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Abstract

The Resonance Island Jump (RIJ) scheme for transition crossing in HSR (or the CERN
SPS [1, 2]) is radically new, and untested. Beam experiments in RHIC will be necessary if the
RIJ scheme is to be considered as a serious alternative to upgrading the first order linear jump
scheme currently implemented in RHIC [3]. This note outlines the planning and the theoretical
foundations that are necessary for such a beam experiment, perhaps to be performed in 2024.
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1 The potential for RIJ-related beam experiments in RHIC

1.1 Key parameters of interest

Stored beam is usually found on a closed orbit that repeats itself every turn, near the design trajectory
at the center of the beam pipe. A horizontal phase space portrait of the motion (including its nonlinear
distortions) is taken by developing a Poincaré surface of section, for example plotting (x, x′) turn-by-turn
for a set of interesting initial conditions. Small amplitude horizontal motion around that closed orbit is then
characterized by the closed orbit displacement and angle at a reference point, by Twiss parameters, tune,
chromaticity, and the transition gamma: xCO, x

′
CO, βx, αx, Qx, χx, and γT .

In an RIJ scheme, beam is trapped in a resonance island just before or after transition, so that horizontal
closed orbit motion repeats itself, exactly, every N turns. This note assumes that N = 4, with many
octupoles driving the resonance to first order in their strengths. In this case a Poincaré surface of section
that is taken every N turns shows how a set of individual particles that is trapped in a resonance island
circulates around an island center. All such trapped particles have a betatron tune of exactly Qx = 1/4 (or
3/4), even if they have a non-zero momentum offset, δ = ∆p/p. Each of the N islands is characterized by its
own local values – closed orbit and Twiss parameters – that apply at the reference point: xI , x

′
I , βI , and αI .

All of the islands have the same global parameters – island tune, island chromaticity, and island transition
gamma: QI , χI , and γTI .

A successful RIJ scheme will have very different on-axis and island transition gammas,

|γT − γTI | � 1 (1)

where the sign of the difference determines whether beam is kicked into or out of one or N resonance islands
at transition time, as illustrated in Figure 1. It may well be that the island chromaticity, defined by

χI ≡
dQI
dδ

(2)

must be acceptably small for an RIJ scheme to be successful, since a strong variation of QI with δ may
severely limit the momentum range of particles that can be trapped. In all cases the on-momentum island
tune QI is a parameter of crucial importance.

The three global parameters – QI , χI , and γTI – are of vital interest to beam experiments and simulation
studies. Do theoretical predictions, simulations, and beam experiments agree on their values? Only if they
agree can we confidently design a reliable RIJ scheme.

1.2 Adiabatically opening or closing resonance islands

A fast kicker must be used to move the beam between locations in phase space with sufficiently different
values of γT , as the beam accelerates through transition. Figure 1 illustrates how beam must either arrive at
transition already trapped in one or N islands, or must depart transition trapped in one island, depending
on the sign of γT − γTI . The desire to avoid the cost, complexity, and inefficiencies of performing two fast

time time

γγ

island γTI

island γTI on-axis γT

on-axis γT

beam beam

jumpjump

Figure 1: A single jump made with a fast kicker, as the beam γ accelerates through transition.
Left, γTI > γT : beam that was previously captured in one or N islands is kicked on-axis.
Right, γTI < γT : beam that was on-axis is kicked into a single island, in one turn.
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kicker jumps – one before and one after transition – can be met by adiabatically opening or closing the
islands, well before or long after transition.

Opening the islands adiabatically before transition crossing populates each one identically. This makes
it necessary to kick the beam back on-axis over N turns. In a very similar fashion the CERN-PS routinely
populates 4 islands in the Multiturn Resonance Extraction scheme, before kicking the beam into an extraction
channel [4, 5, 6, 7, 8, 9]. In contrast, the fast kicker can move all the beam into one island in a single turn
before transition, with later adiabatic closure, if γTI < γT .

Such a fast kicker, whether one-turn or N -turn, is not available for RHIC beam studies. Nonetheless,
RHIC beam studies could adiabatically open and close islands for measurements and observations, for ex-
ample during repeated beam stores at injection energy. This would enable QI and potentially χI to be
measured using externally applied tune modulation chirps, using techniques similar to those employed in the
E778 nonlinear beam dynamics experiment at the Tevatron. This is discussed further in Section 6, along
with the E778 data reduction techniques that also have potential for use in RHIC beam studies.

Beam that has been adiabatically trapped in N resonance islands could be accelerated through transition
in RHIC, enabling γTI to be measured directly. Thus, all three vital global quantities – QI , χI , and γTI –
may be measured in RHIC beam studies, without a fast kicker and without hardware changes to the current
RHIC configuration. Local measurements could also be made, for example using ionization profile monitors
and pairs of turn-by-turn capable beam position monitors. Turn-by-turn data could also be used to build
“Empirical Hamiltonians” [10].

1.3 Modulating the RHIC tune with transition jump quadrupoles

Section 6 shows how externally applied tune modulation chirps were used to measure QI values in the
E778 experiment. In a RHIC experiment such tune modulation could be provided (somewhat ironically) by
repurposing the transition jump quadrupoles themselves.

The horizontal tune shift due to a family of jump quads is

∆Q = K1L.
1

4π

∑

quads

β (3)

where the jump quad power supply strength

K1L = 1/f (4)

is the focal strength of a single quad [3]. A maximum current of ±50 A delivers ±1.5 Tm [11], so

K1L =
1.5

50 (Bρ)
. I (5)

for current I. For example, if RHIC beam studies are performed at a gold injection energy of approximately
10.0 GeV/u, with a rigidity of Bρ = 82.8 Tm, then

K1L [m−1] = 3.62× 10−4 . I [A] (6)

in all the quadrupoles driven in series by a single power supply.
The tune shift due to all the quadrupoles driven by a single power supply is

∆Q = 3.62× 10−4 . STM . I [A] (7)

where the RHIC Blue ring power supply tune modulation sensitivities

STM ≡ 1

4π

∑

quads

β (8)

are evaluated in Table 1, in transition optics with β∗ = 10 m in both planes at every IP [3]. Their values
fall in the relatively narrow range

14.6 m < STM < 17.8 m (9)
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Jump quad Tune modulation
power supply sensitivity

name STM [m]

bi1-qgt-ps 17.804
bo2-qgt-ps 14.602
bo3-qgt-ps 14.851
bi4-qgt-ps 14.750
bi5-qgt-ps 17.814
bo6-qgt-ps 14.615
bo7-qgt-ps 14.781
bi8-qgt-ps 14.828
bi9-qgt-ps 17.736

bo10-qgt-ps 14.596
bo11-qgt-ps 14.849
bi12-qgt-ps 14.769

Table 1: Jump quad power supply tune modulation sensitivities in the RHIC Blue ring in the 2023 layout
with β∗ = 10 m in both planes at every IP [3].

with an average value of
〈STM 〉 ≈ 16.0 m (10)

that delivers
∆Q ≈ 0.0058 . I [A] (11)

Typical large tune shifts of order 0.01 only require a current amplitude IAC of a couple of amps, where

I = IDC + IAC sin(2πft) (12)

and where frequencies as high as f = 100 Hz are desirable.
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2 Octupoles and detuning in RHIC and HSR
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Figure 2: A lattice with one octupole, and the octupole kick in horizontal normalized phase space (x̃, x̃′).

