

BNL-224387-2023-TECH C-A/AP/693

RHIC Run 22 Spin Transparency Experiment: Spin Simulations in Preparation and Support

F. Méot

April 2023

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RHIC Run 22 Spin Transparency Experiment. Spin Simulations in Preparation and Support

François Méot

Tech. Note C-A/AP/693 BNL C-AD

April 27, 2023

Abstract

This Tech. Note reports in detail the numerical simulations performed in preparation and in support of RHIC Run 22 spin transparency experiment in RHIC Yellow ring. Outcomes include the 9 o'clock and 3 o'clock snake current ramps.

Contents

1	Intr	duction	3					
2	Orbits and spin across full snakes, axes at $0^\circ,\pm 10^\circ$							
	2.1	Snake spin matrices, time of flight	5					
	2.2	APEX data	6					
	2.3	Coil current scan	8					
		2.3.1 Vertical to radial polarization	8					
		2.3.2 Reversal of vertical polarization	9					
	2.4	Coil current scan for constant spin tune	10					
		2.4.1 Vertical to radial polarization	10					
		2.4.2 Reversal of vertical polarization	11					
3	In R	HIC Yellow CCW at Injection	12					
·	3 1	Preliminary: check ring ontics and regular spin \vec{n}_0	12					
	32	Coil current scan	14					
	5.2	3.2.1 Vertical to radial polarization: ring data	14					
		3.2.1 Vertical to fuerical polarization: ring data	15					
	33	Determine coil current from fitting imposing constant spin tune	16					
	5.5	3.3.1 Vertical to radial polarization: ring data	16					
		3.3.2 Reversal of vertical polarization	21					
			21					
4	APE	X results: tentative simulation approach	26					
	4.1	Synchronized ramp (March 30th APEX)	26					
		4.1.1 Polarization vector, expectations	26					
		4.1.2 6D bunch tracking, 15,000 turns, using field maps	27					
Aŗ	Appendix 2							
A	Opt	cal sequences for 9 o'clock snake in Yellow, going clockwise	29					
B	Opt	cal sequences for μ and ϕ scan for transparency experiment	30					

1 Introduction

OPERA field maps of the 4 snake modules are used in these simulations. In this representation a full snake is a sequence of 4 field maps, field maps 1 and 4 computed at low field (100 A current), 2 and 3 computed at high field (322 A), as follows [1],

sign applied	field map
±	$model3a2a - x - 4_4y - 4_4z - 180_180 - integral.table$
Ŧ	$model 3a 2a 322a - x - 4_4 - y - 4_4 - z - 180_1 - integral.table$
±	$model 3a 2a 322a - x - 4_4 - y - 4_4 - z - 180 - 180 - integral.table$
Ŧ	$model 3a2a - x - 4_4 - y - 4_4 - z - 180 - 180 - integral.table$

These OPERA maps are archived/available on C-AD computers at

 $/rap/lattice_tools/zgoubi/RHICZgoubiModel/snakeFieldMaps/161216_secondSet_inclSingleHelix$

or in zgoubi repository at

Some parameters of RHIC snakes [1]:

module are spaced 0.212/0.448/0.212 m hence an overall length of 10.472 m.

a helix module is 2.4 m long,

bore 10 cm,

A snake is a series of 4 right-handed helix modules,

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/snakesWithFieldMaps/fie

Figure 1: RHIC rings, 9 o.clock and 3 o.clock snakes in Blue and Yellow.

2 Orbits and spin across full snakes, axes at 0° , $\pm 10^{\circ}$

The left, middle and right columns in the figure below show particle and spin motion at $G\gamma = 45.5$, and field along trajectories, across 9 o'clock RHIC Yellow snake, with its axis at respectively 0° , $+10^{\circ}$ and -10° to the X axis. The path is taken clockwise here (this may be different in the following, as specified in due place), hence the sequence (Fig. 1), in that order, R+R-R+R-. Orbits have been centered on the snake axis as part of the fitting procedure. A specimen data file for these simulations is given in App. A. Data files to perform these simulations can be found in zgoubi repository

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/spinTransparency/snakeSettings_adjustRadialPolar/

axis at 0 degree; coil currents 164.16759 A / 220.45332 A; Z at entrance: 0.85093724 cm

Figure 3: Y(s) and Z(s) orbits.

