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I. INTRODUCTION

In a previous note [1] we developed theoretical and computational tools for the study of

microbunched electron cooling (MBEC [2]) in the three-dimensional regime. In this context,

we were able to treat the key space charge effect in a rigorous fashion by taking explicitly into

account the point-charge nature of the particles involved (electrons and hadrons). In this

report, we build upon our earlier analysis by taking into consideration previously neglected

effects that can cause Landau damping in the amplifier section (such as focusing, betatron

oscillations and the angular spread of the electron beam). Beginning with the theoretical

aspect of this work, we use our modified and expanded tools in order to calculate and study

the generalized, point-hadron wakefield of the system, an important quantity that affects

the cooling performance.

II. THEORETICAL ANALYSIS

We start our analysis by revisiting the problem of plasma oscillations in a round electron

beam of finite transverse size, but extend our treatment to the fully three-dimensional regime,

including the effects of angular spread and focusing. Recalling the discussion of single particle

dynamics in Ref. [1], the longitudinal portion of the equations of motion for a single electron

may be written as

dz

ds
=

η

γ20
− 1

2
(p2x + p2y + k2β(x2 + y2)) , (1)

dη

ds
=

e2

γ0mec2

∫
dx′dy′dz′δn(x′, y′, z′; s)Φ(x− x′, y − y′, z − z′) , (2)

where s is the longitudinal position in the lab frame, z is the internal beam coordinate, η is

the energy deviation, δn is the electron beam volume density perturbation and Φ(x, y, z) =

γ0z/(x
2 + y2 + γ20z

2)3/2 is the scaled interaction function for the longitudinal space charge

force. Moreover, γ0 is the average relativistic factor of the beam, e and me are the charge

and mass of the electrons (respectively), while kβ is the transverse focusing strength. The

latter also determines the period of the (symmetric and smooth) betatron oscillations, which

are described by
dx

ds
= p ,

dp

ds
= −k2βx , (3)
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where x = (x, y) is the transverse position vector and p = (px, py) is its momentum coun-

terpart.

The generalized distribution function F for the electron beam can be decomposed as

F (x,p, z, η; s) = n0F0(x,p, η) + δF (x,p, z, η; s) , (4)

where n0 is the background line density of the beam,

F0 =
1

(2π)5/2Σ2
pΣ
′2
p σe

exp(−
p2 + k2βx

2

2Σ′2p
) exp(− η2

2σ2
e

) , (5)

(where Σp is the rms size of the round beam, Σ′p = kβΣp is the corresponding angular spread

and σe is the rms value of the energy spread) and δF is a small perturbation, which can be

liked to δn via

δn(x, z; s) =

∫
d2pdηδF (x,p, z, η; s) . (6)

Here, we have tacitly assumed that the beam is matched to the focusing channel and thus

has a constant (i.e. s-independent) transverse profile. It should also be noted that Σp and

Σ′p can be obtained from the transverse emittance ε via Σp = (εβp)
1/2 and Σ′p = (ε/βp)

1/2,

where βp = 1/kβ is the matched electron beta function.

The self-consistent evolution of the electron beam distribution function is governed by

the Vlasov equation, namely

∂F

∂s
+
dx

ds

∂F

∂x
+
dp

ds

∂F

∂p
+
dz

ds

∂F

∂z
+
dη

ds

∂F

∂η
= 0 , (7)

the first-order (linearized) component of which can be written as

∂(δF )

∂s
+ p

∂(δF )

∂x
− k2βx

∂(δF )

∂p
+ [

η

γ20
− 1

2
(p2 + k2βx

2)]
∂(δF )

∂z
+ n0

e2E(x, z; s)

γ0mec2
∂F0

∂η
= 0 , (8)

where

E(x, z; s) =

∫
d2x′dz′δn(x′, z′; s)Φ(x− x′, z − z′) . (9)

Introducing the Fourier quantities δF̂z and Êz via the definitions

δF (x,p, z, η; s) =
1

2π

∫
dkzδF̂z(x,p, kz, η; s) exp(ikzz) , (10)

E(x, z; s) =
1

2π

∫
dkzÊz(x, kz; s) exp(ikzz) , (11)

the frequency-domain, linearized Vlasov equation becomes

∂(δF̂z)