One-turn motion in a single octupole lattice is sketched in Figure 2, using some of the conventions and
definitions for physical, normalized and action-angle phase spaces that are stated in Appendix B. Starting
at an observation point just before the octupole, there is first an angular kick that in physical space is

∆x′ = −gpx3 (13)

where the integrated octupole strength gp has the dimension of m−3, if x is measured in meters. In normalized
phase space the octupole kick is

∆x̃′ = −gx̃3 (14)

where the normalized integrated strength g has the dimension of m−1, since

g = gpβ
2 (15)

One-turn motion after the kick is completed by a phase space rotation of

∆φ = 2πQ0 (16)

in normalized phase space, where Q0 is the tune of a particle with a vanishingly small oscillation amplitude.
The RHIC online model and MAD-X use the same convention to quantify the local octupole strength,

namely

K3 [m−4] =
1

(Bρ)

d3By
dx3

(17)

where the vertical field at displacement x is given by

By =
1

6

d3By
dx3

x3 (18)

The horizontal angular kick is

∆x′ = −ByL
(Bρ)

= −gpx3 (19)

where L = 0.583 m is the effective length of the octupole [11], showing that a thin octupole has physical and
normalized strengths

gp [m−3] =
L

6

1

(Bρ)

d3By
dx3

=
1

6
K3.L (20)

g [m−1] =
β2

6
K3.L

Equations 17 and 18 show that
d3By
dx3

[Tm−3] =
6

(0.025)3
B25 [T] (21)
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where B25 is the vertical field at a displacement of 25 mm. The integrated geometric octupole strength is

K3.L [m−3] =
L

(Bρ)

d3By
dx3

[m−3] (22)

at a given rigidity, or

K3.L [m−3] = 3.84× 105
L

(Bρ)
B25[T] (23)

Multipole Inductance Operating B-field at Effective Quench
current 25 mm B25 length current

mH A T m A

Decapole 5 59.0 0.016 0.575 202
Octupole 8 50.6 0.017 0.571 198
Quadrupole 29 49.8 0.067 0.555 190
Dipole 840 52.2 0.596 0.508 160

Table 2: RHIC arc corrector parameters [12]. All corrector power supplies are bipolar.

Table 2 lists the operating parameters of the octupoles and other arc correctors, as recorded in the RHIC
Configuration Manual [12]. The effective length and B25 value listed there yield an integrated strength
bipolar range of

(K3.L)range = ±3.728× 103

(Bρ)
[m−3] (24)

For example, gold rigidities at injection (10 GeV/u) and top storage energy (110 GeV/u) are (Bρ) = 82.8 Tm
and 914.8 Tm, respectively, with octupole strength ranges of

(K3.L)range = ±45.02 [m−3] injection (25)

= ± 4.08 [m−3] storage

Figure 3 shows the layout of the octupoles and their power supplies on either side of a typical RHIC Insertion
Region (IR).

2.1 The horizontal detuning coefficient κ

The kick sketched in normalized phase space in Figure 2 causes an additional phase advance of

∆φ = gã2 sin4(φ) (26)

= gã2
(

3

8
− 1

2
cos(2φ) +

1

8
cos(4φ)

)

The normalized amplitude ã is often constant to a good approximation for near-linear non-resonant motion,
in which case the amplitude and phase on turn n are

ãn ≈ ã = constant (27)

φn ≈ 2πQ0.n + φ0

Since the phase φn advances smoothly turn-by-turn, the trigonometric averages

〈cos(2φ)〉 ≈ 0 (28)

〈cos(4φ)〉 ≈ 0

apply as n → ∞ if Q0 is not a rational fraction. Combining Equations 26 and 28 shows that the average
additional phase advance per turn is

〈∆φ〉 = gã2
〈
sin4(φ)

〉
=

3

8
gã2 (29)
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Figure 3: Octupoles and their power supplies in RHIC. Top: IRs 2, 6 and 10. Bottom: IRs 4, 8 and 12.
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so the tune

Q = Q0 +
〈∆φ〉
2π

(30)

changes quadratically with amplitude according to

Q = Q0 +
3

16π
gã2 (31)

or linearly with action like

Q = Q0 +
3

8π
gJ (32)

The linear rate of change of Q with respect to J is quantified by the horizontal detuning coefficient

κ [m−1] ≡ dQ

dJ
(33)

which is

κ =
3

8π
g (34)

for a single octupole.
Thus the detuning coefficient due to a single octupole is

κ =
β2

16π
K3.L (35)

Performing a double sum over all octupoles driven by all power supplies gives

κ =
1

16π

∑

supplies

K3.L


 ∑

octupoles

β2


 (36)

where β is the horizontal Twiss function, and all octupoles have the same length L.

2.2 Detuning coefficient ranges in both planes

Except for this subsection, this note ignores vertical phase space, and so horizontal and vertical subscripts
x or y are usually unnecessary. For completeness, it is natural to briefly discuss the other two detuning
coefficients, and to estimate their strength ranges in both RHIC and HSR.

In octupole-dominated optics the horizontal and vertical tunes depend on the two actions like

Qx(Jx, Jy) = Qx0 + κxxJx + κxyJy (37)

Qy(Jx, Jy) = Qy0 + κxyJx + κyyJy

where the three independent detuning coefficients are

κxx =
1

16π

∑

supplies

K3.L


 ∑

octupoles

β2
x


 (38)

κxy =
−1

8π

∑

supplies

K3.L


 ∑

octupoles

βxβy




κyy =
1

16π

∑

supplies

K3.L


 ∑

octupoles

β2
y




in an extension of Equation 36. Simulations using the code Jenny [13] confirm these equations, by comparing
the quantitative prediction of the double sums with observations by tracking.
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Accel. Energy Octupole Octupole sums Detuning coefficient ranges
& optics count

∑
β2
x

∑
βxβy

∑
β2
y κxx κxy κyy

106m2 106m2 106m2 103m−1 103m−1 103m−1

RHIC injection 90 0.106 0.047 0.103 ±94.9 ±84.2 ±92.3
storage 0.115 0.050 0.108 ±9.3 ±8.1 ±8.8

HSR injection 137 0.200 0.116 0.321 ±179.1 ±207.8 ±287.5
storage 0.243 0.148 0.362 ±19.7 ±24.0 ±29.4

Table 3: RHIC and HSR detuning coefficient ranges. The HSR injection and stor-
age optics are hi-n-inj-101723-proton.bmad and hi-n/275-10-collision/hsr.bmad, with the layout
git#17e7f5e69c010f93d5be9cf027e71bec2495beed. The RHIC optics are derived from the Au23-100GeV-e0
lattices.

The octupole sums recorded in Table 3 are positive definite, while the power supply ranges quoted in
Equation 25 are bipolar, and so the range of available detuning coefficients in Table 3 are also bipolar. The
3 detuning coefficients are not independent, and so (for example) the peak positive values of κxx and κxy
can not be reached simultaneously, because of the minus sign in Equation 38. The octupole count in RHIC
includes only the 90 octupoles that are powered, ignoring the 11 octupoles per IR that Figure 3 shows are
un-powered. The count in the HSR is larger than in RHIC, despite the 19 octupoles that have been removed
from IR2 and IR6, because it assumes that all octupoles are powered.
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3 Motion close to the 1/4 resonance

Assume that the horizontal resonance of interest for RIJ studies has N = 4, so all particles have a tune

Q ≈ P

N
(39)

Strictly speaking the integer P is much larger than N , because the integer part of the tune is large. Often
the integer tune can be ignored, for example when measurements are made only at a single observation point,
once per turn. In that spirit P is taken to be 1 for the RIJ scheme, so that the fractional tune is

Q ≈ 0.25 (40)

It is also assumed that the dominant nonlinear magnets are octupoles. It is possible that the most useful
resonance will turn out to have N = 5, driven by decapoles, by sextupoles (as in the E778 experiment [14]),
or by both. The following development is readily modified for N 6= 4, if necessary. It can also be extended
from one to two transverse dimensions, if necessary [14, 15].

3.1 One-turn motion

The one-turn discrete Hamiltonian for octupole-dominated motion in action-angle space (J, φ) is

H1 = 2πQ0 J + V40 J
2 +

∑

k=2,4

V4kJ
2 sin(kφ+ φ4k) (41)

where V40, V42, and V44 are constant coefficients [14]. This Hamiltonian represents one-turn difference motion
– not differential motion – through the equations

∆φ =
∂H1

∂J
(42)

∆J = − ∂H1

∂φ

that are first order in octupole strength. This motion is not small, since for example

∆φ = φn+1 − φn ≈ 2πQ0 ≈
π

2
(43)

from one turn to the next. Consequently the numerical value of H1 is not in general close to being a constant
of the motion. It is usually not possible to intuit the motion by drawing contours of H1(J, φ) in action-angle
space.

