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Abstract
The Electron-Ion Collider (EIC) [1] electron accelerator chain consists of a 400 MeV electron

Linear Accelerator (LINAC), the Rapid Cycling Synchrotron (RCS), and the Electron Storage Ring
(ESR). The LINAC injects into the RCS, the RCS ramps to a top energy of 18 GeV and the electron
beam is extracted to the ESR. To minimize the momentum spread of the 400 MeV injected beam
and serve as a 28 nC electron accumulator ring, a damping ring is proposed. This ring may also
serve as an intermediate energy booster for the RCS. The damping ring is not within the current
baseline of the EIC project.

Figure 1: Floor plan of the electromagnetic elements. Yellow: dipole, blue: quadrupole, pink: sextupole, and or-
ange: RF cavity
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1 Introduction

Traditional accumulator rings such as the Positive Intensity Accumulator (PIA) [2] [3] are
designed to be compact and have an intermediate energy. The electron accumulation methods
may be from individual bunch injection and bunch merging, or from injection schemes that are
used for top-up injection [4]. The 400 MeV EIC LINAC delivers 7 nC per bunch. The bunch
charge need for the ESR at 10 GeV and 5 GeV design energies is 28 nC. At 18 GeV the charge per
bunch requirement is 11 nC. The lattice design was performed using the Bmad toolkit [5]

Due to the large energy spread, it may be necessary to damp the electron beam before
injection into the RCS. At the exit end of the 400 MeV LINAC the transverse emittance is 51 nm
and energy spread of 5.56 ×10−3. Table 1 lists key damping ring (DR) lattice parameters. The
RCS ramp frequency of 1 Hz requires that the damping times must be on the order of
milliseconds. The 400 MeV LINAC will inject directly into the DR.

In the development of the RCS damping ring, the Chasman-Green double bend achromat
[6, 7] arc lattice design was explored. It was found that the double bend achromat design of the
accelerator footprint was too large. The multi-bend achromat designs were then explored [8]
because of their short damping times and small accelerator footprint.

Table 1: Table of general parameters

Energy E 400 MeV
Circumference C 28.642 m

Horizontal Tune νx 2.832
Vertical Tune νy 1.562

Synchrotron Tune νs 0.01175
Horizontal Natural Chromaticity ξx -11.500

Vertical Natural Chromaticity ξy 6.239
Horizontal Damping Time τx 13.940 ms

Vertical Damping Time τy 35.985 ms
Longitudinal Damping Time τz 85.963 ms

Natural Horizontal Emittance εx 41.519 nm
Natural Bunch Length σz 24.00 mm
Natural Energy Spread δe 1.76×10−3

Energy Loss per Turn U0 2.124 KeV
Revolution Frequency ωrev 10.467 MHz

Harmonic Number h 10
RF Voltage V 0.45 MV

RF Frequency ωrf 104.7 MHz
Momentum Compaction αc 7.702×10−2

1.1 A Bit of Theory

At this point, it is helpful to establish a coordinate system and the Hamiltonian
representation of the system. Using the Lorentz force,

Fe/m = e[E + v ×B] (1)

, and the subsequent Langragian,

L = −m0c
2
√

1− β2 + eA · v − eφ (2)
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, where φ is the electric potential, A is the magnetic potential, qi is the position coordinate, and p
is the momentum with its momenta, pi, the Hamiltonian of a particle under electromagnetic forces
can be written as:

H(q,p, t) = eφ+ c
√

(p− eA)2 +m2
0c

2 (3)

The equation of motion are:

dpi
dt

= −∂H

∂qi
dqi
dt

=
∂H

∂pi

(4)

We will now perform a canonical transformation to the Frenet-Serret coordinate system [9], which
is shown in Fig. 2. We have that

Reference orbit

s = 0

sReference 

particle

Center of 
Curvature (ρ(s))

x̂ (s)
ŷ (s)

ẑ (s)

Act
ual 

parti
cle

r 0(s )

Figure 2: Frenet-Serret coordinate system where the reference particle z coordinate is zero by construction. ẑ is
tangent, x̂ is normal, and ŷ is binormal to the curvature. r0 is the reference curve and s is the position along the
reference orbit.

r(x, y, s) = r0(s) + xx̂+ yŷ (5)
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The triorthogonal planes of the Dreibein have the relations:

dr0
ds

= ẑ

dẑ

ds
= κx̂

dx̂

ds
= τ ŷ − κẑ

dŷ

ds
= −τ x̂

(6)

where κ = 1/ρ and ρ is the radius of curvature and τ is the torsion of the curve. If the reference
curve is in a plane, τ = 0. Using the Hamiltonian equations of motion, Equ. 4, the momentum
along the direction of the reference orbit

ps = p · ẑ(1− κx) (7)

and the magnetic vector potential
As = A · ẑ(1− κx) (8)

. Neglecting static electric field, φ = 0 and the Hamiltonian is [10, 11] :

Hs = −eAs − (1− κx)

√
H2 −m2

0c
4

c2
− (px − eAx)2 + (py − eAy)2 (9)

The total momentum is

P = P ·P =
H2 −m2

0c
4

c2
= m2

0c
2(γ2 − 1) = m2

0c
2β2γ2 = P0 + ∆P (10)

With a simple transformation,

q̄ = q, s̄ = s, p̄ = p/P0, H = Hs/P0 (11)

where we let P0 be the momentum of the reference particle.

H = −eAs
P0

− (1− κx)

√
P

P0

− (p̄x −
eAx
P0

)2 − (p̄y −
eAy
P0

)2 (12)

The vector potential, As, is written as a series:

As =
∑
n

An(x+ iy)n (13)

The real components describe the normal field and the complex components describe the skew
field. Since the magnetic field is

B = ∇×A
eAs
P0

= − Byx
2

2ρ2B0

− 1

B0ρ

∞∑
n=1

1

n!

∂n−1By

∂xn−1
|x=0,y=0(x+ iy)n (14)

The rigidity B0ρ is a term that is produced from the total momentum and the charge of the
particle species, P0/qcharge. This means that B0 is the bending field of the reference orbit at a
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given curvature. We now have a description of the Hamiltonian which includes the contribution
from the magnetic field written as a Taylor series

H =
By|x=0,y=0x

2

2ρ2B0

+
1

B0ρ

∞∑
n=1

1

n!