∂s
+ p

∂(δF̂z)

∂x
− k2βx

∂(δF̂z)

∂p
+ [

η

γ20
− 1

2
(p2 + k2βx

2)]ikzδF̂z + n0
e2Êz
γ0mec2

∂F0

∂η
= 0 . (12)
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The partial differential equation given above can be solved using the method of integration

along unperturbed trajectories. Its formal solution is

δF̂z(x,p, kz, η; s) = δF̂z(x0,p0, kz, η; 0) exp(−ikzs[η/γ20 − (p2 + k2βx
2)/2])

− n0
e2

γ0mec2
∂F0

∂η

∫ s

0

ds′Êz(x+, kz; s
′) exp(ikz(s

′ − s)[η/γ20 − (p2 + k2βx
2)/2]) , (13)

where

x+ = x cos(kβ(s′ − s)) + p sin(kβ(s′ − s))/kβ ,

x0 = x cos(kβs)− p sin(kβs)/kβ ,

p0 = kβx sin(kβs) + p cos(kβs) . (14)

As in our previous note, we remark that the above equations only contain the longitudinal

wavenumber kz. Next, we introduce the full Fourier space quantities δF̂k and Êk via

δF̂k =

∫
d2x exp(−ik⊥ · x)δF̂z =

∫
d2xdz exp(−ik⊥ · x− ikzz)δF (15)

and

Êk =

∫
d2x exp(−ik⊥ · x)Êz =

∫
d2xdz exp(−ik⊥ · x− ikzz)E , (16)

where k⊥ = (kx, ky) is the transverse wavenumber vector. The corresponding Fourier trans-

form of the density perturbation δn(x, z) is defined by

δn̂k =

∫
d2xdz exp(−ik⊥ · x− ikzz)δn (17)

and satisfies the relations

δn̂k =

∫
d2pdηδF̂k (18)

and

Êk = − 4πikzδn̂k

k2z + γ20(k2x + k2y)
. (19)

Using all of the above, it again becomes straightforward to obtain a single equation for

δn̂k (after some rather lengthy algebra). The end result of this manipulation is

δn̂k(s) = δn̂
(0)
k (s) +

e2n0k
2
z

πγ30mec2

∫ s

0

ds′(s′ − s)exp(−σ2
ek

2
z(s
′ − s)2/(2γ40))

(1 + iΣ′2p kz(s
′ − s))2

×
∫
d2k′⊥ exp

(
−

Σ2
p

2

k2
⊥ + k′2⊥ − 2k⊥ · k′⊥ cos(kβ(s′ − s))

1 + iΣ′2p kz(s
′ − s)

)
δn̂k′

⊥, kz
(s′)

k2z + γ20k
′2
⊥
, (20)
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where

δn̂
(0)
k (s) =

∫
d2xd2pdηδF̂z(x0,p0, kz, η; 0) exp(−ikzs[η/γ20 − (p2 + k2βx

2)/2]− ik⊥ ·x) , (21)

is the evolution of δn̂k without the influence of longitudinal space charge. This integral

equation can be solved numerically with the aid of a suitable routine for the fast calculation

of 2D convolution integrals.

Next, we show how the result given above is modified by adding a chicane with strength

R56 after a drift space of length Ld. Recalling (from [1]) that the Fourier component δF̂k is

shifted according to

δF̂k → δF̂k exp(−ikzR56η) , (22)

we combine this result with the derivation that led to Eq. (20), a manipulation which leads

to the conclusion that the value of δn̂k after the chicane is expressed by

δn̂+
k (Ld) =

∫
d2xd2pdη exp(−iηkz(Ld/γ20 +R56))δF̂z(x0,p0, kz, η; 0)

× exp(ikzLd(p
2 + k2βx

2)/2− ik⊥ · x)

+
e2n0k

2
z

πγ30mec2

∫ Ld

0

ds′(s′ − Ld − γ20R56)
exp(−σ2

e((s
′ − Ld)/γ20 −R56)

2k2z/2)

(1 + iΣ′2p kz(s
′ − Ld))2

×
∫
d2k′⊥ exp

(
−

Σ2
p

2

k2
⊥ + k′2⊥ − 2k⊥ · k′⊥ cos(kβ(s′ − Ld))

1 + iΣ′2p kz(s
′ − Ld)

)
δn̂k′

⊥, kz
(s′)

k2z + γ20k
′2
⊥
. (23)

In common with the analysis in our previous note, Eq. (23) is supposed to be used in

conjunction with the numerical solution of Eqs. (20)-(21).