Figure 4: $B_Z(s)$ along along orbits.

Figure 5: $S_X(s)$, $S_Y(s)$ and $S_Z(s)$. $S_Z(s=0) = 1.$

Figure 7: Y(s) and Z(s) orbits.

Figure 8: $B_Z(s)$ along along orbits.

Figure 9: $S_X(s)$, $S_Y(s)$ and $S_Z(s)$. Figure 13: $S_X(s)$, $S_Y(s)$ and $S_Z(s)$. $S_Z(s=0) = 1.$

axis at -10 degree; coil currents 146.03718 A / 241.80863 A; Z at entrance: 0.42093414 cm

Figure 11: Y(s) and Z(s) orbits.

Figure 12: $B_Z(s)$ along along orbits.

 $S_Z(s=0) = 1.$

Figure 14: YZ projection of Figure 15: Y(s) and Z(s) or-Figure 16: $B_Z(s)$ - vertical orbits. field along orbits.

2.1 Snake spin matrices, time of flight

In the three columns below, trajectory length (s) and time of flight (TOF) are over an optical axis straight extent of

10.472000 m.

which is the length of the snake from entrance to exit magnetic face [1, Fig. 5].

9 o'clock snake	9 o'clock snake	9 o'clock snake	
axis at 0 degree	axis at 10 degree	axis at -10 degree	
Injection	Injection	Injection	
<pre>Spin transfer matrix, momentum group # 1 : 1.00000 3.133707E-06 -8.179472E-05 3.133669E-06 -1.00000 -4.657628E-07 -8.179472E-05 4.655065E-07 -1.00000 Determinant = 1.0000000000 Trace = -1.0000000000; spin precession = 179.9999732999 deg Precession axis : (1.0000, -0.0000, -0.0000) -> angle to X axis : -0.0001 deg</pre>	<pre>Spin transfer matrix, momentum group # 1 : 0.939691 0.342026 -1.033279E-04 0.342026 -0.939691 -1.833964E-05 -1.033689E-04 -1.810721E-05 -1.00000 Determinant = 1.0000000000 Trace = -1.0000000000; spin precession = 179.9998995155 deg Precession axis : (0.9848, 0.1736, -0.0001) -> angle to X axis : 10.0000 deg</pre>	<pre>Spin transfer matrix, momentum group # 1 : 0.939703 -0.341991 -4.463609E-05 -0.341991 -0.939703 7.654557E-06 -4.456247E-05 8.072114E-06 -1.00000 Determinant = 1.0000000000 Trace = -1.0000000000; spin precession = 179.9998957697 deg Precession axis : (0.9848, -0.1736, -0.0000) -> angle to X axis : -10.0000 deg</pre>	
s = $1.047347E+01$ m;	s = $1.047344E+01 \text{ m}$	s = $1.047354E+01$ m	
TOF = $3.49628868E-02 \mu$ s.	TOF = $3.49627763E-02 \mu \text{s}$.	TOF = $3.49631135E-02 \ \mu$ s.	