∂n−1By

∂xn−1
|x=0,y=0(x+ iy)n

−(1− κx)

√
P

P0

− (p̄x −
eAx
P0

)2 − (p̄y −
eAy
P0

)2

(15)

The values from Tab. 1 are derived directly from the lattice using the synchrotron radiation
integrals [12, 13].

I1 =

∫ C

0

Gηds

I2 =

∫ C

0

G2ds

I3 =

∫ C

0

|G3|ds

I4a,b =

∫ C

0

(G2 + 2Kx,y)Gηds

I5a,b =

∫ C

0

|G|3Ha,bds

(16)

Where
G(s) = r′′0(s) · r0(s)/|r0(s)| (17)

is the geometric strength, Kx,y is the field gradient normalized to the rigidity, and ηa,b is the mode
dispersion of this uncoupled periodic system. The primes indicate the differential with respect to
s. The “dispersion invariant”, H, is

Ha,b = γa,bη
2
a,b + 2αa,bη

′
a,b + βa,bη

′2
a,b (18)

The α and β in Equ. 18 are the Twiss parameters [14, 15, 16].

2 Floor Plan and Design

The accelerator footprint is approximately 13× 3.5 m2. The circumference of the lattice is
28.64 m with straight sections composed of 3 FODO cells of length 2.75 m. The filling factor of
the arc, ff , defined by

Lbend/Larc (19)

is 0.6, where Lbend is the total length of the bending magnets and Larc is the length of the arc.
The path length through the five bend achromat arc is 5.03 m. Figure 3 illustrates the floor plan
of the RCS damping ring.

The arcs of the damping ring are composed of the 5 combined function dipole magnets with
3 of the dipoles in the arc of the length 0.84 m and the other two half length, 0.42 m. The bend
angle is 45o. The quadrupole lengths are .2 m and the sextupole lengths are 0.05 m. There are a
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Figure 3: Floor plan of the electromagnetic elements. Black box: dipole, blue xbox: quadrupole, green xbox: sex-
tupole, and red diamond: RF cavity. The X and Z of the coordinate system in the plot is parallel to the plane of
the floor of the tunnel.

total of 10 dipoles, 26 quadrupoles and 16 sextupoles in the RCS damping ring. The dipole
lengths are defined in the lattice file as:

Ldipole = Rarc ∗ |sin (θbend)| − (2 ∗ Lquadrupole) (20)

where Rarc is 1.75 m, θbend is 2π/ndipole. The number of dipoles, ndipoles, is 8. The two half dipoles
are considered one dipole in the calculations. The beam rigidity at 400 MeV is 1.33 T m. The
length of the quadrupoles and sextupoles are based on the magnet design of the Compact Storage
ring for Actinic Mask Inspection (COSAMI) [17]. An 80 cm RF cavity is placed in the straight
section on the opposite side of the injection into the damping ring. Table 2 lists the magnets with
there lengths and strengths. The RCS damping ring does not require any superconducting
systems. The lattice file, in Bmad format, is located in Appendix A.

3 Optics

The lattice combines two separate beam lines, the arc and the straight section. Figure 4 plots
the β-functions (both horizontal (black) and vertical (red)) and the lower plot is of the dispersion.
Since there are no vertical bends, elements that excite coupling, and the lattice is ideal, the
vertical dispersion (red) is zero. The tunes of the lattice νx,y, are 2.832, 1.562, respectively. The
fractional tunes are far enough away from the fifth order resonance horizontally and the strong
half integer resonance vertically. The resonance condition can be written as:

pQx + qQy + rQs = n (21)

where p, q, r, and n are integers. If p and q have the same sign, the resonance is known as a sum
resonance. If the signs are different, a difference resonance. The highest order of resonance that is
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Figure 4: The top plot is of the βx,y Twiss functions. The bottom plot is of the ηx,y dispersion functions.

8



Table 2: Magnet types used in the RCS damping ring

Element Name Element Type
Length

(m)
B field

(T)
B1 gradient

(Tm−1)
B2 gradient/b2 multipole

(Tm−2)
edip Sbend 0.419 -1.2513 4.393 -2.1328×10−3

mdip Sbend 0.837 -1.2513 3.383 -2.1328×10−3

efq Quadrupole 0.200 -4.088
edq Quadrupole 0.200 0.013
mfq Quadrupole 0.100 -16.809
sqd Quadrupole 0.200 4.004
asfq Sextupole 0.050 -379.429
asf2 Sextupole 0.050 -185.344
ssf Sextupole 0.050 -134.877
ssd Sextupole 0.050 11.895
asf3 Sextupole 0.050 -212.524
asf4 Sextupole 0.050 -471.262

considered is |n| ≤ 5. The values for Qx, Qy, and Qs are obtained by solving quotient of the
eigenvalues (λ1,3,5) and 2π of the DR 6× 6 transfer matrix, MDR. Using the Lie Algebra method
[18] the 6×6 symplectic matrix can be described as the Lie transformation of integral of the
Hamiltonian between si and sf :

MDR = e:−
∫ sf
si

H(x,s)ds: (22)

where s are along the particles trajectory and

e:f : ≡
∞∑
k=0

: f :k /k! (23)

A few helpful relations are,

: f : ≡ ∂f

∂q

∂

∂p
− ∂f

∂p

∂

∂q

: f : g ≡ ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
= [f, g]

: f :2 g = [f, [f, g]]

e:f :g = g + [f, g] + [f, [f, g]]/2! + ...

(24)

where f(z) is any function of q, p. The six dimensional phase space coordinates are written as
x = (x, px, y, py, z, pz). And since si and sf are two arbitrary points along s, the beginning and end
of the lattice are chosen to give the one-turn-map. The condition for symplecticity is as follows,

J =MDRJMT
DR (25)

where J is the 6× 6 matrix

J =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 (26)
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The Hamilitonian equations are written as the Lie derivative generated by H [19],

ẋ = [x,H] = − : H : x (27)

and if the Hamiltonian is s position (time) independent, then

x(s) =M(s)xi = e−t:H:xi (28)

otherwise (s position/time dependent case)

d

ds
M(s) = −(s) : H : (29)

A more general description of the transfer matrix may be obtained from [20].

MDR =

A b Da
a B Db
p1 p2 C

 (30)

Here the elements of the matrix are 2× 2 sub-matrices.