The results presented so far can be re-derived and generalized in the following way: a

“thin” chicane of strength Re (that is, a chicane with a length considerably smaller than the

average electron beta function) is characterized by the simple transfer map z2 = z1 + Reη1,

η2 = η1, the transverse phase space coordinates being unchanged. In order to incorporate

this discrete jump into the “continuous” electron equations of motion, we need to rewrite

Eq. (1) as
dz

ds
=

η

γ20
− 1

2
(p2x + p2y + k2β(x2 + y2)) +Reηδ(s− se) , (24)

where s = se is the location of the chicane. In this way we emphasize that the amplification

section contains two sources for R56, a continuous one due to the drift (∝ 1/γ2) and a

discrete, localized counterpart due to the chicane. In view of this change, the solution to
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the linearized, frequency-domain Vlasov equation becomes

δF̂z(x,p, kz, η; s) = δF̂z(x0,p0, kz, η; 0) exp(−ikzs[η/γ20 − (p2 + k2βx
2)/2]− ikzReηH(s− se))

− n0
e2

γ0mec2
∂F0

∂η

∫ s

0

ds′Êz(x+, kz; s
′) exp(ikz(s

′ − s)[η/γ20 − (p2 + k2βx
2)/2]

+ ikzReη[H(s′ − se)−H(s− se)]) , (25)

where H(s) is the Heaviside step function (equal to 1 for s > 0 and 0 for s ≤ 0, for which we

also have H ′(s) = δ(s)). Following the same procedure as before we find that the analogues

to Eq. (20)-(21) are

δn̂k(s) = δn̂
(0)
k (s) +

e2n0k
2
z

πγ0mec2

∫ s

0

ds′((s′ − s)/γ20 +Re[H(s′ − se)−H(s− se)])

× exp(−σ2
ek

2
z((s

′ − s)/γ20 +Re[H(s′ − se)−H(s− se)])2/2)

(1 + iΣ′2p kz(s
′ − s))2

×
∫
d2k′⊥ exp

(
−

Σ2
p

2

k2
⊥ + k′2⊥ − 2k⊥ · k′⊥ cos(kβ(s′ − s))

1 + iΣ′2p kz(s
′ − s)

)
δn̂k′

⊥, kz
(s′)

k2z + γ20k
′2
⊥
, (26)

and

δn̂
(0)
k (s) =

∫
d2xd2pdηδF̂z(x0,p0, kz, η; 0) exp(−ikzs[η/γ20 − (p2 + k2βx

2)/2]

− ikzReηH(s− se)− ik⊥ · x) , (27)

respectively. By taking se = Ld + 0+ and s = se + 0+ we essentially recover Eq. (23) from

the above expressions. Indeed, a very useful feature of Eqs. (26)-(27) is that they can be

easily generalized to the case of multiple chicanes separated by drifts, thus covering the

configuration of a multi-stage amplifier (of course, one has to assume symmetric smooth

focusing with strength kβ for all the drifts, which is typically the case). In particular, for a

collection of chicanes with strengths Re,i located at s = se,i the phase equation becomes

dz

ds
=

η

γ20
− 1

2
(p2x + p2y + k2β(x2 + y2)) + η

∑
i

Re,iδ(s− se,i) , (28)

and the propagation of the electron beam microbunching is accordingly governed by

δn̂k(s) = δn̂
(0)
k (s) +

e2n0k
2
z

πγ0mec2

∫ s

0

ds′((s′ − s)/γ20 +
∑
i

Re,i[H(s′ − se,i)−H(s− se,i)])

× exp(−σ2
ek

2
z((s

′ − s)/γ20 +
∑

iRe,i[H(s′ − se,i)−H(s− se,i)])2/2)