255 GeV:

Spin transfer matrix, momentum group # 1 :

3.214335E-02	-0.999077	-2.848681E-02
-0.999072	-3.129976E-02	-2.958057E-02
2.866164E-02	2.941120E-02	-0.999156

Determinant = 1.0000000000 Trace = -0.9983127948; spin precession = 177.6463758024 deg Precession axis : (0.7182, -0.6958, 0.0001) -> angle to X axis : -44.0907 deg

s = 1.047202E+01 m;TOF = 3.49311247E-02 μs ; Spin transfer matrix, momentum group # 2 :

100 GeV:

3.180516E-02	-0.999085	-2.859672E-02
-0.999080	-3.095522E-02	-2.968848E-02
2.877609E-02	2.951465E-02	-0.999150

For comparison, regular 9 o'clock snake, axis at -45 degree

Determinant = 1.000000000 Trace = -0.9983001153; spin precession = 177.6375472367 deg Precession axis : (0.7181, -0.6959, 0.0001) -> angle to X axis: -44.1005 deg

s = 1.047211E+01 m;TOF = 3.49327140E-02 $\mu s;$ Spin transfer matrix, momentum group # 3 :

Injection:

2.452685E-02	-0.999220	-3.094373E-02
-0.999210	-2.353451E-02	-3.203606E-02
3.128283E-02	3.170501E-02	-0.999008

Figure 17: $S_Z(s)$.

Determinant = 1.0000000000 Trace = -0.9980152480; spin precession = 177.4472300590 deg Precession axis : (0.7156, -0.6986, 0.0001) -> angle to X axis : -44.3112 deg

s = 1.047402E+01 m;TOF = 3.49647201E-02 μs

For reference, regular 9 o'clock snake, axis at -45 degree at 255, 100 and 23 GeV:

2.2 APEX data

Working hypotheses, from Vahid:

So this is what I have for the Experiment: First we set Yellow 9 oclock snake to :

 Iout
 Iin
 MU
 PHI

 184.0
 197.0
 179.975
 10.18

 And Yellow 3 oclock snake to:
 Iout
 Iin
 MU
 PHI

164.0 219.0 179.668 0.026

With 9 oclock fixed we perform the first ramp on Yellow Snake at 3 oclock using:

Ramp1

 Ion
 MU
 PHI

 164.0
 219.0
 179.668
 0.026

 163.0
 218.0
 178.941
 179.945

 162.0
 217.0
 177.549
 179.945

 161.0
 215.0
 174.057
 0.072

 159.0
 213.0
 172.653
 0.029

 158.0
 212.0
 171.248
 179.946

 156.0
 209.0
 167.75
 0.109

 155.0
 209.0
 167.339
 0.064

 154.0
 207.0
 164.926
 0.02

Next we ramp only the 9 oclock snake using:

Ramp2				
Iout	Iin	MU	PHI	
184.0	197.0	179.	975	10.18
181.0	198.0	178.	553	9.101
178.0	199.0	177.	045	8.027
175.0	200.0	175.	533	6.97
172.0	201.0	174.	019	5.929
169.0	202.0	172.	438	4.923
166.0	203.0	170.	933	3.914
163.0	204.0	169.	433	2.921
160.0	205.0	167.	905	1.933
157.0	206.0	166.	411	0.969
154.0	207.0	164.	926	0.02

Since we have been ramping these snakes a bit lately I dont think we need a special ramp. But we need to involve Vincent or Chuyu and give him and ops a heads up. What is missing how fast you need to ramp this to get good data from the polarimeter.

Simulated snake data:

Beam goes CCW in Yellow, so the snake module current signs are (Fig. 1), 9oclock: -+-+, 3oclock: +-+-; this determines the sign of the vertical orbit along the snake.

9 o'clock Snake:

Figure 18: YZ projection of orbits.

2g

0.015

0.01

0.00

0.0 - 00

3 o'clock Snake:

0.01

0.0

0.0

0.0

-.0

-.0

-.01

Figure 21: YZ projection of orbits.