• The A and B matrices indicate the focusing of the lattice

• The lower case a and b indicate coupling

• Da and Db indicate dispersion and time of flight dependence on transverse initial conditions,
Db specifically coupled dispersion

• C shows changes in path length

The third order sum resonance is close, shown in Fig. 5 the chromatic footprint, but the fractional
tune does not cross. Here we will define δ = pz/P0 as the momentum spread of the beam. The
chromaticities from the natural to third order are shown in Tab. 3. Due to the designed sextupole
field of the dipoles, the vertical natural chromaticity is positive.

3.1 The Arc

The maximum β-functions in the arc is 3.88 m, horizontal and 2.71 m vertical. The constraint
on the dispersion at the entrance and exit of the arc demands that the horizontal phase advance,
φa, be 2π through the arc.

The Marc matrix is the concatenated matrix of the sector bend (beam enters and exits
perpendicular to the face of the dipole) combined-function dipoles, quadrupoles, sextupoles, and
drifts. A dipole map, in the absence of coupling, is written as:

Md =


cos θ sin θ/g 0 0 0 (1− cos θ)/g
−g sin θ cos θ 0 0 0 sin θ

0 0 1 θ/g 0 0
0 0 0 1 0 0

− sin θ −(1− cos θ)/g 0 0 1 Ld/(γβ)2 − (θ − sin θ)/g
0 0 0 0 0 1

 (31)
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Figure 5: The chromatic footprint of the damping ring with a δ ± 1.5% over a tune space of 0.8 to 0.9 horizontally
and 0.5 to 0.6 vertically. The numbers within the parentheses of the tune diagram are read as p, q, r, and n.
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In the transfer map Equ. 31, g = 1/ρ is the geometric strength of the dipole (ρ is the bend
radius), θ is the bend angle, and Ld is the length of the dipole. To account for the quadrupolar
field of the combined-function magnet, an additional map must be included [21, 22]:

Mx,cf = KSy sinKx + Cy cosKx − |Ky |−|Kx|
2
√
Ky |Kx|L2

d

sinhKx
(

cosKx − |Ky |+|Kx|
|Ky |−|Kx|

)
+ 1√

Kx
cosh

√
Ky

2
sinKx

|Ky |−|Kx|
2
√
Ky
Sy
(

cosKx + |Ky |+|Kx|
|Ky |−|Kx|

)
−
√
KxCy sin

√
KxLd

2
KSy sinKx + coshKy cosKx


(32)

My,cf = K sin
√
Kx

L d
2Sy + cosKxCy − |Ky |−|Kx|

2
√
Kx|Ky |L2

d

sinKy
(
Cy − |Kx|+|Ky |

|Kx|−|Ky |

)
+ 1√

Ky
cos

√
Kx

2
Sy

√
Kx sinKx

(
sin |Ky |

|Kx| sinh2

√
Ky

4
− cosh2

√
Ky

4

)
+
√
Ky cos

√
Kx

2
sinh

√
Kx

2
K sinKxSy + cosKxCy


(33)

where Kx,y =

√
Kx,yLd

2
, Sx,y = sinh

√
Kx,yLd

2
, Cx,y = cosh

√
Kx,yLd

2
, and K = |Ky |−|Kx|

2
√
Kx

√
Ky

. The complete

transfer map of the combined-function magnet becomes:

Mcf = Md +

Mx,cf 0 0
0 My,cf 0
0 Mz

 (34)

These combined function magnets increase the damping partition, a more complete description of
the radiation integrals for bending magnets with quadrupolar field gradients can be found [23].
Mz is the description of longitudinal rotation

Mz =

(
1 Ld/(γβ)2

0 1

)
(35)

The Kx,y value is the normalized strength of the quadrupole which is the field gradient,
(∂By,x/∂Bx,y), of the quadrupole normalized to the rigidity, B0ρ = p/qcharge. The quadrupole
transfer map is:

Mq =


cos
√
KxLq sin

√
KxLq/

√
Kx 0 0 0 0

−
√
Kx sin

√
KxLq cos

√
KxLq 0 0 0 0

0 0 cosh
√
KyLq sinh

√
KyLq/

√
Ky 0 0

0 0
√
Ky sinh

√
KyLq cosh

√
KyLq 0 0

0 0 0 0 1 Lq/(γβ)2

0 0 0 0 0 1

 (36)

. Lq is the effective length of the quadrupole. Since we assume that the beam is on axis, there will
be no contribution from the sextupoles on the linear optics. We treat the sextupoles as a drift
with the drift transfer map:

Mdrift =


1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L/(γβ)2

0 0 0 0 0 1

 (37)
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Figure 6: The top plot is of the βx,y functions. The middle plot is of the ηx,y functions. The bottom plot is the
lattice layout where the black box:dipole, blue xbox:quarupole, and the green box:sextupole.
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From these maps we can now write the complete map of the arc as:

Marc =M1←31 (38)

. The Marc is the concatenation of 31 elements.

3.2 The Straight Section

Figure 7 shows the optics of the straight section. It is composed of simple FODO cells with
two families of harmonic sextupoles that do not affect the linear chromaticity and are used to
control the resonance driving terms. One of the straight sections will contain the RF system for
the the DR. The other straight will contain the injection system from the 400 MeV LINAC.

The beam will be injection from the LINAC through the spin rotator [24] and into the DR.
The LINAC will inject a total of 4 bunches of 7 nC into the DR. Many different methods [25, 26]
are available for injection into the DR. The injection method most favorable for the DR is
longitudinal injection, where a septum and a short pulsed kicker places the slightly higher
momentum beam onto a closed orbit of higher momentum. The beam then damps to the
equilibrium orbit. The benefit is a closed orbit bump is unnecessary.

