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1 Introduction

A synchrotron is the workhorse in charged particle acceleration and is ap-
plied for charged particles acceleration and ion acceleration to the highest
energies [1, p. 77]. During the acceleration of a charged particle, each par-
ticle experiences a longitudinal force opposite in sign to it’s “displacement
from the central particle” like in a harmonic oscillator. This motion is simi-
lar also to the transverse motion of the particle in the accelerator (betatron
oscillations) and this is the reason that the particle stays inside the bucket
during the acceleration. In this technical note, we discuss the concepts like,
transition energy, momentum compaction and phase slip factor associated
with a synchrotron accelerator, and we use a simple example to present the
physical meaning of the “transition energy”. We present a simple model of
a circular accelerator having straight sections and bends only to provide an
explanation and the physical meaning of transition energy.

2 Path Length and Momentum Compaction

The knowledge of momentum compaction and phase-slip factor play a very
important role in designing a circular accelerator. A relativistic particle
beam in a circular accelerator must have a transition point. This “transition
point” is a relativistic effect and we provide the definitions of the momentum
compaction factor in a bend magnet. The momentum compaction factor is
due to the different amounts of time it takes for the high and low momentum
particles to go through the bend magnets relative to the straight sections [2,
3].
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Following the textbook [1], we derive the formulas for momentum com-
paction, and transition gamma in a synchrotron. We consider linear beam
dynamics and neglect higher order correction to the path length. In this
approximation, only linear contribution to the path length comes from the
curved sections of the beam transport line. The total path length in syn-
chrotron is therefore defined by

L =

∫
(1 + κx)dz. (1)

The first term in the above integral is the original ideal path length of the
beam line or the design circumference L0 for δ = 0, i.e., L0 =

∫
dz. The

second term in the above integral gives the deviation from the design cir-
cumference. The term κ is the dipole field strength proportional to the
inverse of the dipole bending radius ρ. The transverse co-ordinate x is de-
fined by, x = D(z)δ, where D(z) is the dispersion function along the ring
and δ = ∆p/p is the momentum spread. Now, Eq. (1) can be re-write as

L = L0 + δ

∫
κ(z)D(z)dz,

∆L = L− L0 = δ

∫
κ(z)D(z)dz.

(2)

Particles with different momenta in a synchrotron will follow closed orbit
with different lengths. The variation of the path length with momentum is
determined by the momentum compaction factor, denoted by αc and defined
by

αc =
∆L/L0

δ
with δ = ∆p/p. (3)

Combining Eq. (2) and Eq. (3), Eq. (3) can be re-write as

αc =
1

L0

∫ L

0

κ(z)D(z)dz =

〈
D(z)

ρ

〉
. (4)

The above expression is derived under the approximation that the path length
variation is determined only by the dispersion function in the bending mag-
nets and the path length depends only on the energy of the particles.

For the given path length L in a synchrotron, the travel time is defined
by

τ =
L

βc
, (5)
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where β = v/c is the relativistic velocity of a given particle, and c is the
velocity of light in a vacuum. Taking logarithmic differentiation of Eq. (5)
yields

∆τ

τ
=

∆L

L0

− ∆β

β
. (6)

In Eq. (6), the first term ∆L/L0 is related to momentum compaction given by
Eq. (3), i.e. αcδ = ∆L/L0. The second term can be derived in the following
way.

For a given momentum p, relativistic velocity β, and the rest mass energy
E0 of a given particle, the following relationships hold true:

cp =
E0√
1
β2 − 1

,

cp =
E0β√
1− β2

= γβE0, where γ =
1√

1− β2

cp = βE, E = γE0.

(7)

Further, taking logarithmic differentiation of cp = βE yields

dc

c
+

dp

p
=

dβ

β
+

dE

E
,

dp

p
=

dβ

β
+

dE

E
,

dc

c
= 0.

−→ dβ

β
=

dp

p
− dE

E
.

(8)

The total energy of a relativistic particle is the sum of its rest mass energy
and the kinetic energy. Hence, the total energy E can be expressed as

E = (p2c2 +m2
0c

4)1/2, (9)

where m0 is the rest mass of the given particle. Differentiating above Eq. (9)

3



with respect to p, we get

dE

dp
=

d

dp
([p2c2 +m2

0c
4]

1
2 )

=
1

2
[p2c2 +m2

0c
4]−

1
22pc2

=
pc2

E
=

E

p

(cp
E

)2
=

E

p
β2, cp = βE

−→ dE

E
= β2dp

p
.