(1 + iΣ′2p kz(s
′ − s))2

×
∫
d2k′⊥ exp

(
−

Σ2
p

2

k2
⊥ + k′2⊥ − 2k⊥ · k′⊥ cos(kβ(s′ − s))

1 + iΣ′2p kz(s
′ − s)

)
δn̂k′

⊥, kz
(s′)

k2z + γ20k
′2
⊥
, (29)
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and

δn̂
(0)
k (s) =

∫
d2xd2pdηδF̂z(x0,p0, kz, η; 0) exp(−ikzs[η/γ20 − (p2 + k2βx

2)/2]

− ikzη
∑
i

Re,iH(s− se,i)− ik⊥ · x) . (30)

Through this formalism, the analysis of the standard two-stage configuration for the amplifier

section is no more complicated than its single-stage counterpart.

So far our treatment has focused on the propagation of electron density perturbations

through the amplification cascade alone. In what follows, we outline how the same method-

ology can be used to describe the entire electron portion of the cooling lattice (from the

start of the modulator to the end of the kicker). To begin with, we now assume that the

smooth focusing approximation for the betatron oscillations applies to all modules of the

system (modulator, amplifier and kicker sections), with beta functions that are constant

within each segment but (in general) different in x and y. Even though this deviation from

symmetry is introduced primarily in order to account for typical configurations of the elec-

tron beam in the modulator and kicker (themselves driven by the non-round hadron beam),

the resulting formalism can deal with asymmetric focusing in the amplifier as well. As

was discussed in our first note (in the context of describing the simulation algorithm), the

short transition elements between the modules are modeled by simple maps that preserve

the transverse emittance. In this expanded model, the electron betatron oscillations are

governed by
dx

ds
= px ,

dy

ds
= py ,

dpx
ds

= − x

β2
x(s)

,
dpy
ds

= − y

β2
y(s)

, (31)

where βx,y(s) are the piecewise-constant electron beta functions. On the other hand, the

equilibrium distribution for the matched electron beam can be written as

F0 =
1

(2π)5/2ΣxΣyΣ′xΣ
′
yσe

exp(− x2

2Σ2
x

− p2x
2Σ′2x

) exp(− y2

2Σ2
y

−
p2y

2Σ′2y
) exp(− η2

2σ2
e

) . (32)

Here, the rms beam sizes Σx,y and angular spreads Σ′x,y (both sets of quantities now s-

dependent in a piecewise-constant fashion) are respectively given by Σx,y(s) = (εx,yβx,y(s))
1/2

and Σ′x,y(s) = (εx,y/βx,y(s))
1/2, where εx,y are the electron transverse emittances (for typical

parameters, we have εx = εy = ε). As far as the phase equation is concerned, its final

(continuous) form is

dz

ds
=

η

γ20
− 1

2
{p2x + p2y +

x2

β2
x(s)

+
y2

β2
y(s)
}+ η

∑
i

Re,iδ(s− se,i) , (33)
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where the sum now also includes the contribution of the first chicane (immediately after the

modulator). To complete our unified treatment of the cooling lattice, we need to incorporate

the interactions associated with the hadrons in the modulator and kicker segments. In

particular, owing to the presence of the hadron beam in the aforementioned modules, the

energy equation for a test electron is modified according to

dη

ds
=

e2

γ0mec2

∫
dx′dy′dz′δn(x′, y′, z′; s)Φ(x− x′, y − y′, z − z′)

− Ze2

γ0mec2

∫
dx′dy′dz′δn(h)(x′, y′, z′; s)Φ(x− x′, y − y′, z − z′) , (34)

where Ze is the hadron charge and δn(h) is the fluctuation of the hadron volume density. For

MBEC, the latter quantity is assumed to be non-zero only within the limits of the modulator

(thus, a relatively small kicker hadron feedback on the electron beam is typically neglected).