S	pin transfer matrix	<pre>«, momentum group # 1 :</pre>	
1.00000 9.048411E -8.443917E	9.053152E-04 -04 -0.999983 -05 5.793772E-03	4 -7.919528E-05 -5.793846E-03 8 -0.999983	
Determinant = Trace = -0.99996643	1.0000000000 15; spin precessi	ion acos((trace-1)/2) =	179.6680372920 dec
Precession axis: (1	.0000, 0.0005, -0.	.0000)	0.0050.1
-> a Spin precessio	ngle to (X,Y) plane n/2pi (or Os fract	e, to X axis : -0.0023,	0.0259 deg
	,- <u>F</u> = (0- £0,00		
oubilZpop z (m) ve e	(7)	Zgoubi Zpop	ve e (m)
		1. 25-02-2022	
ξ / Ν		0.8	
$\downarrow $		0.6	$1 \times 7 \rightarrow 1$
	\sim	0.4 / / 4	·····
	$1/\Lambda$	0.2	$\wedge \wedge + / + +$
╎╵╎╵┝╌ ┥╷╢╶┝ ╸ ┥╎	─ ─ ┿ <u>┹</u> ┙┤┼╲╍╡	0.0 + +++++++++++++++++++++++++++++++++	$\overline{\mathbf{A}}$
$\mathbb{I} \setminus \mathbb{I} = \mathbb{I}$		2	
		4	$-\underline{\forall}$
I _/ / // //	/ / / 1		

Spin transfer matrix, momentum group # 1 :

-.01 GE FILE, 25-02-2022 08:42:41 RIES Mi-ma H/V: -5.82000E-01 1.10915E+01/ -1.67671E-02 1.67699E-02 Part# 3- 3 (*); Lmnt# 1; pass# 1- 1, [1]

Figure 22: Y(s) and Z(s) orbits.

Figure 23: Spin components.

2.3 Coil current scan

2.3.1 Vertical to radial polarization

Goal angles are in the table below. Coil currents for that are determined.

Snakes are considered CCW, 3OClock series is R+R-R+R-, all right-helicity, 9OClock series is R-R+R-R+. In particular, coil polarities for this spin transparency experiment are the same as in regular snake operation, see Sec. 3.1 for details.

All files for that simulation can be found in the dedicated RHIC repository

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/spinTransparency/snakeSettings_adjustRadialPolar/

	9 o' snake, CCW			
Step #	μ	ϕ	I_{out}	$I_{ m in}$
0	180	170	184.08966	199.07334
1	180	170	184.08967	199.07334
2	180	170	184.08966	199.07336
3	180	170	184.08966	199.07335
4	180	170	184.08967	199.07334
5	180	170	184.08966	199.07334
6	177	172	178.43276	200.72111
7	174	174	172.63753	202.52287
8	171	176	166.69559	204.46703
9	168	178	160.59563	206.54226
10	165	180	154.32192	208.73700

Figure 24: Case of 9 o'clock snake, step 0 (repeated) to 11: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

Figure 26: Vertical closed orbits over snake 9'o current scan full range.

3 o' snake, CCW				
μ	ϕ	$I_{ m out}$	$I_{ m in}$	
180	0	164.16759	220.45335	
177	0	166.17474	222.79739	
174	0	168.19734	225.14344	
171	0	170.23614	227.49256	
168	0	172.29233	229.84602	
165	0	174.36709	232.20533	
165	0	174.36707	232.20531	
165	0	174.36709	232.20531	
165	0	174.36712	232.20540	
165	0	174.36710	232.20535	
165	0	174.36709	232.20534	

Figure 25: Case of 3 o'clock snake, step 0 (repeated) to 11: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

Figure 27: Vertical closed orbits over snake 3'o current scan full range.

2.3.2 Reversal of vertical polarization

Goal angles are in the table below. Coil currents for that are determined. Snakes are considered CCW, *i.e.* Yellow case.

All files for that simulation can be found in the dedicated RHIC repository https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/spinTransparency/snakeSettings_reversalVerticalPolar/

		9 o' snake, CCW		
Step #	μ	ϕ	I_{out}	$I_{ m in}$
0	180	-10	184.08967	199.07333
1	180	-10	184.08967	199.07334
2	180	-10	184.08966	199.07335
3	180	-5	173.87827	209.78901
4	180	-2	167.99538	216.19137
5	180	0	164.16805	220.45281
6	180	2	160.41133	224.71226
7	180	5	154.90344	231.10352
8	180	10	146.03570	241.81008
9	180	10	146.03569	241.81009
10	180	10	146.03571	241.81005

Figure 28: Case of 9 o'clock snake, step 0 to 11: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty - note convergence problem at step 5 (m=180 / phi=0), reason TBFO

Figure 30: Vertical closed orbits over snake 9'o current scan full range. The orbit signs as simulated here (negative at snake ends in particular) concord with orbit sign in RHIC controls.