3.2.1 Longitudinal Dynamics

If we consider the longitudinal electric field from the radiofrequency cavities, we will need to
revisit Equ. 3. The longitudinal electric field is described by [27, 28], however to remain consistent
and keeping s dependence of the Hamiltonian, we write the electric field along the s coordinate as
[29]:

Es = −∂As
∂t

=
∑
i

Viδp(s− si) sin(ωrf t+ φ0i)
(39)

where number of cavities is i, with a voltage gain of Vi located at s = si. The angular frequency is
ωrf = hωrev, φ0i is the initial phase, and δp is a periodic delta function with the circumference
being the period. The RF cavity harmonic, h, and the revolution frequency, ωrev are listed in Tab.
1. The vector potential can is:

As =
∑
i

Vi
ωrf

δp(s− si) cos(ωrf t+ φ0i) (40)

From this point with the help of a canonical transformation, the synchrotron Hamiltonian for
electrons is [30, 31],

Hsyn = −1

2

(
ηx
ρ
− 1

γ2

)
δ2

−
∑
i

eVi
hβ2E

δp(θ − θi)(cos(φ+ φ0i) + φ sin(φ0i))
(41)

where the βc is the speed, γ is the Lorentz factor, and E is the energy of the particle. Here
φ = ωrf t is the RF phase relative to φs. The total Hamiltonian becomes the sum of H (Equ. 15),
and Hsyn.
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Figure 7: The top plot is of the βx,y Twiss functions. The middle plot is of the ηx,y dispersion functions. The bot-
tom plot is the lattice layout where the black box:dipole, blue xbox:quarupole, and the green box:sextupole. The
diamond:red indicates the position of the RF cavity.
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4 Dynamic Aperture

The dynamic aperture is the stable region within phase space after a large number of
applications of the map, M, onto a set of coordinates, x. The chromaticities, as mentioned in a
previous section, is to shown in Tab. 3. The first, second, and third order chromaticities are:

Table 3: Damping ring chromaticities up to third order

Chromatic Order Horizontal Vertical
Natural -11.50 6.24
Linear 0.98 0.98
Second 37.79 -32.49
Third -850.0 79.98

ξ(1)x,y =
∂Qx,y

∂δ

ξ(2)x,y =
∂Q2

x,y

∂δ2

ξ(3)x,y =
∂Q3

x,y

∂δ3

(42)

If we have ν = |p, q|/|n| of Equ. 21, then we consider the particle motion to resonate on a pth or

Figure 8: A scan of the horizontal and vertical tune over ±1.5% momentum deviation

qth harmonic nth order (integer) resonance [32, 33]. The KAM-Theory describes the position of
the stability border of a the non-integrable perturbed Hamiltonian system. The theorem states
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that if the perturbation is small and the frequencies of the Hamiltonian are incommensurate, the
motion is confined to an N-torus. The exception is the negligible set of initial conditions that
result in meandering trajectories on the energy surface [34]. As the order increases, the resonance
strength decreases . The separatrix may be defined here as the border trajectory between rotation
and oscillation which separates motions of different type. If separatrices begin to touch each
other, the resonances begin to overlap. The motion about overlapping resonances are unstable and
are called stochastic oscillations/instability, see Appendix D.

Through normalizing the coordinates transformation into action-angle variable, J, φ, found in
Appendix B, the general n-D integrable system with a perturbation in which the Hamiltonian is a
function of its angle has the form

H(J, ψ) = H0(J) + εHp(J, ψ) (43)

where εHp(J, ψ) describe the external perturbation.

4.1 Optimization

To describe the optimization of the dynamic aperture, we use the resonance base that is
defined the Appendix C to define the resonance driving terms (RDT). We define the Lie generator
as : h : [35, 36]:

hijklm ≡ Aijklme
iφijklm (44)

where Aijklm and φijklm are the amplitude and phase of the RDT. The first order driving terms
that drive linear chromaticity are:

h11001 =
1

4

N∑
i=1

[(k1L)i − 2(k2L)iη
(1)
xi ]βxi +O(δ2)

h00111 = −1

4

N∑
i=1

[(k1L)i − 2(k2L)iη
(1)
xi ]βyi +O(δ2)

(45)

where k1 and k2 are the normalized strengths of the quadrupole and sextupole, respectively. L is
the length of the slice of the lattice at that moment.

h20001 =
1

8

N∑
i=1

[(k1L)i − 2(k2L)iη
(1)
xi ]βxie

2iφxi +O(δ2)

h00201 = −1

8

N∑
i=1

[(k1L)i − 2(k2L)iη
(1)
xi ]βyie

2iφyi +O(δ2)

h10002 =
1

8

N∑
i=1

[(k1L)i − 2(k2L)iη
(1)
xi ]ηxi

√
βxie

2iφxi +O(δ2)

(46)

We also have that complex conjugates h20001 = h∗02001, h00201 = h∗00201, and h10002 = h∗01002. The
synchrobetatron resonances are driven by h20001 and h00201. The second order dispersion is driven
by h10002. Equations 45 and 46 are known as chromatic terms due to their dependence on
dispersion. The first order geometric terms that are independent of the dispersion and with
frequencies p = 1, p = 3, and p = 1, q = ±2 drive the betatron modes are listed in Equation 97 of
[35]. A more comprehensive list of driving terms can be found in [37]. Table 4 lists all the driving
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terms used in the optimization. The goal of the optimization is to minimize the absolute value of
the first and second order terms and the real component of the terms h22000, h11110, and h00220
which drive the amplitude dependent tune shift.

Table 4: Summed resonance driving terms used in optimization and there value

Term Resonance Strength
h20001 4.293213915535
h00201 0.619985917889
h10002 1.671614484610
h21000 3.853470780730
h30000 4.530626940065
h10110 2.482651709279
h10020 4.200984095308
h10200 5.641184353058
h22000 200.2780397596
h11110 214.4308899946
h00220 2.735127566092
h31000 239.5874528930
h40000 200.9172734928
h20110 141.8863601545
h11200 71.60543118530
h20020 111.6841084502
h20200 42.65041090370
h00310 47.28542658925
h00400 33.10986649867

In addition to the RDTs, the chromatic perturbations described in Appendix E must be
corrected. These W functions show the βx,y-beating that occurs due to the momentum spread of
the beam. By minimizing the absolute value of the functions, the momentum aperture of the
lattice improves which in turn allows a dynamic aperture to be found at higher momenta. Figure
9 shows the W functions for each element of the DR.