With these changes in mind, the previously-mentioned method of integration along unper-

turbed trajectories yields the following solution to the linearized, frequency-domain Vlasov

equation:

δF̂z(x,p, kz, η; s) = δF̂z(x0,p0, kz, η; 0) exp(−ikzsη/γ20)

× exp(ikz[ζx(s)(p
2
x + x2/β2

x(s))/2 + ζy(s)(p
2
y + y2/β2

y(s))/2]− ikz
∑
i

Re,iηH(s− se,i))

− n0
e2

γ0mec2
∂F0

∂η

∫ s

0

ds′∆Êz(x+, kz; s
′) exp(ikz[(s

′ − s)η/γ20 −Gx(s, s
′)(p2x + x2/β2

x(s))/2

−Gy(s, s
′)(p2y + y2/β2

y(s))/2] + ikz
∑
i

Re,iη[H(s′ − se,i)−H(s− se,i)]) . (35)

In the equation given above, ζx,y(s) ≡ βx,y(s)ψx,y(s) and Gx,y(s, s
′) ≡ βx,y(s)(ψx,y(s

′) −

ψx,y(s)), where

ψx,y(s) =

∫ s

0

ds̃

βx,y(s̃)
(36)

are the betatron phase advance functions for the (idealized) electron lattice under consider-

ation. Moreover, we have the definitions

x+ = x
√
βx,y(s′)/βx,y(s) cos(∆ψx,y(s, s

′)) +
√
βx,y(s)βx,y(s′)p sin(∆ψx,y(s, s

′)) ,

x0 = x

√
β
(0)
x,y/βx,y(s) cos(ψx,y(s))−

√
β
(0)
x,yβx,y(s)p sin(ψx,y(s)) ,

p0 = x sin(ψx,y(s))/

√
β
(0)
x,yβx,y(s) +

√
βx,y(s)/β

(0)
x,yp cos(ψx,y(s)) , (37)

where ∆ψx,y(s, s
′) ≡ ψx,y(s

′) − ψx,y(s) and β
(0)
x,y ≡ βx,y(s = 0) are the initial values of the

electron beta functions (or, equivalently, the electron betas in the modulator). Finally,
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∆Êz(x, kz; s) = Êz(x, kz; s) − ZÊ (h)z (x, kz; s), where Ê (h)z is the Fourier component of the

hadron space charge field, defined (in a manner completely analogous to its electron coun-

terpart) by means of the relation

E (h)(x, z; s) ≡
∫
d2x′dz′δn(h)(x′, z′; s)Φ(x− x′, z − z′) =

1

2π

∫
dkzÊ (h)z (x, kz; s) exp(ikzz) .

(38)

Using the above results - and following the same procedure that led to Eqs. (29)-(30) - we

ultimately obtain a general, self-consistent equation that describes the evolution of density

fluctuations in the electron beam as the latter passes through the entire cooling lattice:

δn̂k(s) = δn̂
(0)
k (s) +

e2n0k
2
z

πγ0mec2

∫ s

0

ds′((s′ − s)/γ20 +
∑
i

Re,i[H(s′ − se,i)−H(s− se,i)])

× exp(−σ2
ek

2
z((s

′ − s)/γ20 +
∑

iRe,i[H(s′ − se,i)−H(s− se,i)])2/2)

(1 + iΣ′2x (s)kzGx(s, s′))(1 + iΣ′2y (s)kzGy(s, s′))

×
∫
d2k′⊥ exp

(
−Σ2

x(s)

2

k2x + (βx(s
′)/βx(s))k

′2
x − 2(βx(s

′)/βx(s))
1/2kxk

′
x cos(∆ψx(s, s

′))

1 + iΣ′2x (s)kzGx(s, s′)

)
× exp

(
−

Σ2
y(s)

2

k2y + (βy(s
′)/βy(s))k

′2
y − 2(βy(s

′)/βy(s))
1/2kyk

′
y cos(∆ψy(s, s

′))

1 + iΣ′2y (s)kzGy(s, s′)

)

×
δn̂k′

⊥, kz
(s′)− Zδn̂(h)

k′
⊥, kz

(s′)

k2z + γ20k
′2
⊥

, (39)

where

δn̂
(0)
k (s) =

∫
d2xd2pdηδF̂z(x0,p0, kz, η; 0) exp(−ikz[sη/γ20 − ζx(s)(p2x + x2/β2

x(s))/2

− ζy(s)(p2y + y2/β2
y(s))/2]− ikzη

∑
i

Re,iH(s− se,i)− ik⊥ · x) (40)

and

δn̂
(h)
k⊥, kz

(s) =

∫
d2xdz exp(−ik⊥ · x− ikzz)δn(h)(x, z; s) . (41)

We note that, apart from taking into account the betatron motion of the electrons, Eqs. (39)-

(40) automatically include the effect of plasma oscillations in the e-beam for all the modules

of the cooling system. For the special case with βx(s) = βy(s) = βp = 1/kβ and δn(h) = 0,

we have ψx,y(s) = kβs, ζx,y(s) = s and Gx,y(s, s
′) = s′− s and we indeed recover the original

result (Eqs. (29)-(30)).