(10)

Combining Eqs. (10), (8), and (6), we can re-write Eq. (6) as

∆τ

τ
= αc

dp

p
− dp

p
+ β2dp

p

= αc
dp

p
− (1− β2)

dp

p

=

(
αc −

1

γ2

)
dp

p
= −

(
1

γ2
− αc

)
dp

p
= −ηc

dp

p
.

(11)

The term ηc = (1/γ2 − αc) = (1/γ2 − 1/γ2
t ) is called phase-slip factor in a

synchrotron. The energy γt = 1/
√
αc is the transition energy and it depends

on lattice parameters of the circular machine.
Above the transition energy, γ > γt and ηc < 0. This gives ∆τ/τ > 0. It

means a particle with a higher energy needs a longer time for one revolution
than a particle with a lower energy. This is because the dispersion function
causes particles with a higher energy to follow an equilibrium orbit with a
larger average radius compared to the radius of the ideal orbit [1]. Similarly,
below the transition energy, γ < γt and ηc > 0. This gives ∆τ/τ < 0. It
means a particles with a higher energy needs a shorter time for one revolution
than that of the synchronous particle. Figure 1 schematically presents this
concept.

At γ = γt, ηc = 0, and the revolution period is independent of the particle
momentum. All particles at different momenta travel thoroughly around the
machine with equal revolution frequencies. This is the isochronous condi-
tion [4].
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Figure 1: Schematic drawing of an rf wave, and the rf phase angle for a
synchronous, a higher, and a lower momentum particles.

3 Transition Gamma

This chapter provides the physical meaning of the transition gamma. We
use a simple example to explain the physical meaning of transition gamma.
We consider a toy model of a synchrotron having straight sections and arc
sections. The linear optics is designed using basic “FODO” (focusing and de-
focusing set of quadrupoles) optics. Based on this simple model, our goal will
be to explain the physical meaning of gamma transition under the condition
dT/dγ = 0. The transition energy is defined by

γt =
1

√
αc

, (12)
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and it can be calculated by taking the ratio between the beam energy at
transition and the rest mass energy of the particle. The value of the tran-
sition energy or transition gamma is independent of the particle mass and
depends only on the machine optics and geometry [5]. For a regular lattice in
a circular accelerator, the value of γt is approximately equal to the horizon-
tal tune Qx, i.e. γt ≈ Qx [1]. The transition energy which is also known as
gamma transition plays an important role in phase-stability of the bunched
beam acceleration. From Eq. (11), it is clear that crossing transition changes
the sign of the phase-slip factor. In general, all electron synchrotrons oper-
ate above transition gamma, whereas many proton and hadron synchrotrons
must pass through transition as the beam is accelerated.

There are many experiments performed to understand and calculate the
momentum compaction factor and transition energy in a ring accelerators [6,
7]. In this section, we consider a simple model of a circular accelerator with
straight sections and only bending dipole magnets and derive the condition
for the transition gamma.

As shown in Figure 2, let us consider a circular accelerator with the
regular straight sections each of length s and the bending arcs with a bending
radius ρ. The time spent by a charged particle along the straight sections
and along the bending regions are different. The total time it takes for a
particle to go along the circular accelerator is defined by

T = 4(Tm + Ts) =
2πm

qB
γ +

4s

c

γ√
γ2 − 1

. (13)

The factor ‘4’ comes for 4 straight sections and 4 bending sections along the
circular accelerator. B is the dipole magnetic field, q is the charge, and m
is the mass of the charged particle. The details on the derivation of time
period is given in Appendix A.

Further, we make a T versus γ plot and transition energy value γt is
obtained for dT/dγ = 0. From Eq. (13), dT/dγ can be calculated as

dT

dγ
=

2πm

qB
+

4s

c

d

dγ

(
γ√

γ2 − 1

)
. (14)

Taking the second term on the right hand side of above equation and differ-
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Figure 2: Schematic drawing of a circular accelerator showing straight sec-
tions and bends.

entiating by parts, we get

d

dγ

(
γ√

γ2 − 1

)
= γ

d

dγ

(
1√

γ2 − 1

)
+

1√
γ2 − 1

dγ

dγ

=
−γ2

(γ2 − 1)
√
γ2 − 1

+
1√

γ2 − 1

= − 1√
γ2 − 1

.

(15)
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Figure 3: T versus γ plot with γt = 5.86.

Substituting the value from Eq. (15), Eq. (14) takes the form

dT

dγ
=

2πm

qB
− 4s

c

1

(γ2 − 1)3/2
. (16)

Now, γt value is obtained with dT/dγ
∣∣∣
γ=γt

= 0, which gives the transition

gamma value

γt =

[
1 +

(
2sqB

πmc

)2/3
]1/2

. (17)
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We consider a simple case to calculate γt. Let us consider a ring which has
a circumference of about 3.8 km. We consider proton beam with electronic
charge q = 1.6×10−19C, mass = 1.67×10−27kg, s = 1000.0 m, and B = 1.0 T.
This gives γt = 5.86.