3 o' snake, CCW				
μ	ϕ	$I_{ m out}$	$I_{ m in}$	
180	0	164.16759	220.45335	
177.5	0	165.83915	222.40659	
175	0	167.52137	224.36109	
175	0	167.52137	224.36111	
175	0	167.52137	224.36111	
175	0	167.52134	224.36106	
175	0	167.52141	224.36113	
175	0	167.52137	224.36111	
175	0	167.52135	224.36106	
177.5	0	165.83916	222.40660	
180	0	164.16758	220.45335	

Figure 29: Case of 3 o'clock snake, step 0 to 11: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

Figure 31: Vertical closed orbits over snake 3'o current scan full range. The orbit signs as simulated here (positive at snake ends in particular) concord with orbit sign in RHIC controls.

Coil current scan for constant spin tune 2.4

Vertical to radial polarization 2.4.1

Goal angles are in the table below. Coil currents for that are determined.

Snakes are considered CCW, 3OClock series is R+R-R+R-, all right-helicity, 9OClock series is R-R+R-R+. In particular, coil polarities for this spin transparency experiment are the same as in regular snake operation, see Sec. 3.1 for details.

The two files for that simulation, namely

snake9OCCW_scanMuPhi_adjRadPol_finerQsp.dat snake3OCCW_scanMuPhi_adjRadPol_finerQsp.dat

can be found in the dedicated RHIC repository

https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/spinTransparency/snakeSettings_adjustRadialPolar/

		9 o' s	snake, CCW	
Step #	μ	ϕ	I_{out}	$I_{ m in}$
0.00	180.00	-10.0	184.0896	199.0735
1.00	186.16	-9.00	179.0589	195.6699
2.00	188.49	-8.00	175.7351	195.8453
3.00	190.10	-7.00	172.7017	196.7030
4.00	191.31	-6.00	169.8350	197.9463
5.00	192.25	-5.00	167.0922	199.4548
6.00	192.96	-4.00	164.4548	201.1643
7.00	193.49	-3.00	161.9151	203.0357
8.00	193.86	-2.00	159.4709	205.0437
9.00	194.07	-1.00	157.1237	207.1716
10.0	194.14	0.00	154.8777	209.4080

Figure 32: Case of 9 o'clock snake, step 0 (repeated) to 10: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

	3 0'	snake, CCV	N
μ	ϕ	I_{out}	$I_{ m in}$
180.00	0.	164.1676	220.4534
173.84	0.	168.3086	225.2721
171.51	0.	169.8851	227.0893
169.90	0.	170.9876	228.3545
168.69	0.	171.8204	229.3072
167.75	0.	172.4628	230.0404
167.04	0.	172.9552	230.6015
166.51	0.	173.3209	231.0176
166.14	0.	173.5739	231.3052
165.93	0.	173.7227	231.4742
165.86	0.	173.7719	231.5299

Figure 33: Case of 3 o'clock snake, step 0 (repeated) to 10: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

2.4.2 Reversal of vertical polarization

Goal angles are in the table below. Coil currents for that are determined. Snakes are considered CCW, *i.e.* Yellow case.

All files for that simulation can be found in the dedicated RHIC repository https://sourceforge.net/p/zgoubi/code/HEAD/tree/branches/exemples/RHIC/spinTransparency/snakeSettings_reversalVerticalPolar/

Figure 36: Case of 9 o'clock snake, step 0 to 10: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty - note convergence problem at step 5 (m=180 / phi=0), reason TBFO

Figure 38: Vertical closed orbits over snake 9'o current scan full range. The orbit signs as simulated here (negative at snake ends in particular) concord with orbit sign in RHIC controls.

