,xβ∗

x

√
βx∗
βa,x

(cosψa,x − αa,x sinψa,x) 0 0

0 0
√

βa,y

β∗
y

cosψa,y
√
βa,yβ∗

y sinψa,y

0 0
− sinψa,y−αa,y cosψa,y√

βa,yβ∗
y

√
βy∗

βa,y
(cosψa,y − αa,y sinψa,y)


(5)

where β, α, ψ represent Twiss functions and phase advance. The subscripts “b/a” denote the configuration before or
after IP, and “x/y” indicates horizontal or vertical plane. The conditions of α∗

x,y = 0 are assumed to simplify the
equations.

The rotation around longitudinal axis is characterized by the rotation angle ϕ:

R(ϕ) =


cosϕ 0 sinϕ 0

0 cosϕ 0 sinϕ

− sinϕ 0 cosϕ 0

0 − sinϕ 0 cosϕ

 (6)

The one-turn map Mt at the IP are modeled by the β∗
x,y and the one-turn phase advance µx,y = 2πνx,y, where νx,y

is the design working point. We assume the betatron coupling introduced by R(ϕb,a) has been corrected in Mr.

Mt = RbMbMrMaRa =


cosµx β∗

x sinµx 0 0

− sinµx

β∗
x

cosµx 0 0

0 0 cosµy β∗
y sinµy

0 0 − sinµy

β∗
y

cosµy

 (7)

where Rb,a is the abbreviation of R(ϕb,a).
Let ζ∗ be the closed orbit crab dispersion at the IP. The combined effects of crab dispersion and momentum

dispersion are ignored here. After one turn, the closed orbit crab dispersion turns into Mtζ
∗. The contribution from

CCB is RbMbζb, and the contribution from CCA is RbMbMrζa. According to the definition of closed orbit crab
dispersion, we have:

ζ∗ =Mtζ
∗ +RbMbζb +RbMbMrζa =⇒ ζ∗ = (I −Mt)

−1 (
RbMbζb +MtR

−1
a M−1

a ζa
)

(8)



4

Combining it with Eq. (2), we will have:

Fλ = (−θc · 2 sinπνx, 0, 0, 0)T (9)

where

λ = (λb,x, λa,x, λb,y, λa,y)
T

(10)

and

F =


cos (πνx − ψb,x) cb cos (πνx − ψa,x) ca

(
β∗
x

β∗
y
cxcb,y + sxsb,y

)
sb −

(
β∗
x

β∗
y
cxca,y + sxsa,y

)
sa

sin (πνx − ψb,x) cb − sin (πνx − ψa,x) ca

(
β∗
x

β∗
y
sxcb,y − cxsb,y

)
sb

(
β∗
x

β∗
y
sxca,y − cxsa,y

)
sa

−
(
β∗
y

β∗
x
cycb,x + sysb,x

)
sb

(
β∗
y

β∗
x
cyca,x + sysa,x

)
sa cos (πνy − ψb,y) cb cos (πνy − ψa,y) ca(

cysb,x −
β∗
y

β∗
x
sycb,x

)
sb

(
cysa,x −

β∗
y

β∗
x
syca,x

)
sa sin (πνy − ψb,y) cb − sin (πνy − ψa,y) ca

 (11)

In the notation used here, c and s represent cos and sin respectively. The subscript x(y), b(a) and b(a), x(y) indicate
taking the trigonometric value of πνx(y), ϕb(a) and ψb(a),x(y) respectively.

Writing down the exact solution for λ can be quite tedious. To streamline our discussion, we can employ a first-
order approximation, which is reasonable given the small rotation angles ϕb(a) listed in Table I. This approximation
allows us to simplify the calculations without significant loss of accuracy.

Expressing F and λ to first order of ϕb(a):

F ≈ F00 + F10ϕb + F01ϕa

λ ≈ λ00 + λ10ϕb + λ01ϕa
(12)

where

F00 =

cos (πνx − ψb,x) cos (πνx − ψa,x) 0 0
sin (πνx − ψb,x) − sin (πνx − ψa,x) 0 0

0 0 cos (πνy − ψb,y) cos (πνy − ψa,y)
0 0 sin (πνy − ψb,y) − sin (πνy − ψa,y)



F10 =


0 0

(
β∗
x

β∗
y
sxcb,y − cxsb,y

)
0

0 0
(
β∗
x

β∗
y
sxcb,y − cxsb,y

)
0

−
(
β∗
y

β∗
x
cycb,x + sysb,x

)
0 0 0(

cysb,x −
β∗
y

β∗
x
sycb,x

)
0 0 0



F01 =


0 0 0 −

(
β∗
x

β∗
y
cxca,y + sxsa,y

)
0 0 0

(
β∗
x

β∗
y
sxca,y − cxsa,y

)
0

(
β∗
y

β∗
x
cyca,x + sysa,x

)
0 0

0
(
cysa,x −

β∗
y

β∗
x
syca,x

)
0 0



(13)

Substituting Eq. (12) into Eq. (9), we have:

F00λ00 + (F00λ10 + F10λ00)ϕb + (F00λ01 + F01λ00)ϕa ≈ (−θc · 2 sinπνx, 0, 0, 0)T (14)

From this equation, we can get:

λ00 = F−1
00 · (−θc · 2 sinπνx, 0, 0, 0)T , λ10 = −F−1

00 F10λ00, λ01 = −F−1
00 F01λ00 (15)
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Substituting Eq. (13) into Eq. (15):

λb,x = −2θc sinπνx sin (πνx − ψa,x)

sin (2πνx − ψb,x − ψa,x)
, λa,x = −2θc sinπνx sin (πνx − ψb,x)

sin (2πνx − ψb,x − ψa,x)
,

λb,y =


(
β∗
y

β∗
x

)
cosψb,x sin (2πνy − ψa,y)− sinψb,x cos (2πνy − ψa,y)

sin (2πνy − ψb,y − ψa,y)

λb,xϕb
+

 β∗
y

β∗
x
cosψa,x sinψa,y − sinψa,x cosψa,y

sin (2πνy − ψb,y − ψa,y)

λa,xϕa
λa,y =

−
(
β∗
y

β∗
x

)
cosψb,x sinψb,y + sinψb,x cosψb,y

sin (2πνy − ψb,y − ψa,y)

λb,xϕb
+

−
(
β∗
y

β∗
x

)
cosψa,x sin (2πνy − ψb,y) + sinψa,x cos (2πνy − ψb,y)

sin (2πνy − ψb,y − ψa,y)

λa,xϕa

(16)

Noticing that ψb,x ≈ ψa,x ≈ π/2 and β∗
y/β

∗
x = 0.09, the terms labeled by red color in above equations are negligible.

Therefore, λb,y and λa,y can be further simplified as:

λb,y ≈− sinψb,x cos (2πνy − ψa,y)λb,xϕb − sinψa,x cosψa,yλa,xϕa
sin (2πνy − ψb,y − ψa,y)

λa,y ≈ sinψb,x cosψb,yλb,xϕb + sinψa,x cos (2πνy − ψb,y)λa,xϕa
sin (2πνy − ψb,y − ψa,y)

(17)

From the above equations, we can draw some conclusions that:

• For a well optimized lattice, ψb,x ≈ ψa,x ≈ π/2 and λb,x ≈ λa,x ≈ −θc. Given a specific ϕb and ϕa, it is possible
to choose ψb,y and ψa,y so that the vertical crabbing is not needed:

−ϕb cos (2πνy − ψa,y) + ϕa cosψa,y = 0, and ϕb cosψb,y + ϕa cos (2πνy − ψb,y) = 0 (18)

• The above constraints may be too strong for practical matching. An alternative approach is to maximize
| sin(2πνy − ψb,y − ψa,y)| in order to minimize the required λb,y and λa,y. For instance, with νy = 0.210, ψb,y =
126◦, ψa,y = 106◦, we calculate sin(2πνy − ψb,y − ψa,y) = −0.4. By optimizing ψb,y and ψa,y to satisfy 2πνy +
ψb,y + ψa,y = ±π/2 mod 2π, the required vertical crabbing could potentially be reduced by a factor of 2.5.

• In practical lattice designs, the range of adjustments available for ψb,y and ψa,y may be limited. Therefore, it is
advisable to focus directly on minimizing λb,y and λa,y in Eq. (17).

Table II presents a comparison between the required vertical crabbing values calculated from Eq. (9) and Eq. (17).
The results clearly demonstrate that Eq. (17) serves as an effective approximation and can be used as a foundation
for further optimization efforts.

The comparison of the last five rows in Table IIb, reveals that while the total rotation angle ϕb + ϕa remains same
across these cases, the required λb,y and λa,y differ significantly. This observation highlights the critical need to finely
adjust the Twiss functions, particularly ψb,y and ψa,y. Without these adjustments, the voltage required for vertical
crab cavities or the strength of skew quadrupoles might become excessively high to effectively provide the necessary
vertical crabbing.

The optimal values for ψb,y and ψa,y vary depending on the specific values of ϕb and ϕa. Unfortunately, Eq. (17)
indicates that there is no universal setting for ψb,y and ψa,y that is effective for all combinations of ϕb and ϕa.

IV. DISCUSSION

The most straightforward method to achieve vertical crabbing is to install additional vertical crab cavities. However,
incorporating extra vertical crab cavities involves not only additional costs — such as those for design, fabrication,
and installation — but also introduces extra impedance. The impact of this additional impedance on beam dynamics
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TABLE II: An numerical example.

(a) Twiss functions when there are no rotations and crab cavities are off

ψb,x 87◦ ψa,x 88◦ β∗
x 80 cm βb,x 1300 m βa,x 1300 m

ψb,y 126◦ ψa,y 106◦ β∗
y 7.2 cm βb,y 30 m βa,y 30 m

(b) Required vertical crabbing: the exact solution is numerically calculated from Eq. (9)

and the approximation is calculated from Eq. (17).