3.2 Four-turn motion

The four-turn phase advance is large, with

∆φ = φn+4 − φn ≈ 4× 2πQ0 ≈ 2π (44)

but after a co-ordinate transformation from φ to ψ, where

ψn = φn − n
(

2π

N

)
= φn − n

(π
2

)
(45)

then the four-turn phase advance is small, since

∆ψ = ψn+4 − ψn ≈ 4× 2π

(
Q0 −

1

4

)
≈ 0 (46)
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The four-turn motion in (J, ψ) action-angle space is described by the Kobayashi Hamiltonian [14, 16]

H4 = 2π

(
Q0 −

1

4

)
J + V40 J

2 +
1

4

3∑

t=0

∑

k=2,4

V4kJ
2 sin(k(ψ + 2πQ0t) + ψ4k) (47)

where the sum in t counts through four turns. The net four-turn motion is then

∆ψ = 4
∂H4

∂J
(48)

∆J = − 4
∂H4

∂ψ

A map of the contours of H4 in (J, ψ) space restores a graphical understanding of the near-resonant motion,
because its numerical value is an approximate constant of the motion.

Although the range of ψ is still broad

−∞ < ψ < ∞ (49)

it is convenient to plot the four-turn motion (J, ψ)4n [or (a, ψ)4n or (ã, ψ)4n] within the restricted range

0 < ψrestricted < 2π (50)

This achieved by defining the plotted phase to be

ψrestricted ≡ ψ −M(2π) (51)

where M is an integer that may be negative.
The outer sum in Equation 47 is removed by using the trigonometric identity

3∑

t=0

sin (A+Bt) ≡ sin (2B)

sin (B/2)
sin (A+ 2B) (52)

so that

H4 = 2π

(
Q0 −

1

4

)
J + V40 J

2 +
∑

k=2,4

V44kJ
2 sin(kψ + ψ44k) (53)

where

V44k ≡
sin (4kπQ0)

4 sin (kπQ0)
V4k (54)

and
ψ44k = φ4k + 4kπQ0 (55)

An important property of Equation 54 is that

V44k ≈ V4k if mod (k, 4) = 0 (56)

V44k � V4k if mod (k, 4) 6= 0

to a good approximation, provided that ∣∣∣∣Q0 −
1

4

∣∣∣∣ �
1

π
(57)

so that

V444 ≈ V44 (58)

V442 ≈ 0

After substitution into Equation 53 the general four-turn Kobayashi Hamiltonian in (J, ψ) space becomes

H4(J, ψ) = 2π∆QJ + V40 J
2 + V44 J

2 sin(4ψ + ψ444) (59)

12



where the shorthand notation

∆Q = Q0 −
1

4
(60)

is introduced for convenience. There are only 4 control parameters: ∆Q,V40, V44, and ψ444. When it is also
assumed for convenience, below, that

ψ444 = π/2 (61)

so that
sin(4ψ + ψ444) = cos(4ψ) (62)

then the four-turn Kobayashi Hamiltonian in (J, ψ) space is further simplified, becoming

H4(J, ψ) = 2π∆QJ + V40 J
2 + V44 J

2 cos(4ψ) (63)

with only 3 control parameters: ∆Q,V40, and V44. (General values of ψ444 are considered later, in Section 4.)

3.3 Four-turn detuning

The four-turn phase advance in ψ is found by differentiating H4(J, ψ) with respect to J (see Equation 48),
so that

ψn+4 − ψn = 4

(
2π

(
Q0 −

1

4

)
+ 2V40J + 2V44J cos(4ψ)

)
(64)

while the four-turn betatron phase advance in φ is

φn+4 − φn = 4 (2πQ0 + 2V40J + 2V44J cos(4φ)) (65)

where the identity
cos(4ψ) = cos(4φ) (66)

has been used. In other words the two four-turn phase advances are related through

φn+4 − φn = 8πQ0 + (ψn+4 − ψn) (67)

≈ 8πQ0

where the approximation is valid because the rate of advance in ψ is small, by construction.
Tune is the average phase advance per turn (divided by 2π) as turn number goes to infinity,

Q ≡ 1

2π
(φn+t − φn) (68)

t → ∞

or, in this particular case, it is the average phase advance per four-turn (divided by 8π)

Q ≡ 1

4

1

2π
〈φn+4 − φn〉 (69)

where the average 〈〉 is taken over very many four-turns. In the non-resonant approximation that J is almost
constant then tune is a function of the average action, and substitution of Equation 64 gives

Q(J) = Q0 +
1

π
〈V40J + V44J cos(4ψ)〉 (70)

Since the ψ values experienced over very many four-turns are evenly distributed in the range 0 to 2π (still
in the non-resonant approximation), then

〈V40J〉 ≈ V40J (71)

〈J cos(4ψ)〉 ≈ J 〈cos(4ψ)〉 ≈ 0
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and the tune varies with action simply as

Q(J) = Q0 +
V40
π

J (72)

with a detuning coefficient of

κ =
V40
π

(73)

Comparing this with Equation 36 shows that the detuning coefficient in the Hamiltonian H4 is

V40 = πκ =
1

16

∑

supplies

K3.L


 ∑

octupoles

β2


 (74)

where each power supply drives many octupoles, and β is the horizontal Twiss function.
The detuning coefficient V40 is a scalar sum over all octupoles – see above. In contrast, the resonance

driving coefficient V44 is the total length of a vector that is a vector sum over all octupoles – see below.

3.4 The action of the fixed point at the center of a resonance island

The action JFP of the stable fixed point at the heart of a resonance island is found by solving the equation

Q(JFP ) =
1

4
(75)

which gives

JFP = − π

V40
∆Q (76)

after using Equation 72. The corresponding resonance amplitudes in normalized and physical spaces are

ãFP =
√

2JFP =

(
− 2π

V40
∆Q

)1/2

(77)

aFP =
√
β ãFP =

(
−2πβ

V40
∆Q

)1/2

where β is the Twiss function at the observation point. Clearly there is no fixed point if Q0 is on the wrong
side of the resonance: V40 and ∆Q must have opposite signs.

3.5 Standard map motion around the island center

The average four-turn phase advance is zero when J = JFP at the island center. At actions near JFP each
individual four-turn phase advance is approximately

ψn+4 − ψn ≈ 8V40(J − JFP ) (78)

where terms in ψ (which average to zero over time only in the non-resonant approximation) are temporarily
ignored. This phase motion is represented by an approximate Hamiltonian

H4(I) ≈ V40 I
2 (79)

where the action offset from the island center

I = J − JFP � JFP (80)

is assumed to be small. So long as the islands are small (so that Equation 80 remains true for all trajectories
of interest) it turns out that four-turn motion is well represented by the resonance Hamiltonian

HR(I, ψ) = V40 I
2 + V44J

2
FP cos(4ψ) (81)
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Figure 4: The separatrix contours of a 4-island chain with the resonance Hamiltonian given by Equation 81.
Comparing HR values at (ψ, I) = (0, 0) and (π/4, IHW ) enables the calculation of the island half-width IHW .

This is identical (within constants) to the “standard map” Hamiltonian that describes a pendulum, RF
buckets, and many other nonlinear systems.

There are 4 stable and 4 unstable fixed points at the local minima and maxima of HR, with

IFP = 0 (82)

cos(4ψFP ) = +1 unstable

cos(4ψFP ) = −1 stable

where V40 and V44 are assumed to have the same sign. The resonance island centers therefore have fixed
point phases at

ψFP =
π

4
,

3π

4
,

5π

4
,

7π

4
(83)

as illustrated in Figure 4. Stable fixed points become unstable, and vice versa, if V40 and V44 have different
signs.

3.6 Resonance island width

Unstable motion launched very slightly above the unstable fixed point at

(I, ψ) = (0, 0) (84)

reaches all values of phase ψ, traveling just outside the separatrix contours that skirt the island chain. This
is illustrated in Figure 4, where it is implicitly assumed that V40 and V44 have the same sign. The island
half width IHW is calculated by equating the values of HR on the separatrix at the stable and unstable fixed
point phases

HR(0, 0) = HR

(
IHW ,

π

4

)
(85)

Substitution into Equation 81 shows that

V44J
2
FP = V40I

2
HW − V44J

2
FP (86)

and leads to the prediction that the island half-width

IHW =

(
2V44
V40

)1/2

· JFP (87)

is linear in JFP . Clearly the ratio V44/V40 is very important! Using Equation 76 the island half width
becomes

IHW = π

∣∣∣∣
2V44
V 3
40

∣∣∣∣
1/2

|∆Q| (88)
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in terms of the 3 control parameters, ∆Q,V40, and V44, no matter what their signs (except that ∆Q and V40
have opposite signs). In terms of the detuning coefficient κ this becomes

IHW =

∣∣∣∣
2V44
πκ3

∣∣∣∣
1/2

|∆Q| (89)

Continuing to assume that the islands are relatively small

IHW � JFP (90)

then it is reasonable to approximate the normalized and physical space half widths to be

ãHW ≈
(

1

2JFP

)1/2

· IHW (91)

aHW ≈
(

β

2JFP

)1/2

· IHW

respectively, where β is the Twiss function at the observation point.