Figure 37: Case of 3 o'clock snake, step 0 to 10: coil currents, snake angles, closed orbit coordinate at snake entrance, and (right vertical axis) FIT penalty

Figure 39: Vertical closed orbits over snake 3'o current scan full range. The orbit signs as simulated here (positive at snake ends in particular) concord with orbit sign in RHIC controls.

3 In RHIC Yellow CCW at Injection

First (Sec. 3.1) it is shown that snake current signs in these spin transparency simulations are the same as in regular RHIC Yellow operation simulations. Which means that in real life, snake polarities are unchanged, they are the same for normal operation and for this spin transparency experiment, no need to reverse connection polarities.

3.1 Preliminary: check ring optics and regular spin \vec{n}_0

CCW hypotheses, see Fig. 1:

- origin is at IP6,
- going CCW 3 o'clock snake is first met, then 9 o'clock snake.
- 3 o'clock snake module series is R+R-R+R-, all right-helicity,
- 9 o'clock snake module series is R-R+R-R+, all right-helicity.

By convention R+ (resp. R-) means positive (resp. negative) coil PS feed. This is the convention used as well in manipulating the OPERA field maps: referring to Tab. 1, an R+ module OPERA field is left as is, sign-wise (BNORM=+1), whereas an R- module OPERA field is assigned a negative sign (BNORM=-1), yielding input sequences given in Tab. 1. The actual field sign accounts for a scaling factor, namely the absolute value of the coil current, which is given in the SCALING command (Tab. 1).

Table 1: SCALING factors and field signs in OPERA field map modules in these simulations.

• SCALING factors (absolute value of the snake coil currents):

```
'SCALING'
1 4
TOSCA
        snk1LowB
             ! low-field coils current (A)
100.
TOSCA
        snk1HighB
322.
            ! high-field coils current (A)
        snk2LowB
TOSCA
               low-field coils current (A)
100.
TOSCA
        snk2HighB
             ! high-field coils current (A)
322.
```

• 3 o'clock snake, R+R-R+R- series input data:

'TOSCA' snk2LowB	
1. 1. 1. 1.	! BNORM= +1
HEADER_8 RHIC_helix	
361 81 81 15.1 0.748502994012e-4	! = 1/1.3360e4
b_model3a2a-x-4_4_y-4_4_z-180_180-in	tegral.table
'TOSCA' snk2HighB	
-1. 1. 1. 1.	! BNORM= -1
HEADER_8 RHIC_helix	
361 81 81 15.1 0.246305418719e-4	! = 1/4.060e4
b_model3a2a322a-x-4_4_y-4_4_z-180_18	0-integral.table
'TOSCA' snk2HighB	
1. 1. 1. 1.	! BNORM= +1
HEADER_8 RHIC_helix	
361 81 81 15.1 0.246305418719e-4	! = 1/4.060e4
b_model3a2a322a-x-4_4_y-4_4_z-180_18	0-integral.table
'TOSCA' snk2LowB	
-1. 1. 1. 1.	! BNORM= -1
HEADER_8 RHIC_helix	
361 81 81 15.1 0.748502994012e-4	! = 1/1.3360e4

361 81 81 15.1 0.748502994012e-4 ! = 1/1.3360e4 b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table

• 9 o'clock snake, R-R+R-R+ series input data:

4

'TOSCA' snk2LowB 44 -1. 1. 1. 1. HEADER_8 RHIC_helix 361 81 81 15.1 0.748502994012e-4 ! BNORM= -1 l = 1/1 3360e4b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table 'TOSCA' snk2HighB 46 1. 1. 1. 1. 1. !! BNORM= +1 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 != 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table 'TOSCA' snk2HighB 49 -1. 1. 1. 1. ! BNORM= -1 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 != 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table 'TOSCA' snk2LowB 51 1. 1. 1. 1. 1. ! BNORM= +1 HEADER_8 RHIC_helix 361 81 81 15.1 0.748502994012e-4 ! = 1/1.33 b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table ! = 1/1.3360e4

Figure 40: Optics and orbits, $G\gamma = 45.5$. Origin s=0 is at IP6, increasing s is CCW.