The dynamic aperture in physical space after optimization is shown in Fig. 10. The beam
sizes, σx and σy at the location of observation are 0.462 mm and and 0.327 mm, respectively. The
solid black line of the plot indicated the aperture of the beam pipe, 32.9 mm inner diameter. The
dynamic aperture is scanned by the process of increasing the orbital amplitude of the tracked
particle for 282497 turns which is the turns within two damping periods. Synchrotron oscillations,
radiation damping, and stochastic radiation fluctuations are included within the tracking. A total
of 30 evenly spaced phase angles were taken over a 180o span. The total number of sextupole
families in the DR is six, where each arc has two sextupole families.

5 Radiation Damping

The DR is designed to minimize the momentum spread of the beam before injection into the
RCS. The energy loss per turn, U0 is

U0 =
2rcE

4
0

3(mc2)3
I2 (47)
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Figure 9: The W-function for the DR. Black:horizontal and red:vertical.
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Figure 10: Dynamic Aperture scan from ±1.5% δ. 1.5% is 3σ of the injected beam momentum spread. The solid
black semicircle beam pipe aperture radius at 35.6σ

where rc is the classical electron radius, mc2 is the rest mass energy, and E0 is the nominal stored
energy. The equilibrium emittances and energy spread are calculated using Equ. 16:

εx =
Cq

I2 − I4a
γ0I5a

σp =
σE
E0

= γ0

√
Cq

I3
2I2 + I4z

(48)

where I4z is

I4z =

∫ C

0

(G2 + 2Kx,y)Gηds (49)

and Cq = 3.832× 10−13. The transverse and longitudinal damping for the electrons over a
±40 MeV energy range can be summarized in Tab. 5. The damping times are found using

τx =
2pc

JxEfωrev

τy =
2pc

JyEfωrev

τz =
2pc

JzEfωrev

(50)

with Jx, Jy, and Jz are the partition numbers that show the distribution of damping in the three
degrees of freedom of system and Ef is the final energy after one turn. The inverse of these
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damping time are known as the damping coefficients, αi. The partition numbers are

Jx = 1− I4a
I2
, Jx = 1− I4b

I2
, Jz = 2 +

I4z
I2

(51)

For tracking, a fifth order map of the DR is generated. The projected beam sizes and momentum
spread from a tracked bunch at 400 MeV after four damping periods are shown in Fig. 11 and Fig.
12. It is clear that within the first damping period the beam sizes and momentum spread are
reduced. The stochastic radiation fluctuations, which prevents the vertical emittance of the beam
from becoming zero [38], is calculated while tracking 1000 particles. Over a 180 ms, twenty
damping periods, is shown in Fig. 13 and Fig. 14. The tracking results show emittance blowup
with the first three damping periods which can be prevented by avoiding the fifth order sum
resonance. From the tracking results, over 87% of the beam survives for the twenty damping
periods. Further study is needed to include the intensity dependent collective effects such as
intrabeam scattering [39]. The RCS has a dynamic range of 45 which at a 400 MeV injection

Table 5: The damping times of the DR with respect to varying energy

Energy (MeV) γ Turns τx (ms) τy (ms) τz (ms) εx nm
364 712.33023082 124958.16 18.4984 47.7527 114.0908 34.3787
368 720.15803555 120927.74 17.9018 46.2124 110.4087 35.1385
372 727.98584028 117068.78 17.3306 44.7377 106.8833 35.9066
376 735.81364502 113372.28 16.7834 43.3251 103.5065 36.683
380 743.64144975 109829.79 16.259 41.9713 100.2705 37.4677
384 751.46925449 106433.35 15.7562 40.6733 97.168 38.2607
388 759.29705922 103175.53 15.274 39.4283 94.1922 39.062
392 767.12486396 100049.32 14.8112 38.2336 91.3367 39.8716
396 774.95266869 97048.15 14.3669 37.0867 88.5955 40.6895
400 782.78047342 94165.82 13.9403 35.9852 85.9629 41.5158
404 790.60827816 91396.5 13.5303 34.9269 83.4335 42.3503
408 798.43608289 88734.72 13.1363 33.9097 81.0025 43.1931
412 806.26388763 86175.31 12.7574 32.9316 78.665 44.0442
416 814.09169236 83713.39 12.393 31.9908 76.4166 44.9037
420 821.91949709 81344.36 12.0423 31.0854 74.253 45.7714
424 829.74730183 79063.88 11.7047 30.2139 72.1704 46.6475
428 837.57510656 76867.85 11.3796 29.3747 70.165 47.5318
432 845.4029113 74752.4 11.0664 28.5663 68.2331 48.4245
436 853.23071603 72713.88 10.7647 27.7872 66.3716 49.3254
440 861.05852077 70748.8 10.4738 27.0363 64.5772 50.2347

energy experiences additional magnetic field errors due to the field at 400 MeV not being well
defined. The damping ring, theory, can also serve as a booster to the RCS to energies up to
1 GeV. This will require that the DR in its current configuration to utilize superconducting dipole
magnets. Appendix F gives a discussion on the feasibility of the DR being used as a booster to
the RCS.
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Figure 11: The projected transverse beam sizes from a tracked beam four damping periods. In the tracking model,
radiation fluctuations are included. The initial beam sizes at the observation point, where βx,y = (4.18, 2.09) m, are
σhi,vi = (0.46, 0.33) mm. The beam sizes after one damping period σh1,v1 = (0.44, 0.25) mm, two damping periods
σh2,v2 = (0.44, 0.20) mm., three damping periods σh3,v3 = (0.43, 0.16) mm and four damping periods σh4,v4 =
(0.42, 0.12) mm
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Figure 12: The projected bunch length and energy spread from a tracked beam four damping periods. In the
tracking model, radiation fluctuations are included. The initial bunch length is σzi = 54 mm and the energy
spread, σe = β2δ, is initially σei = 5.56 × 10−3. The bunch length after one damping period is σz1 = 91 mm, after
two σz2 = 82 mm, after three σz3 = 72 mm, and after four σz4 = 69 mm. The energy spread after one damping
period is σe1 = 3.1× 10−3, after two σe2 = 2.7× 10−3, after three σe3 = 2.5× 10−3 and after four σe4 = 2.2× 10−3.
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Figure 13: The projected transverse beam sizes from a tracked beam twenty damping periods. In the track-
ing model, radiation fluctuations are included. The initial beam sizes at the observation point, where βx,y =
(4.18, 2.09) m, are σhi,vi = (0.46, 0.33) mm. The final beam sizes are σhf,vf = (0.41, 2.4× 10−3) mm.
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Figure 14: The projected bunch length and energy spread from a tracked beam twenty damping periods. In the
tracking model, radiation fluctuations are included. The initial bunch length is σzi = 54 mm and the final σzi =
25 mm. The energy spread, σe = β2δ, is initially σei = 5.56× 10−3. The final energy spread is σef = 0.81× 10−3.
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6 Conclusion