3.7 Resonance island tunes

Four-turn difference motion near the resonance is described by differentiating HR

ψn+4 − ψn = 4
∂HR

∂I
(92)

In+4 − In = −4
∂HR

∂ψ

Since this four-turn motion is small (by construction), it is reasonable to use a differential approximation

dψ

dt
= 2V40 · I (93)

dI

dt
= 4V44J

2
FP · sin(4ψ)

in which time t is continuous – it is not an integer, but increases by 4.0 every 4 turns.
Small oscillations close to a stable fixed point at phase ψFP , with

∆ψ = ψ − ψFP � 1 (94)

allow the approximation
sin(4ψ) ≈ −4∆ψ (95)

to be made. This leads to two first order linear differential equations of motion

d(∆ψ)

dt
= 2V40 · I (96)

dI

dt
= −16V44J

2
FP ·∆ψ

Since
d2I

dt2
= −16V44J

2
FP ·

d(∆ψ)

dt
(97)

then these two first order equations lead to a single second order differential equation in I

d2I

dt2
+ (32V40V44J

2
FP ) · I = 0 (98)
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that describes simple harmonic motion, with a solution

I = aI cos(2πQIt) (99)

ψ − ψFP = aψ sin(2πQIt)

Differentiating Equation 99 twice gives

d2I

dt2
+ (2πQI)

2.I = 0 (100)

showing that the island tune is

QI =
1

π
(8V40.V44)1/2 · JFP (101)

Here, as before, it is assumed that V40 and V44 have the same sign. This predicts that QI is linear in JFP
as ∆Q is scanned at fixed octupole strengths.

Using Equation 76 to eliminate JFP the island tune becomes

QI =

∣∣∣∣
8V44
V40

∣∣∣∣
1/2

· |∆Q| (102)

in terms of the 3 control parameters, ∆Q,V40, and V44, no matter what their signs (except that ∆Q and V40
have opposite signs). Alternatively, in terms of the detuning coefficient κ this becomes

QI =

∣∣∣∣
8V44
πκ

∣∣∣∣
1/2

· |∆Q| (103)

Insofar as V40 and V44 can be tuned independently, the former controls the detuning and the latter controls
the strength of the island.

Equation 103 [or 89] can be inverted to deliver V44 as a function of (∆Q,QI , κ) [or (∆Q, IHW , κ)]. In the
same spirit that V40 can be considered to be a knob that delivers the more fundamental detuning quantity
κ, the more fundamental complete set of control variables may be considered to be (∆Q,QI , κ) – two tunes
and one tune slope.
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4 Evaluating the resonance driving vector V̄44

The action changes over four turns by

∆J = −4
∂H4

∂ψ
(104)

according to Equation 48, where the action angle co-ordinates at the observation point are (J, ψ) at the
beginning of the four turns [14, 15]. Differentiating the general four-turn Hamiltonian H4 in Equation 59
shows that the change in action over four turns is

∆J = −16 V44 J
2 cos(4ψ + ψ444) (105)

Given a set of octupoles of different normalized strengths g [m−1] at locations with horizontal betatron
phases θ downstream of the observation point, what are the values of V44 and ψ444?

4.1 One octupole, one turn

Figure 5 illustrates how one octupole changes the action from J0 to J1 on the first of four turns. The
normalized displacement and angle just before the kick are

x̃0 = ã0 sin(ψ0 + θ) (106)

x̃′0 = ã0 cos(ψ0 + θ)

and just after are

x̃1 = x̃0 (107)

x̃′1 = x̃′0 − g x̃30

with a new normalized amplitude of

ã1 =

√
x̃21 + x̃′

2

1 (108)

Careful consideration of Figure 5 shows that the change in normalized amplitude is

∆ã = −g ã30. sin3(ψ0 + θ) cos(ψ0 + θ) (109)

to first order in octupole strength g, with a corresponding change in action of

∆J =

(
dJ

dã

)
.∆ã = ã.∆ã (110)

since

J =
1

2
ã2 (111)

x̃0

x̃
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Figure 5: Change of action in the first turn of a trajectory launched with (J0, ψ0), due to one octupole of
strength g at a location with a phase advance of θ downstream from the observation point.
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In purely action angle co-ordinates the one-turn change in action is therefore

∆J = −4gJ2
0 . sin

3(ψ0 + θ) cos(ψ0 + θ) (112)

to first order in g. This is simplified into harmonics

∆J = −4g J2
0 .

[
1

4
sin(2(ψ0 + θ))− 1

8
sin(4(ψ0 + θ))

]
(113)

by applying the identity

sin3(A) cos(A) ≡ 1

4
sin(2A)− 1

8
sin(4A) (114)

Nonetheless, we’re interested in the change in action due to many octupoles over four turns, not due to one
octupole over one turn.

4.2 Many octupoles, four turns

The net change in action over four turns, from n = 0 to 3, is

∆J = −4g J2
0

3∑

n=0

[
1

4
sin(2(ψ0 + θ + nπ/2))− 1

8
sin(4(ψ0 + θ + nπ/2))

]
(115)

since the net phase advance from the observation point to an octupole increases by (approximately) π/2 per
turn. This is simplified by recognizing that

3∑

n=0

sin(2(A+ nπ/2)) = 0 (116)

3∑

n=0

sin(4(A+ nπ/2)) = 4 sin(4A)

so that
∆J = 2g J2. sin(4ψ0 + 4θ) (117)

over four turns, always assuming that g is small and the tune Q0 is very close to one quarter. Comparing
Equation 105 to Equation 117, using the identity

cosA ≡ sin(A+ π/2) (118)

and referring to Equation 20 shows that

V44 = −g
8

= −β
2

48
(K3.L) (119)

ψ444 = 4θ − π/2

for a single octupole of normalized strength g at a horizontal phase θ downstream of the observation point.
Vectors must be added when many octupoles are present. The resonance driving vector

~V44 ≡ V44

(
sin(ψ444)
cos(ψ444)

)
= − 1

48

∑

supplies

K3.L


 ∑

octupoles

β2

(
sin(4θ − π/2)
cos(4θ − π/2)

)
 (120)

is found by summing over all octupoles driven by all power supplies. Finding the length and angle of ~V44 is
the last step in evaluating V44 and ψ444. The octupole power supply strengths K3.L are played off against
each other to deliver desirable values of V44 and ψ444, during the design of the resonance islands – their
phase locations, their widths, and their island tune QI .
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4.3 Resonance driving sensitivity vectors ~SPS

The resonance driving vector is conveniently rewritten in terms of resonance driving sensitivity vectors as

~V44 =
∑

supplies

(K3.L) ~SPS (121)

in order to focus on the power supply strengths K3.L. The sensitivity vector for each power supply

~SPS = SPS

(
sin(ψPS)
cos(ψPS)

)
=

∑

octupoles

−β2

48

(
sin(4θ − π/2)
cos(4θ − π/2)

)
(122)

is found by summing over all the octupoles that it drives. Table 4 quantifies the lengths and angles of all 24
octupole island sensitivity vectors. The F-octupole power supplies (driving octupoles at locations with large
values of β ≈ 50 m) are much more effective than the D-octupole power supplies (with β ≈ 10 m).