Turning to the kicker, we first point out that a crucial intermediate quantity that is of

central importance in quantifying the performance of the cooler is the generalized wake (or
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Greens function) G(xk,xm, zk − zm) of the system, defined mathematically by means of the

relation

∆η(xk, zk) =

∫
d2xmdzmG(xk,xm, zk − zm)δn(h)(xm, zm) , (42)

where ∆η(xk, zk) is the total energy change of a kicker point hadron (at rest in the beam

frame) in response to a hadron density fluctuation δn(h)(xm, zm) in the modulator. To

further clarify the physical meaning of the above definition, one can consider a single, point

charge hadron fixed at x = xm , z = zm inside a “sea” of (point) electrons in the modulator.

Its presence creates a perturbation in the electron beam that can be propagated through the

lattice. This perturbed e-beam acts back on a second point hadron in the kicker, located

at x = xk , z = zk. The energy change of the second (kicker) hadron is expressed by

G(xk,xm, zk− zm). In a way, G can be viewed as a direct generalization of the conventional

1D wake, with the additional transverse position dependence arising as a result of the finite

transverse extent of the electron beam.

Using the analytical machinery presented so far, it becomes conceptually straightforward

to calculate the point hadron wake: for a single modulator hadron located at zm = 0, one

has δn(h)(x, z; s) = δ(x − xm)δ(z) so δn̂
(h)
k⊥, kz

(s) = exp(−ik⊥ · xm). Using this input along

with Eqs. (39)-(40) (and neglecting initial density modulations in the electron beam itself,

i.e. assuming that δF̂z(s = 0) = 0) one can calculate the Fourier component δn̂k⊥, kz(xm, s)

along the kicker (with xm acting as an additional free parameter). Using Eq. (19), one can

then obtain the equivalent field quantity Êk⊥,kz(xm, s), as well as its real space counterpart

E(x, z; xm, s) = (2π)−3
∫
d2k⊥dkz exp(ik⊥ · x + ikzz)Êk⊥,kz(xm, s) . (43)

As mentioned before, the generalized wake is obtained by considering the total energy change

of the kicker hadron, i.e.

G(xk,xm, zk) = ∆η(xk, zk) = − Ze2

γ0mhc2

∫ L0+Lk

L0

dsE(xk, zk; xm, s) , (44)

where mh is the hadron mass and s = L0 denotes the start of the kicker in the electron lattice.

This procedure allows one to map the Green’s function G for various hadron transverse

position configurations.
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III. NUMERICAL RESULTS

Having outlined the theoretical framework for calculating the generalized wake, we now

turn to a simple numerical illustration that highlights the most important aspects of this

topic. The parameters under consideration are listed in Table I and refer to a two-stage

MBEC cooler for 100 GeV protons in the EIC. In Fig. 1 we show the comparison between

theory and simulation as far the on-axis wake w0(z) = G(xk → 0,xm → 0, z) is concerned

(i.e. for the case where both the modulator and the kicker proton have no transverse

excursion. Here, as before, we also assume that zm = 0 so that z represents the longitudinal

position of the kicker proton). In particular, the theoretical wake is calculated using the

methods of the previous section while the simulated wake is obtained by means of the macro-

particle techniques discussed in our earlier EIC report ([1]). Two cases are considered, one

for the peak value of the electron current (Ie = 10 A, left plot) and one for Ie = 5 A (right