The RCS damping ring is presented. The damping times at 400 MeV, τx = 13.9403 ms,
τy = 35.9852 ms, and τz = 85.9629 ms were found. The projected emittances after tracking a single
damping period are εx = 46.9 nm, εy = 3.1 nm, and εz = 280.65µm. The difference in the natural
emittance calculated by the synchrotron radiation integrals, and the tracked beam is due to the
use of combined function magnets used in the lattice. The horizontal emittance and bunch length
are within 13% of the natural emittance and bunch length. The energy spread has a percent
difference of 74% which is due to inclusion of the RF system. However, after 4 damping periods,
the horizontal emittance is εx = 42.0 nm which is a less than 1% difference in the emittance
calculated by the radiation integrals. The energy spread after 7 damping periods has a percent
difference of less than 2%.
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A Lattice File (damping ring.bmad: dr-indi-arc.var)

parameter[lattice] = "RCS damping ring"

parameter[geometry] = closed

parameter[e_tot] = .4e9

parameter[particle] = Electron

parameter[n_part] = 1.74762254084901367E+11 ! full current

bmad_com[max_aperture_limit] = 0.04/2

bmad_com[rel_tol_tracking] = 1E-3

bmad_com[abs_tol_tracking] = 1E-6

bmad_com[taylor_order] = 3

bmad_com[auto_bookkeeper] = F

bmad_com[csr_and_space_charge_on] = f

bmad_com[spin_tracking_on] = T

bmad_com[radiation_damping_on] = t

bmad_com[radiation_fluctuations_on] = t

bmad_com[absolute_time_tracking] = T

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!--Constants

deg_to_rad = pi/180

rigidity=1.334255292039262

!~~cell parameters

arc_radius = 1.75

ndipole=8

bend_ang=((2*pi)/ndipole)

quad_length= .2

sex_length= 0.05!.2

drift_length=quad_length*1.1

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

dipole_length=(arc_radius*abs(sin(bend_ang)))-(2*quad_length)

focal_length = dipole_length/sqrt(2)

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

cell_length = 2*dipole_length+2*quad_length+4*drift_length

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

beginning[beta_a] = 9

beginning[beta_b] = 2

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

! cfms

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

edge_dip:sbend,L=dipole_length/2,ang=bend_ang/2!,k2=-17.1/rigidity

midd_dip:sbend,L=dipole_length,ang=bend_ang!,k2=-17.1/rigidity

edge_fquad:quadrupole,l=quad_length/2

edge_dquad:quadrupole,l=quad_length/2

mid_fquad:quadrupole,l=quad_length/2

mid_dquad:quadrupole,l=quad_length/2

arc_sf1:sextupole,l=sex_length,superimpose,ref = beginning, offset = 2.442822-drift_length/6,

ref_origin = beginning, ele_origin = center

arc_sf2:sextupole,l=sex_length,superimpose,ref = beginning, offset = 3.700259-drift_length/6,

ref_origin = beginning, ele_origin = center

arc_sf3:sextupole,l=sex_length,superimpose,ref = beginning, offset = 16.763653-drift_length/6,
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ref_origin = beginning, ele_origin = center

arc_sf4:sextupole,l=sex_length,superimpose,ref = beginning, offset = 18.021090-drift_length/6,

ref_origin = beginning, ele_origin = center

!arc_sex:overlay={arc_sf1[k2]:focus,arc_sf2[k2]:focus,arc_sf3[k2]:focus,arc_sf4[k2]:focus},

var = {focus}, focus = 174.69941881

dip_sex:overlay={edge_dip:b2,midd_dip:b2}, var = {b2}!,b2 = -12.8161380375

!dip_mid:marker,superimpose,ref = midd_dip, offset = 0,ref_origin =center, ele_origin = center

fba_drifti:drift,L=drift_length/3

fba_drifto:drift,L=drift_length/2

tba_beg:marker

tba_end:marker

str2arc:marker

tba_arc:line=(str2arc,edge_fquad,fba_drifto,2*edge_dquad,fba_drifto,

tba_beg,edge_dip,fba_drifti,mid_fquad,fba_drifti,mid_fquad,fba_drifti,

midd_dip,fba_drifti,mid_fquad,fba_drifti,mid_fquad,fba_drifti,

midd_dip,fba_drifti,mid_fquad,fba_drifti,mid_fquad,fba_drifti,

midd_dip,fba_drifti,mid_fquad,fba_drifti,mid_fquad,fba_drifti,

edge_dip,tba_end,fba_drifto,2*edge_dquad,fba_drifto,edge_fquad,

str2arc)

tba_arc_closed:line=(2*tba_arc)

use,tba_arc

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EDGE_FQUAD[K1] = 3.09273207594915E+00

MID_FQUAD[K1] = 1.24911958085089E+01

EDGE_DQUAD[K1] = -1.75424308161356E-03

EDGE_DIP[K1] = -3.22121444392064E+00

MIDD_DIP[K1] = -2.48408319508227E+00

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

! DIP_SEX[FOCUS] = -1.78885887599440E+01

! ARC_SEX[FOCUS] = 2.35968889193645E+02

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

cavity:rfcavity,l=0.8,voltage=450e3,harmon=10,superimpose,ref = 129, offset = 0,

ref_origin = center, ele_origin = center

zero_point:fiducial, origin_ele = 133

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!~match lines

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!Straight Section

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L_cell=1.1*cell_length

str_drift:drift,L=((L_cell/2)-2*quad_length-2*sex_length)

str_drift_chic:drift,L=((L_cell/2)-quad_length)

str_qf:quadrupole,L=quad_length/2,k1=edge_fquad[k1]

str_qd:quadrupole,L=quad_length/2

str_sf:sextupole,L=sex_length
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str_sd:sextupole,L=sex_length

str_foc:marker

str_def:marker

chic_beg:marker

chic_end:marker

!str:line=(str_qf,str_sf,str_drift,str_qd,str_def,str_qd,str_sd,str_drift,str_qf,str_foc)

str:line=(EDGE_FQUAD,str_sf,str_drift,str_qd,str_def,str_qd,str_sd,str_drift,EDGE_FQUAD,str_foc)

use, str

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EDGE_FQUAD[K1] = 3.06357595872161870E+000