Octupole power Island sensitivity

supply name vector ~S44

SPS [m−1] ψPS [rad]

F-octupoles
bi1-octf 86.762994 3.747207
bo2-octf 185.812956 1.130666
bo3-octf 43.629200 0.558871
bi4-octf 170.830969 3.591007
bi5-octf 90.083822 2.172908
bo6-octf 185.455997 -0.480507
bo7-octf 45.648757 -1.115900
bi8-octf 169.933786 1.440566
bi9-octf 86.459064 -0.123419
bo10-octf 185.530087 3.507139
bo11-octf 45.164195 2.848658
bi12-octf 170.999513 -0.905556
D-octupoles
bi1-octd 8.905996 3.770398
bo2-octd 11.104991 4.516711
bo3-octd 4.889683 -1.392257
bi4-octd 6.796010 0.328991
bi5-octd 9.257270 2.256010
bo6-octd 11.117783 2.916802
bo7-octd 4.820819 3.223661
bi8-octd 6.313916 4.486214
bi9-octd 8.374727 -0.082642
bo10-octd 10.990071 0.609628
bo11-octd 4.751588 0.882171
bi12-octd 6.289794 2.115453

Table 4: Octupole power supply island sensitivities ~SPS in stepstone Au23-100GeV-e0::injection of the
Blue injection lattice used during 100 GeV/u gold operations in 2023. Even the weakest F-octupole family
is about 4 times stronger than the strongest D-octupole family.

Figure 6 shows all 12 F-octupole family island sensitivity vectors, but no D-octupole vectors. The vectors
in odd-numbered RHIC sectors are significantly shorter than those in even-numbered sectors. Red vectors,
labeled bA, bB, and bC, represent the total effect of pairs of power supplies – bo2 and bi8, bi4 and bo10,
and bo6 and bi12 – (which have vectors that are close to parallel) when they are powered at exactly the
same strength. These three ‘effective’ power supplies are spaced in phase by approximately 120 degrees, as
listed in Table 5, showing that all net phases are accessible.
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Figure 6: Octupole power supply island sensitivity vectors ~SPS in stepstone Au23-100GeV-e0::injection
of the Blue injection lattice used during 100 GeV/u gold operations in 2023. Only the F-octupole vectors
are shown: they are much longer than the D-octupole vectors (see Table 4). Green vectors represent the
relatively small sensitivities in odd-numbered RHIC sectors. Red vectors represent the ‘effective’ power
supplies bA, bB, and bC.

Effective power Island sensitivity

supply name vector ~S44

SPS [m−1] ψPS [rad]

bA 351.5 1.2786
bB 356.0 3.5473
bC 348.4 5.5989

Table 5: Island sensitivities ~SPS for the three effective octupole power supplies bA, bB, and bC in stepstone
Au23-100GeV-e0::injection of the Blue injection lattice used during 100 GeV/u gold operations in FY23.
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5 Ramping and modulating the tune

Sinusoidal tune modulation is parameterized in general by q and QM , where the (zero action) betatron tune
varies with time like

Q0 = Q00 + q sin(2πQM t) (123)

Here q is the tune modulation amplitude or depth, QM is the tune modulation tune, and t is turn number.
This section discusses the radically different dynamical responses in different partitions of tune modulation
parameter space (q,QM ), displaying

1. Amplitude modulation

2. Frequency (or phase) modulation

3. Strong synchrobetatron sidebands

4. Widespread chaos

Tune modulation occurs naturally for a particle oscillating longitudinally with an off-momentum amplitude
of δ̂ when the chromaticity χ is non-zero. In that case the amplitude and tune are

q = χ δ̂ (124)

QM = Qs

where Qs is the synchrotron tune. Tune modulation can also be introduced externally as part of an ex-
perimental technique to measure island tunes, as discussed in Section 6. For example, sinusoidally driven
transition jump quads can be used to introduce tune modulation over a limited range of q and QM , as
discussed in Section 1.3.

5.1 Slow linear tune ramps

If the tune is ramped slowly at a constant rate of Q̇, so that on turn t

Q0 = Q00 + Q̇ t (125)

then the four-turn resonance Hamiltonian of Equation 81 becomes

HR(I, ψ) = 2πQ̇t I + V40 I
2 + V44J

2
FP cos(4ψ) (126)

where JFP (the action of the island center at t = 0) is a constant [14]. The slowly moving fixed point action
offset IFP is found at any t by solving for

∂HR

∂I
= 0 (127)

so that

IFP = −
(
πQ̇

V40

)
t ≡ −ζ t (128)

The explicit time dependence in the Hamiltonian is reduced to second order in the small quantity ζ by
performing a canonical transformation from (I, ψ) to (Ī , ψ̄) [17], using the generating function

W1(I, ψ̄, t) = I ψ̄ + ζ t ψ̄ (129)

so that

Ī ≡ ∂W1/∂ψ̄ = I + ζ t (130)

ψ ≡ ∂W1/∂I = ψ̄ (131)

H̄R ≡ HR + ∂W1/∂t = HR + ζψ̄
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The new action variable Ī is the action displacement from the moving fixed point, while the angle variable
is unchanged.

The new Hamiltonian is no longer periodic in the angle ψ̄

H̄R = V40 Ī
2 + V44J

2
FP cos(4ψ̄) + ζψ̄ − V40ζ2t2 (132)

and only has stable fixed points if there is a solution to

∂H̄R

∂ψ̄
= 0 (133)

that is, if ∣∣∣Q̇
∣∣∣ < 4

π
V40V44J

2
FP (134)

This is analogous to longitudinal motion during acceleration, in which the stable RF buckets shrink and
become shaped like tear drops as the acceleration rate increases, or even disappear all together.

5.2 Slow sinusoidal tune modulation

If the tune modulation is slow enough
QM � QI (135)

then sinusoidal oscillations are equivalent to adiabatically varying the linear ramp rate in the range

− 2π q QM < Q̇ =
dQ

dt
< 2π q QM (136)

Substituting these extreme values of Q̇ into Equation 134 and comparing with Equation 101 shows that
particles are only adiabatically trapped in resonance islands of order N if

q QM <
Q2
I

N
(137)

Resonance islands in this (weak and slow) partition of tune modulation parameter space move to larger and
smaller amplitudes at constant phase – displaying amplitude modulation.

5.3 Rapid sinusoidal tune modulation

The response to rapid sinusoidal tune modulation is modeled, first, by explicitly including it in a time-
dependent version of the time-independent resonance Hamiltonian of Equation 81

HR(I, ψ) = 2π q sin(2πQM t) I + V40 I
2 + V44J

2
FP cos(4ψ) (138)

This Hamiltonian is then canonically transformed using another generating function [17]

W2(I, ψ̄, t) = ψ̄ I +
q

QM
cos(2πQM t) I (139)

so that

Ī = I (140)

ψ = ψ̄ +
q

QM
cos(2πQM t) (141)

H̄R = HR − 2π q sin(2πQM t)

The new action Ī is unchanged, the new angle ψ̄ is sinusoidally modulated with respect to the old angle,
and the new four-turn resonance Hamiltonian

H̄R(Ī , ψ̄) = V40 Ī
2 + V44J

2
FP cos

(
4ψ̄ +

4q

QM
cos(2πQM t)

)
(142)
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has a tune modulation term inside the cosine argument. When the identity

cos(A + B cos(C)) =

∞∑

k=−∞
Jk(B) cos(A+ kC) (143)

is used to introduce an infinite sum over Bessel functions Jk, the Hamiltonian at last displays synchrobetatron
behavior

H̄R(Ī , ψ̄) = V40 Ī
2 + V44J

2
FP

∞∑

k=−∞
Jk

(
4q

QM

)
cos(4ψ̄ + k 2πQM t) (144)

(Beware the potential for notational confusion – is J an action or a Bessel function?)
If a test particle has an action close to

Īk = k

(
πQM
4V40

)
(145)

where k is any integer, then the betatron tune is close to the k’th synchrobetatron sideband tune of

Q(Īk) =
1

N
+ k

(
QM
N

)
(146)

If so, the net phase advance over N = 4 modulation periods is small. Assuming that the modulation period

M = 1/QM (147)

is a large integer, then all of the harmonic terms in Equation 144 except one disappear in going to the k’th
type of 4M -turn Hamiltonian,

H̄4Mk = V40 (Ī − Īk)2 + V44J
2
FP . J−k

(
4q

QM

)
cos(4ψ̄) (148)

due to the same kind of averaging that occurs when deriving the 4-turn Hamiltonian of Equation 59. Just
as that Hamiltonian properly describes motion only over every 4 turns, this Hamiltonian H̄4Mk represents
synchrobetatron motion over every 4M turns. This is the appropriate time span to use in a Poincaré surface
of section representation of the motion.

Crucially, the averaging is only valid if not much happens in 4M turns – that is, if

QM � QI (149)

Resonance islands in this (fast) partition of tune modulation parameter space remain at constant amplitude
but oscillate in phase – displaying frequency or phase modulation. This partition may also exhibit multiple
strong synchrobetatron island chains, if the amplitude q is large enough – see below.