TABLE I: Parameters for the generalized wake calculation

Case 100 GeV

Geometry

Modulator Length (m) 33

Kicker Length (m) 33

Number of Amplifier Drifts 2

Amplifier Drift Lengths (m) 49

Electron Parameters

Electron Peak Current (A) ∼ 10

Electron Fractional Slice Energy Spread 1e-4

Electron Normalized Emittance (x/y) (mm-mrad) 2.8 / 2.8

Horizontal/Vertical Electron Betas in Modulator (m) 68 / 10

Horizontal/Vertical Electron Betas in Kicker (m) 30 / 4

Horizontal/ Vertical Electron Betas in Amplifiers (m) 12 / 12

R56 in First Electron Chicane (mm) 23

R56 in Second Electron Chicane (mm) -17

R56 in Third Electron Chicane (mm) -18
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FIG. 1: On-axis wake profiles for the peak electron current (left) and half its peak value (right).

Here, w0 (which represents the total energy change of the kicker proton) is plotted versus the

longitudinal position z = zk of the above-mentioned hadron, assuming xk = 0, xm = 0 and zm = 0.

Data shown are from 3D theory (blue solid lines), 3D simulation (red dashed lines) and the hybrid

model (green solid lines). The hybrid model data are courtesy of W. Bergan.

plot). Moreover, for additional insight, our comparison includes data from a simplified,

hybrid model in which the electrons are approximated by charged disks while the hadrons

are treated as point charges [3]. It is worth noting that, up until our present analysis,

such approximate models constituted the only available means for calculating the MBEC

interaction wake [4–6]. In general, good agreement is observed between 3D theory and

simulation, the small amplitude difference on the left plot likely being attributable to the

gradual onset of nonlinear effects (saturation), which are expected to become more important

the higher the electron beam current. Furthermore, compared to the hybrid model results,

the 3D wakes roughly agree in terms of the overall shape of the profile (with the divergence

being concentrated in the tails of the wake), while - in general - giving different estimates for

the wake amplitude. As an empirical observation, this amplitude disagreement tends to get

worse for lower current values.

Moving on from the purely on-axis case, Figs. 2-3 present the results of a study focusing

on the dependence of the generalized wake upon the transverse position of the modulator

and kicker ions. Specifically, Fig. 2 explores how the 3D theoretical wake profile changes

when the kicker proton is moved to an off-axis position (with the modulator proton kept

on-axis), while Fig. 3 modifies this scenario assuming an off-axis modulator proton and an
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FIG. 2: Wake profiles for the peak electron current, an on-axis modulator proton (xm = ym = 0)

and an off-axis kicker proton with various, fixed, transverse positions (so that w1(z) = G(xk →

x1,xm → 0, z)). The results shown here are from 3D theory alone, with yk = 0 and xk/σx,k =

x1/σx,k = 0, 1.39, 2.78 (blue/red/green curves, respectively).

on-axis kicker ion counterpart. In both cases, as expected, transverse excursion significantly

diminishes the amplitude of the MBEC wake, as the off-axis protons sample a less intense

part of the cooler electron beam (leading to an attenuated interaction overall). In fact, a more

FIG. 3: Wake profiles for the peak electron current, an on-axis kicker proton (xk = yk = 0) and

an off-axis modulator proton with various, fixed, transverse positions (so that w2(z) = G(xk →

0,xm → x2, z)). As in Fig. 2, the results shown are from 3D theory alone, with (x2/σx,m, y2/σy,m) =

(0, 0), (1.17, 0), (0, 1.17), (1, 1) (blue/red/green/magenta curves, respectively).
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detailed numerical study of the fully mapped generalized wake verifies that the maximum

wake amplitude corresponds to the on-axis case. This allows one to quickly obtain a rough

estimate of the difference in cooling performance between the fully 3D and hybrid models

by simply comparing their respective on-axis wakes.

IV. CONCLUSIONS

In this note we have expanded on previous work in order to develop a rigorous, fully

three-dimensional, theory-based technique for the study of microbunched electron cooling,

including previously neglected effects such as the transverse motion of the electrons. A

Vlasov equation-based, frequency-domain method has been used to track the modulation of

the electron beam along the entire cooling lattice, allowing us to calculate and study the

generalized wake of the cooler (a key figure of merit). Good agreement is observed between

our theory and simulation-based approaches, and our results are - generally speaking - in line

with those from approximate but computationally faster models, a fact which validates the

performance estimates derived from the latter.
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