MID_FQUAD[K1] = 1.25983648150456258E+001

EDGE_DQUAD[K1] = -9.40230260185378162E-003

STR_QD[K1] = -3.00106109855128445E+000

EDGE_DIP[K1] = -3.29212182468477943E+000

MIDD_DIP[K1] = -2.53523369616839434E+000

DIP_SEX[B2] = -2.24920670515815985E-003

ARC_SF1[K2] = 2.51685641178211199E+002

ARC_SF2[K2] = 1.97541452872327511E+002

ARC_SF3[K2] = 2.26908132981568599E+002

ARC_SF4[K2] = 2.89036261261280401E+002

STR_SF[K2] = 8.44737477223389561E+001

STR_SD[K2] = -8.47142676575588283E+000

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ring:line=(tba_arc,3*str,tba_arc,3*str)

use,ring

*[aperture_type] = elliptical

*[aperture_at] = both_ends

*[x_limit] = 0.04/2

*[y_limit] = 0.04/2

sbend::*[ds_step] = 5e-2

sbend::*[r0_mag] = 30e-3/2

quadrupole::*[ds_step] = 5e-2

quadrupole::*[r0_mag] = 30e-3/2

sextupole::*[ds_step] = 5e-2

sextupole::*[r0_mag] = 30e-3/2

*[scale_multipoles] = T

B Coordinate Transformation action-angle

We can write a simplified version of the Hamiltonian,

H =
p2

2
+
K(s)

2
x2 (52)

where we describe the reference particle only allowing only horizontal motion. We also describe transverse field
(Ax = Ay = 0)only with no skew field. The periodic function K(s), (K(s) = 1

Bρ
∂By

∂Bx
) equals K(s+ C) where C is

the circumference 2πR. The momentum ,p, is in the normal plane and p = dx
ds . The common periodic solution of

the Hamiltonian for the motion, x of the particle is:

x(s) =
√
εxβx(s) cos (φ(s) + φ0) (53)
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where we define the phase advance φx(s) =
∫ s

0
ds

βx(s) . If we switch to the action-angle variables, J and ψ, then the

Hamiltonian can now be derived by:

ψ =

∫ s

0

ds′

βx(s′)
+ φ0

F1(x, ψ, s) =
x2

2β

(
tanψ − β′

2

) (54)

where F1(x, ψ, s) is the generating function. We define p = ∂F1

∂x and J = ∂F1

∂ψ . We can write a new Hamiltonian as,

H = H +
∂F1

∂s
(55)

We have p = x′,

x′ = −x
β

(
tanψ − β′

2

)
tan2 ψ =

[
x′ −

(
β′x

2β

)
β

x

]2

J =
∂F1

∂ψ
=
x2

2β
sec2 ψ =

x2

2β

[
1 + tan2 ψ

]
=
x2

2β

[
1 +

((
x′ − β′x

2β

)
β

x

)2
]2

(56)

The Courant and Snyder invariant, J , of the particle motion can be expressed as the emittance, ε, by

ε = 2J =
1

β

[
x2 +

(
βx′ − β′x

2

)2
]

(57)

The action of the particle is:

J =
2

ε
=

1

2β

[
x2 +

(
βx′ − β′x

2

)2
]

(58)

We have H(J, ψ) = J
β(s) , where s is still an independent. From the Hamiltonian equations, dψds = ∂H

∂J = 1
β(s) .

Remember,
∫ s

0
ds

βx(s) is the phase advance and

x =
√

2βJ cosψ,

x′ =
√

2βJ

[
sinψ − β′

2
cosψ

]
(59)

We again rewrite the Hamiltonian,

F2(ψ, J1) = J1

[
2πνs

C
−
∫ s

0

ds′

βx(s′)

]
+ ψJ1

ψ1 =
∂F2

∂J1
= ψ +

2πνs

C
−
∫ s

0

ds′

βx(s′)

(60)

with J1 = ∂F2

∂ψ = J and

H1 =
2πν

C
J1 (61)
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C Resonance Basis

Normal Forms are symplectic matrices that become “pure” rotations that have the dynamics of a given
transfer matrix M.

R = AMA−1 (62)

where A is normalizing map M. R is the normal form of M.The resonance basis can be generated by [40]:

f2 =

N∑
k=1

φk
2

[x2
k + (Ek − Ēk)p2

k] =

N∑
k=1

fk2

R = e:f2:

[f2, h
±
k ] =

∂f2

∂x

∂h±k
∂p
− ∂f2

∂p

∂h±k
∂x

= ∓(iEk + Ēk)φkh
±
k = ∓λh±k

h±k = xk ± (iEk + Ēk)pk

=
√

2Jke
±iφk =

√
2Jk cosφk ± i

√
2Jk sinφk

(63)

where xk and pk are the position and momentum variables for a given plane x, y, and z. For stable systems, En = 1
and Ēn = 0. The linear map generator, h2 = f2, is a effective Hamiltonian of the total Lie map where

M = A−1TA (64)

The T matrix is the linear transformation

T =


T11 T12 0 0 0 η(s)− T11η(0)− T12η

′(0)
T21 T22 0 0 0 η′(s)− T21η(0)− T22η

′(0)
0 0 T33 T34 0 0
0 0 T43 T44 0 0
A B 0 0 1 −Cαc +Aη sinµx
0 0 0 0 0 1

 (65)

where αc is the momentum compaction and µ(x) is the phase advance for the closed periodic lattice. The elements
are defined as

T11 = cosµx + αx sinµx

T12 = βx sinµx

T21 = −γx sinµx

T22 = cosµx − αx sinµx

T33 = cosµy + αy sinµy

T34 = βy sinµy

T43 = −γy sinµy

T44 = cosµy − αy sinµy

A = η′ − η′T11 + ηT21

B = −η − ηT22 + η′T12

(66)

and Aη = γxη
2 + 2αxηη

′ + βxη
′2. From here, the M matrix can be simplified as

M =


cosµx sinµx 0 0 0 0
− sinµx cosµx 0 0 0 0

0 0 cosµy sinµy 0 0
0 0 − sinµy cosµy 0 0
0 0 0 0 1 −

∮
dsη(s)/ρ(s)αc

0 0 0 0 0 1

 (67)
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The action-angle transformation allow us to write hs as

h2 = −µxJx − µyJy −
1

2
αcδ

2 (68)

The eigenmodes of : h2 : are
|ijkl,m >= J (i+j)/2

x J (k+l)/2
y e(i−j)φxe(k−l)φyδm (69)

here we have that
: h2 : |ijkl,m >= î[(i− j)µx + (k − l)µy]|ijkl,m > (70)

We have now that |ijkl,m > are the resonance basis. The eigenmode expansion of the effective Hamiltonian to the
nth generator can be written as:

hn =
∑

ijklm≥0

Anijklm|ijkl,m > (71)

where i+ j + k + l +m = n the resonance order.