5.4 Synchrobetatron sidebands and islands

Each 4M-turn Hamiltonian H̄4Mk generates a chain of four synchrobetatron islands – one chain for every
integer k. Chains with large enough values of |k| have inconsequentially small islands. Nonetheless sideband
islands with non-zero values of k are comparable in size to the primary island chain with k = 0 in some parts
of tune modulation parameter space (q,QM ).

Mathematically, the strong suppression of sidebands with too-large values of |k| occurs because of the
Bessel function approximations

Jk(A) ≈
(

2
πA

)1/2
cos
(
A− kπ

2 − π
4

)
if A > k > 0 (150)

≈ 0 if A < k

In the case at hand the argument for resonance order N is

A =
Nq

QM
(151)
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so that the k’th Bessel function is approximated by

Jk

(
Nq

QM

)
≈

(
2QM

πNq

)1/2
cos
(
Nq
QM
− kπ

2 − π
4

)
if

Nq

QM
> |k| (152)

≈ 0 if
Nq

QM
< |k|

Thus, sidebands of positive or negative order k are significant in size only over the range

− Nq

QM
< k <

Nq

QM
(153)

In particular, only the fundamental k = 0 islands are large compared to the other sideband islands if

q <
QM
N

(154)

Physically, the motion of a test particle is almost unperturbed if its tune modulation amplitude q is too
small for it to periodically sweep across the rational fraction tune (e.g. 1/4) of the primary resonance.

5.5 Synchrobetatron sideband overlap

The half-width of the synchrobetatron islands in sideband chain k

IHWk = π

∣∣∣∣J−k
(
Nq

QM

)
.
2V44
V 3
40

∣∣∣∣
1/2

|∆Q| (155)

is closely related to the half-width without modulation – see Equation 88. When the sidebands are strong
the upper approximation in Equation 152 applies, and the islands have a half-width of order

IHWk ∼ π

∣∣∣∣
2QM
πNq

∣∣∣∣
1/4 ∣∣∣∣

2V44
V 3
40

∣∣∣∣
1/2

|∆Q| (156)

after neglecting the cosine factor in the approximation.
Large scale chaos is visible in a Poincaré surface of section when the sidebands overlap – when the action

separating two neighboring sidebands

∆Īk =
πQM
4V40

(157)

(see Equation 145) is smaller than their total width

∆Īk < IHWk + IHW (k+1) (158)

The approximate condition for sideband overlap and massive chaos becomes

Q
3/4
M (Nq)1/4 <

4

π1/4
QI (159)

after using Equation 102 and the approximation of Equation 156.

5.6 Dynamical partitions in tune modulation parameter space

Particle responses are radically different in the four different partitions of tune modulation parameter space
(q,QM ) that are sketched in Figure 7 for resonance order N = 4. The three boundaries separating these
four partitions

(
q

QI

) (
QM
QI

)
=

1

N
Amplitude modulation ↔ chaos (160)

(
q

QI

) (
QM
QI

)−1
=

1

N
Phase modulation ↔ strong sidebands

(
q

QI

)1/4(
QM
QI

)3/4

=
4

(Nπ)1/4
Strong sidebands ↔ chaos
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that are derived from Equations 137, 154, and 159 are only approximate. Numerical and beam studies
confirm the broad separation of responses into four partitions, but with boundaries that show a significant
amount of fine structure [15].

The boundaries of Equation 160 show that the more fundamental parameters are q/QI and QM/QI – the
tune modulation parameters scaled by QI [18, 14]. These boundaries apply no matter what the resonance
source (beam-beam or magnetic), and no matter what the tune modulation source (chromatic or external).
The universality of this behavior further emphasizes the crucial role played by the island tune, QI .

10-2 10-1 100 101 102

Tune modulation tune,  QM/QI

10-2

10-1

100

101

102
Tu

ne
 m

od
ul

at
io

n 
am

pl
itu

de
,  

q/
Q

I Strong 
sidebandsChaos

Amplitude 
modulation

Phase 
modulation

BA

Figure 7: Dynamical partitions in tune modulation parameter space for an N = 4 resonance. Equation 160
shows that the more fundamental parameter space (q/QI , QM/QI) is scaled by QI , emphasizing the crucial
role played by the island tune. Detailed numerical and beam studies show a lot of fine structure – the
boundaries are only approximate. The island tune can be measured by chirping an external source of tune
modulation, for example scanning from A to B.

The boundaries between dynamical partitions can be explored by first placing beam into a resonance
island, and then applying an externally controlled tune modulation. Turn-by-turn Beam Position Monitors
observe a “persistent signal” with a strong signal at the resonance tune 1/N , if much (or all) of the beam is
trapped in a resonance island. This persistent signal is destroyed if tune modulation is then turned on with
(q,QM ) parameters in the region labeled “chaos” in Figure 7. The island tune QI can then be inferred by
recording the parameters at which the signal is lost. Confirming the agreement between resonance strength
prediction and beam measurement is a crucial step in evaluating an RIJ scheme for HSR.

For example, the tune modulation frequency QM can be chirped across the chaos region at a constant
small amplitude

q � QI (161)

as illustrated by going from A to B in Figure 7. This has the advantage of requiring only weak AC quadrupoles
(or their equivalent) to measure QI with significant precision. It also illustrates how dipole or quadrupole
power supply ripple harmonics at tunes close to QI can introduce chaos, if such resonances are present. Of
course, other trajectories in (q,QM ) space can also destroy a persistent signal and measure QI , if convenient.

RHIC currently does not include purpose-built AC quadrupoles that can be used as an external source
of tune modulation that can be used to measure island tunes. Some tune modulation capability is provided
by re-purposing the transition jump quadrupoles, as discussed in section 1.3.

26



6 Tune modulation and data reduction techniques

The dynamics of a metastable beam of particles trapped in artificially excited resonance islands were studied
in the Tevatron in the late 1980’s and early 1990’s, as part of the Fermilab E778 nonlinear beam dynamics
experiment [15, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Similar studies could be performed in RHIC, to investigate
the potential of the RIJ scheme for transition crossing in the HSR.

Figure 8: Simulated structure of horizontal phase space in the Tevatron with a tune Qx ≈ 2/5, as distorted
by fourteen strong sextupoles that drove the N = 5 resonance islands [27].

The structure of horizontal phase space in one of the many configurations of the E778 experiment is
shown in Figure 8. In this case 14 of the Tevatron sextupoles were powered much more strongly than the
other chromaticity sextupoles, although with no net change to the horizontal and vertical chromaticities.
These sextupoles drove N = 5 resonance islands when the base horizontal tune Q0 was slightly less than
2/5, because the horizontal tune increased with amplitude a (in mm) according to

Qx = Q0 + 0.000237 a2 (162)

Every 120 seconds a single bunch of about 1010 protons was injected into the Tevatron and stored, enabling
data to be taken repeatedly with a 2 minute cycle time. The beam was kicked horizontally with a typical
amplitude of around 4 mm after about 10 seconds, when the injection transients had died down. Most of the
beam was trapped in one of the 5 resonance islands that are located with horizontal phases of approximately

φ = φ0 + n
2π

5
(163)

where the integer n runs from 1 to 5. The trapped beam jumped from island to island, advancing two
islands every turn of the accelerator, in a pattern that repeated every 5 turns. The trapped beam did not
filament, and so delivered a coherent turn-by-turn “persistent” signal that was observed on two horizontal
beam position monitors that were separated in phase by about 90◦.

A typical set of raw persistent signal data, from one of the beam position monitors, is shown in Figure 9
for 64,000 turns, or about 1.4 seconds. Tune modulation was turned on at 9,000 turns, becoming visible as
an amplitude modulation of the islands at about 28,000 turns. The persistent signal started dropping dra-
matically at about 32,000 turns, eventually driving all of the trapped beam out of the resonance island. This
signal decay occurred due to a tune modulation chirp that was externally driven by iron-free quadrupoles.
These quadrupoles were originally used in a tune feedback loop when the Tevatron operated in a slow ex-
traction (fixed target) mode. The ripples that are clearly visible between 30,000 and 50,000 turns indicate
the increasing frequency of the chirp.
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Figure 9: Raw digitized signals of a beam position monitor, showing a persistent signal and its response to
a tune modulation chirp from (q,QM ) = (0, 0) to (q,QM ) = (0.0102, 0.0031). The nonzero average initial
value is due to a closed orbit offset [27].

