

BNL-104210-2014-TECH AGS.SN338;BNL-104210-2014-IR

Extraction and Transport of Protons to Emulate 1 GeV/c/nucleon Iron Ions

L. Ahrens

June 1995

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AGS Complex Machine Studies

(AGS Studies Report No. 338)

Extraction and Transport of Protons to Emulate 1 GeV/c/nucleon Iron Ions

Study Period: June 7, 1995 (Midnight Shift)

Participants: L. Ahrens, J.W. Glenn, N. Williams

Reported by: J.W. Glenn

Machine: Booster/AGS/SEB

Beam: 8 TP Protons

Tools: Booster/AGS CBMs

Aim: To establish an initial operating setup for NASA run in A3 Line. (Data taken in HEP [SEB] Book II pp. 51-57.)

Introduction/Procedure: Protons were extracted and transported to the A target at the same rigidity as planned for the 1 GeV/c/nucleon run for the NASA biology groups this fall.

Results: In a nutshell; see the COUT print-out (fig 1).

1. Extraction efficiency was only ~50%, not inconsistent with the unexpectedly large losses seen between F12 to F16 [fig 2].

These high F14 losses were not changed by changing F10 current or position, thus: beam loss is upstream of F10 OR the problem is a vertical - Though not checked, this is not likely as F10 has only a 1.1" of vertical aperture and the loss area 3".

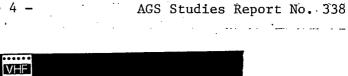
The "expected" reason for these losses was rotation of the extraction trajectory in phase space because there were many bad sextupoles in the horizontal (and vertical) chromaticity correction strings. These are being replaced with rebuilt ones this summer.

Multiplying the total ring losses or "inefficiency" by 9 (the ratio of proton energy for the standard 24.1 GeV/c operation and this run), gives about 4 % x 9 or about 36%, a bit low. The loss monitors are shielded by the ring magnets so low energy losses probably read low. Multiplying by 12 makes eff + ineff (x 12) = 100% over 50% variation in inefficiency (fig 3). The 50% indicated extraction efficiency is probably correct. 2. Transport between C10 and the A target cave was only 13% efficient. The reason for this was not actively pursued as time was short and the priority was to extract then establish dipole currents, a lack of working flags made transport optimization difficult.

The long loss of 10% (x 9 due to low energy [here a factor of 9 is reasonable as the line has few magnets that shield the detectors]), 90% loss is consistent with 13% transported to A station. Calibrations in '95 show the A Sec should be good to ~10%.

The quad currents for this run were scaled from 24.1 GeV/c operation, spot sizes were not checked as most flags or their associated TVs were not working. Later calculations indicate that multiple scattering from the C10 SEC and the window at C075 would increase beam size 60% horizontally and 25% vertically. This may also have affected transport efficiency.

The bad sextupoles in the AGS ring would have changed the alignment of the separatrix, thus changing the apparent alpha and beta of the beam; another possible cause for poor transport.


3. Settings, see print-outs ((fig. 4).	Others:	
F10 650 A, (Power supply	<pre>v initially</pre>	oscillated a	t this current.)
Dsex 35 A	H Quad	-1.3 A	
Qskew 10 A	V Quad	-4.5 A	
F PBLW 33 A	H Sex	9.6 A	
Main Mag 666-637 A	V Sex	15.0 A	

4. Other problems and needed fixes:

- A. F PBLW had to be reduced 10 Amps [25%] to have reasonable efficiency. Again this is probably an artifact of the bad sextupoles in the ring.
- B. When debunching before transition, one uses "transition time" for debunching, but the rf off controls are not coupled to this. Please change timing so "Debunch" time causes phase shift and delays for radial loop stop and rf off.
- C. As the "invert" portion of the Main Magnet cycle uses the F bank, there is no "End of Flat Top" trigger generated. This trigger is necessary for turning off the spill servo before the next cycle. A replacement trigger is needed.
- D. There was over 100% spill modulation (mostly Siemens synched). The tolerance for voltage ripple is ~5 times as tight for this run, some extra setup time may be necessary.

Conclusion: At least 5% of the beam in the AGS beam to the target is expected. With rebuilt sextupoles and instrumentation, there are reasons to expect better efficiencies for the actual iron run.