D Definition of Chirikov Criterion

Let us start with the definition of a integrable Hamiltonian with action J and constants α, β, and m,

H0 = αJ + βJm (72)

The Hamiltonian equations are

dJ

dt
= −∂H0

∂φ
= 0

dφ

dt
= α+ βmJm−1 ≡ ω(J)

(73)

The solution are of J = invariant and φ = ω(J)t+ φ0. The perturbed Hamiltonian may be written as [41]:

H = H0 + εHλ = H0 + ε cosφ

∞∑
l=−∞

δ(t− l) (74)

where l is an integer and ε is the perturbation width or size. Let us rewrite
∑∞
l=−∞ δ(t− l) as

λ+ 2
∑∞
m=λ cos 2πmt. The perturbation period is defined as ω0 = 2π. The Hamiltonian can now be written as

H = αJ + βJm +
εω0

2π

(
cos(φ) +

∞∑
m=λ

(cos (φ+mω0t) + cos (φ−mω0t))

)
(75)

For small ε, we find cosω(J)t±mω0t. When the function,

mω(J) = ±mω0 (76)

a resonance is generated. The system is dominated by a single resonance if the action is at the resonance condition
and the perturbation term is small. The Hamiltonian about the resonance is:

Hr = αJ + βJm +
εω0

2π
cos (φ−mω0t) (77)

The Hamiltonian equations of motion are:

dJ

dt
= −∂Hr

∂φ

εω0

2π
sin (φ−mω0t)

dφ

dt
=
∂Hr

∂J
= α+ βmJm−1 = ω(J)

(78)
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We have that the action, J , can be expressed as,

J = JR + δJ (79)

and ω(JR) = mω0. We can approximate the difference in the resonances as,

d(φ−mω0t)

dt
= ω(J)− ω(JR)

= ω(J)−mω0

' ∆J
dω(JR)

dJ
≡ ∆Jω′(JR)

(80)

We let ψ = φ−mω0t, and write the Hamiltonian equations of motion as

dψ

dt
= ∆Jω′(JR)

d∆J

dt
=
εω0

2π
sinψ

(81)

The resonance width can be described as

δJ = 4

√∣∣∣∣ εω0

2πω′(JR)

∣∣∣∣ (82)

A plausible condition for the occurrence of the stochastic instability seems to be the approach of resonances down to
the distance of the order of a resonance size [42]. The reason why the motion of the system is known as stochastic,
is due to the unstable motion of the system as though a random force was applied.

From the distance between resonances, ∆ω = ω0, and the width of resonances, δω ' dω
dJ δJ = 4

√∣∣∣ εω0ω′(JR)
2π

∣∣∣,
we can define the Chirikov Criterion

s =
δω

∆ω
= 4

√∣∣∣∣εω′(JR)

2πω0

∣∣∣∣ ≥ 1 (83)

where we define s as the stochasticity parameter.

E W-function Derivation

If we allow δ = ∆p
p

βδ = β(δ), αδ = α(δ), φδ = φ(δ)

β0 = β(0), α0 = α(0), φ0 = φ(0)
(84)

where α and β are the Twiss parameters and φ the phase advance. We define the difference in the β function
for the particle with momentum error, δp, and the particle on momentum, p, as ∆β. Analogously, we define define
∆φ as the difference particle with momentum error and the on momentum particle.

∆β = βδ − β0, β =
√
βδβ0

∆φ = φδ − φ0, φ =
φδ + φ0

2

(85)

We can define the chromatic β-beat, B and chromatic change in the β function slope with respect to the
position, A, in the magnetic lattice as [43]:

B =
βδ − β0√
βδβ0

=
∆β

β

A =
αδβ0 − α0βδ√

βδβ0

(86)
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Through achromatic regions A2 +B2 is invariant, and if we both variables to δ we have:

B = lim
δ→0

βδ − β0√
βδβ0

× 1

δ

A = lim
δ→0

αδβ0 − α0βδ√
βδβ0

× 1

δ

W =
√
A2 +B2

(87)

F Damping Ring as RCS Booster

The RCS dipole field at injection is unstable due to the main field and multipole field becoming unpredictable
at 6.3369× 10−3. To correct this issue, developing the damping ring to ramp to 1 GeV has been proposed. The
dipole strength of the DR at 1 GeV is 3.13 T which enters the superconducting regime. A table of the key
parameter changes with respect to energy are shown is Tab. 6.

Table 6: Key parameters of the Damping Ring with energies greater than 450 MeV.

Energy U0 Damping Time αx αy αz εx δ
(MeV) (KeV) (ms) (1/s) (1/s) (1/s) nm ×10−4

400 2.12 9.00 6.9× 10−6 2.7× 10−6 1.1× 10−6 41.52 7.25
500 5.19 4.61 1.3× 10−5 5.2× 10−6 2.2× 10−6 64.87 9.07
600 10.75 2.67 2.3× 10−5 9.0× 10−6 3.8× 10−6 93.41 10.88
700 19.92 1.68 3.7× 10−5 1.4× 10−5 6.0× 10−6 127.15 12.69
800 33.98 1.12 5.5× 10−5 2.1× 10−5 8.9× 10−6 166.07 14.50
900 54.43 0.79 7.8× 10−5 3.0× 10−5 1.3× 10−5 210.18 16.32
1000 82.96 0.58 1.1× 10−4 4.1× 10−5 1.7× 10−5 259.47 18.13
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