6.1 Data analysis and a summary of E778 results

The analysis of raw persistent signal data is illustrated in Figure 10 for a different data set, also with a tune
modulation chirp, over about 5 seconds. Fourier analysis of the raw beam position monitor data showed a
dominant peak at exactly Qx = 0.4, with an amplitude that represented the size of the islands under the
assumption that the island was evenly filled with protons. The amplitude of the Qx = 0.4 peak shown in
the waterfall plot on the left of Figure 10 is shown on the right as a function of time. The disappearance of
the persistent signal amplitude at about 170,000 turns (3.6 seconds) indicates that the boundary between
the amplitude modulation and chaos partitions was crossed at that time.
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Figure 10: Analysis of the effect of a tune modulation chirp on raw persistent signal data in E778. Left: A
waterfall plot of a sequence of Fourier analyses of a persistent signal, showing signal loss during the chirp [25].
Right: Evolution of the Qx = 2/5 Fourier peak during the chirp.
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Figure 11: Determining that the island tune is QI = 0.0063 by locating the boundary between the amplitude
modulation and chaos partitions in (q,QM ) space [15, 27]. Left: Boundary measurements for each of four
chirp trajectories, derived from the signal decay rates. Right: The decay rate of the persistent current signal
as a function of the tune modulation tune QM , and multi-particle simulation results (solid line).

The universal model that predicts the partitions in (q,QM ) space, shown in Figure 7, has only a single
free parameter, the island tune QI . Thus, locating one or more of the partition boundaries enables QI to
be inferred, in a best fit to the data. This is illustrated in Figure 11 for four data sets with different chirp
trajectories, including the data set shown in Figure 10. The four oval symbols in the left sub-plot mark
the locations at which the persistent signal was completely lost, for each of the chirp trajectories that pass
through them. The four boundary markers are well fit by an island tune of QI = 0.0063. Unfortunately the
other partition boundaries – at higher amplitudes and higher frequencies – were not readily accessible in the
E778 experiment, limited by the inductance of the tune modulation quadrupoles.
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Figure 12: Locating the boundaries in (q,QM ) space by simulation, with a known island tune QI ≈ 0.004
and N = 4. The left and right plots are the same data; left is log-log axis scaling, right is linear-linear axis
scaling. Each small blue circle represents a simulation at constant QM in which q is gradually increased until
the fixed point is lost in a sea of chaos.
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6.2 Fine structure in the partition boundaries

The solid line in the right sub-plot of Figure 11 represents simulation results obtained by tracking an
evenly populated island, under the influence of identical experimental conditions and applying identical
data reduction techniques. Both E778 data and such simulation results showed evidence of structure at
modulation tunes QM below the island tune. It was speculated that these features were due to parametric
modulation of the resonance strength, leading to Mathieu (parametric) resonances at a family of modulation
tunes given by

QM =
2QI
n

(164)

for any integer n [25, 26].
The single particle tracking results shown in Figure 12 support this speculation, using a very simple

lattice with a linear phase advance and a single octupole to drive both detuning and an N = 4 resonance
to first order. These results are similar to those previously published [15] from an octupole/decapole lattice
with N = 5. Figure 12 confirms that there is additional structure to the (QM , q) parameter space boundaries.
Each small blue circle represents a phase simulation at constant QM where q is gradually increased and the
fixed point is “followed” until is submerged in a sea of chaos. Figure 13 shows four representative phase
space plots of this modulated phase space for QM/QI = 0.8 and increasing values of q/QI .

This fine structure could be explored through further simulation studies, even in the absence of RHIC
beam experiments. For example, this structure could be compared to the Mathieu equation stability diagram
(see for example Figure 3 of [28]) in order to determine if further stability diagram refinements are warranted,
and possible.

30



Figure 13: Representative phase space portraits from the simulation used to generate Figure 12, as q/QI
increases along a line of constant QM/QI = 0.8. Fixed points are orange.
Top Left: q/QI = 0, unperturbed phase space.
Top Right: q/QI just above zero, showing barely perturbed phase space and additional resonance formation.
Bottom Left: q/QI ≈ 0.4, showing the breakdown of separatrices and the formation of large scale chaos.
Bottom Right: q/QI ≈ 0.8, with fixed points almost entirely subsumed by chaos.
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7 Summary

Beam experiments in RHIC are necessary and possible, if the Resonance Island Jump scheme is to be
considered seriously for the HSR.

The potential for RIJ-related beam experiments in RHIC. Small amplitude motion around the
closed orbit is characterized by Twiss parameters, tune, chromaticity, and the transition gamma
(xCO, x

′
CO, βx, αx, Qx, χx, γT ). Beam trapped in one or N resonance islands is characterized by local and

global parameters: (xI , x
′
I , βI , αI) and (QI , χI , γTI). A successful RIJ scheme would exploit a large value of

|γT − γTI | by using a fast kicker to move beam quickly from closed orbit to island, or vice versa.
A successful RHIC experiment would measure and compare on-axis and island parameter differences,

and compare them against theoretical predictions. Many octupoles would be powered to mimic an HSR
implementation. A simple experiment would trap beam by adiabatically opening or closing islands, with or
without an energy ramp. A more productive experiment would use a fast kicker. However, no appropriate
kicker is currently available in RHIC. This technical note provides the theoretical underpinnings for such an
experiment, but leaves unresolved the detailed planning.

Octupoles and detuning. The RHIC correction scheme includes 90 octupoles, each with a range of
strengths (K3.L)range = ±45.02 m−3 at injection energy, and ±4.08 m−3 at storage. They are driven by
24 power supplies. The corresponding ranges of the detuning coefficients (κxx, κxy, κyy) are given in Table 3
for injection and storage lattices in both RHIC and HSR.

Motion close to the 1/4 resonance. Near-resonant horizontal motion is described by a Kobayashi
Hamiltonian H4 that, when differentiated, describes the small increment in action and phase accumulated
over 4 turns. The key Hamiltonian coefficients (∆Q,V40, V44) parameterize the separation of base and
resonance tunes, the rate of detuning with action, and the resonance driving strength, respectively. This
description predicts the action of the fixed point, the resonance island width, and the island tune QI – a
vital parameter that more fundamentally characterizes the resonance strength.

Evaluating the resonance driving vector V̄44. The length and direction of the resonance driving
vector are vital in determining the action and phases of the fixed points at the center of the 4 resonance
islands. Each octupole contributes a component vector to the sum vector, with a length proportional to its
strength (K3.L) and to β2 at the octupole.

The vector sensitivity S̄44 of each power supply is found by summing over all the octupoles that it drives.
The 12 sensitivities for power supplies driving F-octupoles are about an order of magnitude longer than the
12 D-octupole sensitivities. Six F-octupole power supplies dominate the situation, and enable the other 6
F-octupole and all 12 D-octupole power supplies to be ignored. Those 6 vectors point mostly in 3 directions
that are separated by about 60 degrees, leading to their natural combination into 3 essentially orthogonal
‘effective’ power supplies.

Ramping and modulating the tune. Tune modulation with amplitude q at a tune QM is inher-
ent in transverse motion (at the synchrotron tune Qs, through non-zero chromaticity) and also enables a
powerful experimental technique. Canonical transformations of the Kobayashi Hamiltonian help lead to the
prediction that (q,QM ) tune modulation parameter space is partitioned into four areas that display radically
different behavior: amplitude modulation, phase modulation, strong sidebands, and chaos. There is only
one free variable – QI , the island tune – because the partition boundaries are universal when plotted in
(q/QI , QM/QI) space. The island tune QI can be measured by observing the loss of the persistent signal
generated by beam trapped in a resonance island, when an externally controlled tune modulation is chirped
across a partition boundary. The RHIC transition jump quadrupoles can be re-purposed to modulate the
tune.

Tune modulation and data reduction techniques. The dynamics of a metastable beam of particles
trapped in artificially excited resonance islands were studied in the Tevatron in the late 1980’s and early
1990’s, as part of the Fermilab E778 nonlinear beam dynamics experiment. Persistent signals disappeared
when the tune modulation parameters crossed a partition boundary.