	SED HUNIT V FULSE AVERAGE	1.
************************************	************************************	*SEB 3.9TP T/I 6.% LLS 9.9* *CSEC 0.0TP 0.% C3SEC 0.0TP 498.% *CION 0.1TP1483.% C3TON 0.0TP 498.%
*DD11 0.1 D1D3 0.0 D010 0.0 *DD13 0.0 D07 -0.0 D011-0.0 * * EXP 813 0 0.00Z ON / * * * * * * * * * * * * * *	*H20 0.05 Z:F10 0.54 Z:RLML 0.53 Z* * * * *	************************************
T/I 6.3 ALL 0.54TF 13.84% RNSW 7.09% *FLS 20.4 A 0.51TF 13.07% SWEV 3.19%* *LLS 9.9 B 0.01TP 0.28% ACU -0.78%* *MFA 76.3 C 0.01TP 0.14% BCV 0.02%* *MFA 76.3 C 0.01TP 0.14% BCV 0.02%* * D 0.01TP 0.14% BCV 0.02%* * D 0.01TP 0.35% CCV 0.21%* * D 0.01TP 0.35% CCV 0.21%* * D 0.01TP 0.35% CCV 0.21%* * DCV 0.17%* * * * * CL03 3.73 CL25 0.13 AL24 0.69 CL47 0.27 * * CL05 0.96 CL28 0.02 DL17 0.08 DL24-0.02 * * * CL05 0.40 DL20 0.03 DL24-0.02	*FTBM 8.6 TP ECBM 8.7 TP * *SEB 3.9 TP MOM 3.745 GEV/C* *EFF 45.20 Z REP 3.60 SEC * *DEL 13.84 LOSS 8.11 MPA 76.26 Z* *A 0.5TP:B 0.0TP:C 0.0TP:D 0.0TP:* *A 0.5TP:B 0.0TP:C 0.0TP:D 0.0TP:* *A3 0.00TP:B5 0.01TP:C3 0.03TP: :* *A : :787 0:813 0:* *A : :* :* :* *A : :* :* :* *A : :* :* :* *A :	**************************************
	fig 1	

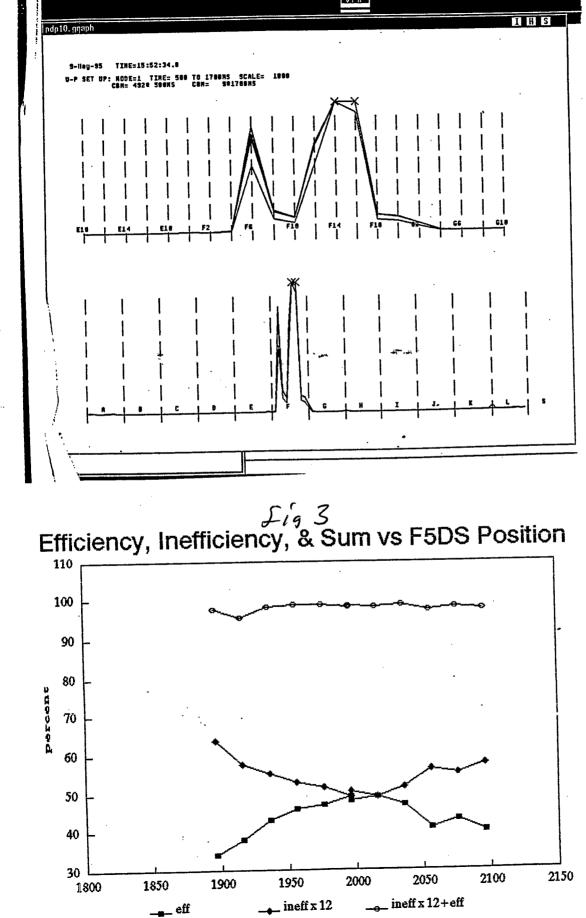


fig 2

567 7	SEB SEB SEB	CD1 CQ1 CP020	238A O 51A O	IN IN IN				
8 9	SÉB SÉB	CQ2 CQ3	197B 0 321A 0	N 8	SEB	F20VB	2000	OFF
10	SEB	CQ4		N 11	SEB	G20VB	2000	OFF
	SEB	AB1		N 21	SEB	F5SPS	800	ON
12 15	ŠĒB	DB2	ŠŠ Ŏ	N 22	SEB	F50N	350	ON
18	SEB	BB3		N 23	SEB	F50F	1700	ON
21 22	SEB	CP075	351A Q	N 24	SEB	F5US	1664	NORM
	SEB	AP1		N 25	SEB	F5DS	1986	NORM
25	SEB	CP1		N 42	SEB	F100N	700	ON
29 30	SEB SEB	CD101 CP103		BY 43	SEB	F100F	1700	ON
31	SEB	AD283	328A 0	M 77	SEB	F10US	1799	NORM
		ADZT	318A 0	M 40	SEB	F10DS	1320	NORM
32 33	SEB SEB	ñf 124	1702 Ő	N 21	SEB	H20US	4031	NORM
34	SEB	′ DD485	1A 0	N 52	SEB	H20DS	4050	NORM ON
35	SEB	A\$155	1A 0		SEB	HSRON HSROF	500 1700	ON
	SEB	nP105	405N 0		SEB INS	1ERD	1800	ON
37	SEB	AQ5	1B ST		INS	1ERST	500	ON
39 40	SEB SEB	AD489 AD91	384A 01 20A 01		INS	D2RD	1800	ON
41	SEB	AD5-8	340A 01		INS	D2RST	1000	ON
42	SEB	AD5T	431A 0		SEB	INTRS	500	ÖN
43	SEB	NDOT	10 0		JCD.	TULKO		VII
45	SEB	AQ6	60B 01	N				
46	SEB	AP244	180B OI					
47	SEB	nD247	2000A #TI					
48	SEB	AQ788	199A O					
49	SEB	AP285	45A 01			1		
50	\$EB	rqg	240 <u>8</u> 01	N ¦		11		

fig 4

AGS Studies Report No. 338

ი ს