4 Discussion

Figure 3 shows time (T ) versus energy (γ) plot with the value of transition
gamma (γt) 5.86. At high speeds approaching the speed of light the particle’s
total energy increases proportionally to γ, and the speed of the particle β,
increases slowly to towards the value of the speed of light, as dictated by
the theory of relativity. The shape of curve in Figure 3 is derived using
equations of relativity as applied to the simple accelerator model in Figure
2. The minimum of the this curve in in Figure 3 where dT/d(gamma)=0 is
the transition energy.

Furthermore, equation of longitudinal phase oscillation relative to syn-
chronous particle can be written as [1]

φ̈+
hω2

sηtrqV

2πβ2Us

(sinϕs − sinϕ) = 0. (18)

For small amplitude oscillation,

sinϕ = sin(ϕs + φ)

≈ φ cosϕs + sinϕs.
(19)

Hence for the given small amplitude of oscillation, Eq. (18) can be written
as

φ̈+ Ω2
sφ = 0, (20)

where Ωs = ωs

√
hηtr cosϕs

2πβ2γ
qV
mc2

is angular synchrotron oscillation frequency.

Further, synchrotron tune Qs can be defined as

Qs =
Ωs

ωs

=

√
hηtr cosϕs

2πβ2γ

qV

mc2
. (21)

The following conclusions can be made:
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• For oscillation about the synchronous phase, ηtr cosϕs must remain
positive (or at least have the same sign as qV ). Otherwise, oscillation
frequency becomes imaginary.

• As ηtr flips sign when the beam accelerates through transition, the
synchronous phase must shift to maintain longitudinal stability. This
means ϕs becomes π − ϕs, which is another side of sinusoidal curve
(phase focusing above transition).

• At transition ηtr = 0. This gives Ωs = 0 and consequently Qs = 0.
Synchrotron frequency drops to zero at transition and the longitudinal
phase space almost got frozen around gamma transition.

• From Eq. (20) and for Ωs = 0, φ̈ = 0. This means φ̇ = constant.
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A Time Period Along the Circular Accelera-

tor with Straight Sections and Bends Only

The total time period is given by

T = 4(Tm + Ts), (22)

where Tm and Ts are the time spent by a particle in bending arc and in a
straight section of a circular accelerator respectively. The time spent in a
straight section is

Ts =
s

cβ
, (23)

where β =
√

1− 1/γ2 is the relativistic velocity and γ is the relativistic
energy factor. Substituting the value of β in Eq. 23, the time spent by a
particle in a straight section becomes

Ts =
s

c

γ√
γ2 − 1

. (24)

In the arc section of a circular accelerator, the centrifugal force balances
Lorentz’s force, i.e.

γmv2

ρ
= qvB (25)

where q is the charge, B is the magnetic field in the dipole magnet and ρ is
the bending radius of the dipole magnet. Solving the above relationship, the
bending radius can be expressed as

ρ =
γmβc

qB
(26)

Finally, time spent by a particle in the bending arc is given by

Tm =
1

4

2πρ

βc
=

πm

2qB
γ. (27)

The total time period is then

T = 4(Tm + Ts) =
2πmγ

qB
+

4s

c

γ√
γ2 − 1

. (28)
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B Python Script to Calculate Transition Gamma

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

#defining some constants and parameters

c = 3e8 #velocity of light

s = 1000.0 #length of the straight section of the synchrotron

q = 1.6e-19 #charge of the particle

B = 1.0 # magnetic field in Tesla

m = 1.6726e-27 # mass of the proton in kg

#creating vectors T and gamma

g = np.linspace(2,30,1000) #gamma energy

array = np.sqrt((g*g)-1)

T = (2*np.pi*m*g/(B*q)) + 4*s*g/(c*(array))

#plot T versus gamma

fig = plt.figure(figsize = (10,8))

plt.plot(g,T)

plt.xlabel("Gamma ($\gamma$)",fontsize=12)

plt.ylabel("Time (T)",fontsize=12)

#plt.xticks(0,15)

plt.xlim(0,60,10)

plt.xticks(np.arange(0, 60, 10),fontsize=12)

plt.yticks(np.arange(2.7e-8, 3.10e-8, 0.05e-8),fontsize=12)

plt.savefig(’transition.png’)

a = 2*s*q*B/(np.pi*m*c)

b = pow(a,0.66)

gamma_t = pow((1+b),0.5)

gamma_t = 5.8598747346172555
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