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1 Definitions and Problem

Let Bn = {x : |x| ≤ 1} be the unit n-dimensional ball and Sn−1 = {x : |x| = 1} be the unit
(n− 1)-dimensional sphere. Note that this sphere is the surface of the ball: Sn−1 = ∂Bn.

We want to evaluate the integral

IBn
a1...an =

∫
Bn

(
n∏

i=1

xaii

)
dnx

of a general monomial term over the n-dimensional ball. It will be helpful to define a similar
integral

ISn−1
a1...an =

∫
Sn−1

(
n∏

i=1

xaii

)
dn−1x

over the surface of the sphere. Finally, an integral over all space but weighted by an n-
dimensional unit Gaussian distribution will also be useful:

Igna1...an =

∫
Rn

(
n∏

i=1

xaii

)
1√
2π

n e
− 1

2
|x|2 dnx.

2 Separability of Gaussian Integral

The Gaussian integrand can be written as a product

Igna1...an =

∫
Rn

(
n∏

i=1

xaii
1√
2π

e−
1
2
x2
i

)
dnx.

Since each term in the product only depends on xi, this is a separable integral that is the product
of one-dimensional integrals:

Igna1...an =

n∏
i=1

∫
R
xaii

1√
2π

e−
1
2
x2
i dxi =

n∏
i=1

Ig1ai .
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3 Values of One-Dimensional Gaussian Integral Ig1a

The one-dimensional Gaussian integrals can be evaluated by noting

d

dx

[
xa

1√
2π

e−
1
2
x2

]
= (axa−1 − xa+1)

1√
2π

e−
1
2
x2

and therefore by integrating both sides over R,

0 = aIg1a−1 − Ig1a+1.

The recurrence of values can be started by noting Ig10 = 1 because the Gaussian is normalised and
Ig11 = 0 because it is the integral of an odd function. Writing the recurrence as Ig1a+2 = (a+1)Ig1a
makes it clear that Ig1a = 0 for a odd. For even values,

Ig12 = 1, Ig14 = 3, Ig16 = 3× 5, Ig18 = 3× 5× 7, · · · ,

giving the general formula

Ig12a =
a∏

b=1

(2b− 1) = (2a− 1)!! =
(2a)!

2aa!
.

3.1 Integrals on the Half Real Line Ih1
a

The following calculations will also need 1D Gaussian integrals on the half real line defined by

Ih1
a =

∫ ∞

0
xa

1√
2π

e−
1
2
x2

dx.

Starting as before but integrating over [0,∞) gives[
xa

1√
2π

e−
1
2
x2

]∞
x=0

= aIh1
a−1 − Ih1

a+1.

The left hand side is equal to −1√
2π

when a = 0 and zero otherwise. The recurrence can still be

rewritten Ih1
a+2 = (a+ 1)Ih1

a valid for a ≥ 0. The original a = 0 case gives

−1√
2π

= −Ih1
1 ⇒ Ih1

1 =
1√
2π

.

For even functions we have Ih1
2a = 1

2I
g1
2a and in particular Ih1

0 = 1
2 . The recurrence gives the

general formulae

Ih1
2a =

1

2
(2a− 1)!! and Ih1

2a+1 =
1√
2π

a∏
b=1

2b =
1√
2π

(2a)!! =
1√
2π

2aa!.

4 Relation of Gaussian to Spherical Integral

The Gaussian integrand can also be split into parts that depend on radius r = |x| and parts
that do not:

Igna1...an =

∫
Rn

1√
2π

n e
− 1

2
r2r

∑
ai

(
n∏

i=1

(xi
r

)ai)
dnx.
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Defining x = ru so that u ∈ Sn−1 gives dnx = rn−1 dr dn−1u and

Igna1...an =

∫ ∞

0

1√
2π

n e
− 1

2
r2r

∑
airn−1 dr

∫
Sn−1

(
n∏

i=1

uaii

)
dn−1u

=
1

√
2π

n−1 I
h1

n−1+
∑

ai
ISn−1
a1...an .

5 Evaluating the Spherical Integral

By the formula in the previous section,

ISn−1
a1...an =

√
2π

n−1
Igna1...an

Ih1

n−1+
∑

ai

.

The separability of the Gaussian integrals allows this to be written with only Ig1a and Ih1
a terms:

ISn−1
a1...an =

√
2π

n−1
∏n

i=1 I
g1
ai

Ih1

n−1+
∑

ai

.

6 Evaluating the Ball Integral

Integrating over a smaller sphere of radius r will introduce a factor of rn−1 from the change in
surface area and a factor of r

∑
ai from the change in the monomial term itself. Thus,

IBn
a1...an =

∫ 1

0
rn−1+

∑
aiISn−1

a1...an dr =
1

n+
∑

ai
ISn−1
a1...an .

Using the formula from the previous section, this can be written in terms of Ig1a and Ih1
a :

IBn
a1...an =

√
2π

n−1

n+
∑

ai

∏n
i=1 I

g1
ai

Ih1

n−1+
∑

ai

.
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