ϕb ϕa

Exact solution Approximation

λb,x λa,x λb,y λa,y λb,x λa,x λb,y λa,y

[mrad] [mrad] θc√
βb,xβ∗

x

θc√
βa,xβ∗

x

θc√
βb,yβ

∗
y

θc√
βa,yβ∗

y

θc√
βb,xβ∗

x

θc√
βa,xβ∗

x

θc√
βb,yβ

∗
y

θc√
βa,yβ∗

y

−4.0 4.0 0.9612 0.9455 −1.0925× 10−2 −1.1714× 10−2 0.9610 0.9452 −1.0872× 10−2 −1.1652× 10−2

3.3 3.3 0.9610 0.9453 4.6720× 10−3 −3.0270× 10−4 0.9610 0.9452 4.6768× 10−3 −3.1351× 10−4

−0.7 7.3 0.9613 0.9452 −6.2514× 10−3 −1.2014× 10−2 0.9610 0.9452 −6.1950× 10−3 −1.1966× 10−2

0.7 −7.3 0.9613 0.9452 6.2514× 10−3 1.2014× 10−2 0.9610 0.9452 6.1950× 10−3 1.1966× 10−2

7.3 −0.3 0.9610 0.9459 1.5333× 10−2 1.0806× 10−2 0.9610 0.9452 1.5288× 10−2 1.0737× 10−2

−7.3 0.3 0.9610 0.9459 −1.5333× 10−2 −1.0806× 10−2 0.9610 0.9452 −1.5288× 10−2 −1.0737× 10−2

must be thoroughly evaluated. Consequently, the use of additional crab cavities often proves to be infeasible due to
these complexities and financial implications.

Another option for providing vertical crabbing is to slightly rotate the crab cavities. In the baseline design of the
EIC, each side of the IP is equipped with two cryomodules of 197 MHz and one cryomodule of 394 MHz crab cavities.
By rotating each cryomodule to different angles, vertical crabbing can be achieved through various combinations of
crab cavity voltages. If crabbing is locally closed, the horizontal and vertical crabbing components can be represented
as:

ζ∗1 ∝ V1 cos θ1 + V2 cos θ2, ζ∗3 ∝ V1 sin θ1 + V2 sin θ2

where θ1,2 are the rotation angles, and V1,2 are the voltages of the crab cavities from the two cryomodules. This method
has been discussed at the EIC coupling compensation meeting. It faced significant opposition from crab cavity design
experts. The primary concern is the substantial engineering challenges involved in rotating a superconducting cavity.

The remaining viable option is to employ skew quadrupoles, as implemented in the ESR. However, skew quadrupoles
also introduce betatron coupling, which complicates the process as betatron coupling correction and crabbing disper-
sion correction become intertwined. Consequently, it is crucial to develop a strategy that effectively separates these
corrections.

Skew quadrupoles can be categorized into two distinct groups according to their specific usage. The first group,
positioned between the IP and the upstream or downstream crab cavities, is dedicated to providing vertical crabbing,
as shown by the red arrows in Fig. 2. The second group, situated away from the crab cavities, is tasked with addressing
betatron coupling , as shown by the blue arrows in Fig. 2.

The correction procedure could be:

(1) Tuning normal quadrupoles: Based on the rotation angles ϕb and ϕa, adjust ψb,y and ψa,y to minimize λb,y
and λa,y in accordance with Eq. (17).

(2) Betatron coupling correction: Turn off the crab cavities but turn on the solenoid, and then adjust the skew
quadrupoles, as shown by blue arrows in Fig. 2, to achieve the betatron decoupling.

(3) Vertical crabbing correction: Remain the crab cavities off but turn on the skew quadrupoles between crab
cavities, as shown by red arrows in Fig. 2. These skew quadrupole strength are calculated from Eq. (17). Sub-
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CCACCB IPupstream arc downstream arc

beam direction

FIG. 2: Schematic of the correction scheme using skew quadrupoles for vertical crabbing and betatron coupling.
The red arrows indicate skew quadrupoles dedicated to vertical crabbing, while the blue arrows represent
those used for betatron coupling correction.

sequently, readjust the skew quadrupoles outside crab cavities (blue arrows in Fig. 2) once more to fine-tune the
betatron decoupling.

(4) Fine-tuning the result: Turn on the crab cavities, and adjust all skew quadrupoles to exactly match the
conditions in Eq. (2)

V. SUMMARY

In this technical note, we have examined the challenges and solutions associated with vertical crabbing in the EIC-
HSR. We discussed the necessity of precise matching of crab and momentum dispersion to achieve optimal beam-beam
performance and presented a general procedure for correcting dispersion and betatron coupling with skew quadrupoles
in the HSR. The theoretical formula is derived to minimize the required vertical crabbing. The methodologies and
strategies outlined in this note provide a robust framework for addressing vertical crabbing in the HSR, ensuring the
EIC can achieve its luminosity goals. Future work will implement this correction scheme in the HSR lattice design.
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