Simulations with octupoles and tune modulation confirm the general location of the partition boundaries,
but also show fine structure of what appear to be a family of Mathieu resonances, particularly near the
boundary between “amplitude modulation” and “chaos”. This fine structure could be explored through
further simulation studies, even in the absence of RHIC beam experiments.
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Appendices

A Key equations

The physical and normalized strengths of a single thin octupole (see Equation 20) are

gp [m−3] =
L

6

1

(Bρ)

d3By
dx3

=
1

6
K3.L (165)

g [m−1] =
β2

6
K3.L

The three independent detuning coefficients (see Equation 38) are

κxx =
1

16π

∑

supplies

K3.L


 ∑

octupoles

β2
x


 (166)

κxy =
−1

8π

∑

supplies

K3.L


 ∑

octupoles

βxβy




κyy =
1

16π

∑

supplies

K3.L


 ∑

octupoles

β2
y




The detuning term (see Equation 74) is

V40 = πκ =
1

16

∑

supplies

K3.L


 ∑

octupoles

β2


 (167)

The resonance Hamiltonian representing four-turn motion close to the resonance (see Equation 81) is

HR(I, ψ) = V40 I
2 + V44J

2
FP cos(4ψ) (168)

The island half width (see Equation 88) is

IHW = π

∣∣∣∣
2V44
V 3
40

∣∣∣∣
1/2

|∆Q| (169)

The island tune (see Equation 101) is

QI =
1

π
(8V40.V44)1/2 · JFP (170)

Alternatively, the island tune (see Equation 102) can be written

QI =

∣∣∣∣
8V44
V40

∣∣∣∣
1/2

· |∆Q| (171)

The change in action over four turns (see Equation 105) is

∆J = −16 V44 J
2 cos(4ψ + ψ444) (172)

The resonance driving vector (see Equation 120) is

~V44 ≡ V44

(
sin(ψ444)
cos(ψ444)

)
= − 1

48

∑

supplies

K3.L


 ∑

octupoles

β2

(
sin(4θ − π/2)
cos(4θ − π/2)

)
 (173)

The resonance driving vector is given in terms of the sensitivity vectors (see Equation 121) by

~V44 =
∑

supplies

(K3.L) ~SPS (174)
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B Phase spaces, action-angle co-ordinates, emittance, and beam
size

The Floquet matrix

T =

(
1/
√
β 0

α/
√
β
√
β

)
(175)

and its inverse

T−1 =

( √
β 0

−α/√β 1/
√
β

)
(176)

depend on the periodic Twiss parameters β and α at the observation point in a storage ring. They transform
physical phase space co-ordinates into normalized phase space co-ordinates (with tildes) through

(
x̃

x̃′

)
= T

(
x
x′

)
(177)

and vice versa (
x
x′

)
= T−1

(
x̃
x̃′

)
(178)

in the horizontal plane. While x has the dimension of length, and x′ is dimensionless, both x̃ and x̃′ have
the dimension of root length.

Normalized co-ordinates (x̃, x̃′) are related to normalized amplitude and phase (ã, φ) through

(
x̃
x̃′

)
= ã

(
sin(φ)
cos(φ)

)
(179)

showing that the normalized amplitude is simply

ã =
√
x̃2 + x̃′2 (180)

Linear motion in normalized phase space describes a circle. All three normalized parameters ã, x̃ and x̃′ have
the dimensions of root length.

Using action-angle co-ordinates (J, φ) this becomes

(
x̃
x̃′

)
=
√

2J

(
sin(φ)
cos(φ)

)
(181)

showing that
ã =

√
2J (182)

Action J , with the dimension of length, is usually quantified in meters or – like emittance – in microns.
Physical co-ordinates (x, x′) connect to action-angle co-ordinates (J, φ) through

(
x
x′

)
=
√

2J

( √
β sin(φ)

−(α/
√
β) sin(φ) + (1/

√
β) cos(φ)

)
(183)

showing that the physical displacement x oscillates with an amplitude

a =
√

2Jβ (184)

that depends on the Twiss parameter β at the observation point. Both a and β have the dimension of length.
Plotting (x, x′) over the continuous range of potential horizontal betatron phases

−∞ < φ < ∞ (185)

with constant J traces out the phase space ellipse described by Equation 183 and drawn in Figure 14. The
ellipse has an area

A = 2πJ (186)
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x0

Figure 14: The physical phase space ellipse with action J at a location with Twiss parameters (β, α, γ).

The equivalent circle in normalized phase has the same area A.
Action is calculated from the physical co-ordinates observed on turn n by

2Jn = β x′2n + 2αxnx
′
n + γ x2n (187)

Linear motion observed once per turn is especially simple in action-angle space (J, φ), since

Jn = J = constant (188)

φn = 2πQ.n + φ0

where Q is the horizontal tune.

B.0.1 Unnormalized emittance, average action, and beam size

The RMS horizontal displacement of a single particle, observed over many turns at the observation point, is

σ1 ≡
〈
x2
〉1/2

= 2
√
Jβ
〈
sin2(φn)

〉1/2
(189)

=
√
Jβ

Thus, the mean square horizontal size of a bunch of particles with an action distribution ρ(J) is

σ2 =
1

M

∫ ∞

0

σ2
1 ρ(J) dJ =

β

M

∫ ∞

0

J ρ(J) dJ (190)

= β 〈J〉

where the bunch population is

M =

∫ ∞

0

ρ(J) dJ (191)

On the other hand the mean square size can also be written

σ2 = β εu (192)

where εu is the unnormalized horizontal RMS emittance. Comparing Equations 189 and 192 gives

εu = 〈J〉 (193)

and shows that the unnormalized emittance is simply the average action of a bunch.
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C Fixed point finder

Motion around a non-trivial (non-zero) fixed point (xc, yc) of a 2-dimensional N-turn map can be closely
modeled by the concatenation of three linear transformations:

• translation by (−xc,−yc)

• rotation by a 2D rotation matrix R ≡
(
C S
−S C

)
, where C ≡ cos(2πQIN), S ≡ sin(2πQIN)

• translation by (xc, yc)

This model improves as one moves closer to the fixed point and motion approximates that of a simple
harmonic oscillator with island tune QI . Note that this transformation transforms the fixed point to itself.

This transformation operating on a fixed point guess (x0, y0) to produce (x′0, y
′
0) can be written in matrix

terms as
(
x′0
y′0

)
= R

(
x0 − xc
y0 − yc

)
+

(
xc
yc

)
(194)

=

(
Cx0 − Cxc + Sy0 − Syc + xc
−Sx0 + Sxc + Cy0 − Cyc + yc

)

Also consider the motion of two perturbed initial points (x0 + δ, y0) → (x′1, y
′
1) and (x0, y0 + δ) → (x′2, y

′
2)

under this transformation:
(
x′1
y′1

)
=

(
Cx0 + Cδ − Cxc + Sy0 − Syc + xc
−Sx0 − Sδ + Sxc + Cy0 − Cyc + yc

)
(195)

(
x′2
y′2

)
=

(
Cx0 +−Cxc + Sy0 + Sδ − Syc + xc
−Sx0 + Sxc + Cy0 + Cδ − Cyc + yc

)
(196)

Subtracting Equation 194 from Equations 195 and 196 gives:




x′1 − x′0
y′1 − y′0
x′2 − x′0
y′2 − y′0


 =




Cδ
−Sδ
Sδ
Cδ


 (197)

These results can be used to calculate average values of C and S (and thus QI) from simulated map iterations.
This converges best when δ is very small compared to the island width.

Though one perturbation is strictly all that is needed for C and S calculations, the orthogonal pertur-
bations ensure that at least one rotation is not parallel transport, and thus not degenerate.

To find the estimate of the fixed point (xc, yc) for this iteration, one can decompose Equation 194 into
the linear terms in (xc, yc) and a homogeneous term:



x′0
y′0
1


 =




1− C −S Cx0 + Sy0
S 1− C −Sx0 + Cy0
0 0 1





xc
yc
1


 (198)

Inverting this 3x3 matrix gives a next guess for the fixed point (xc, yc). The next iteration should use a
value of δ that is substantially smaller than the distance from the previous fixed point guess (x0, y0) and
the new fixed point guess (xc, yc); sufficient smallness of this iterated δ can also be used as a convergence
criterion.
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