Figure 41: Orbits along 3OClock (top) and 9OClock (bottom) snakes at $G\gamma = 45.5$ in normal polarized pp RHIC operation, *i.e.*, $I_{out} = 100$ A, $I_{in} = 322$ A (incidentally, orbit centering is a little loose; spin-wise this does not matter).

Figure 42: Closed orbit bumps at snakes, normal polarized pp operation, from simulations and, superimposed, BPM records that confirm that snake polarities in these simulations and in RHIC operation are the same. Note that BPM records at the center of the snakes ("7.1 BPM"s) are not shown here, however, consistently with simulations, they measure similar orbit amplitude with opposite sign to BPMs to the left and right.

Re

• Beam matrix at IP6, tunes, chroms (QF, QD, SXF, SXD usually need be tweaked at the level of respectively 0.01% and 1% so to restore original MAD model values). Note the substantial coupling introduced by the vertical snake bumps, the coupling strength is greater than the the distance between the unperturbed tunes ($\nu_Y = 0.69698743$, $\nu_Z = 0.68998100$), this precludes reaching the exact original MAD values.

eference particle (#	1), path len	gth : 383384	.96 cm	relative	momentum :	1.00000
TRANSI -0.181574 9.708524E-02 -2.690189E-02 -4.449469E-03 -6.944800E-03 0.00000 DetY-1 = R12=0 at -15	<pre>FER MATRIX ORDR -9.39891 -0.471680 0.222204 -8.734771E-03 2.594781E-02 0.00000 -0.0018595763, 0.93 m,</pre>	E 1 (MKSA un -2.549241E-02 -9.249190E-05 -0.171039 9.972439E-02 -2.297087E-03 0.00000 DetZ-1 = R34=0 at -	its) -0.21222 -3.89830 -9.0534 -0.56507 -3.71443 0.0000 -0.000501 16.02 m	9 6E-02 5 2 5E-02 0 3863	0.00000 0.00000 0.00000 1.00000 0.00000 0.00000	6.801730E-02 8.188140E-04 1.034660E-02 4.890427E-03 7.34042 1.00000
First order symple -6.3590E-04	ectic conditions 1.7276E-04 2.6	(expected valu 011E-03 6.1	es = 0) : 653E-02	9.5208E-0	4 -9.5103E-(03
TWISS P	parameters, peri - CO	odicity of UPLED -	l is assu	med		
Beam matrix (be	eta/-alpha/-alpha	/gamma) and p	eriodic di	spersion	(MKSA units)	
9.880264 0.155865 0.000000 0.000000 0.000000 0.000000	0.155865 0.0 0.103671 0.0 0.000000 9.7 0.000000 0.2 0.000000 0.0 0.000000 0.0	00000 0.00 00000 0.00 99700 0.21 13729 0.10 00000 0.00 00000 0.00	0000 0. 0000 0. 3729 0. 6705 0. 0000 0. 0000 0.	000000 000000 000000 000000 000000 00000	0.035036 0.002805 -0.009851 0.002382 0.000000 0.000000	
NU_1	Betatron (= 0.70008816	tunes (Q1 Q2 : NU_Z =	modes) 0.68688027			
FRACTIONAL PART O	F THE BETATRON TU	NES IN THE DEC	OUPLED FRAM	IE:	MODE 1 0.70008816	MODE 2 0.68688027
UNPERTURBED HORIZ	ONTAL AND VERTICA	L TUNES:			0.69698743	0.68998100
HAMILTONIAN PERTU	RBATION PARAMETER - COUPLING ST - DISTANCE FR	S: RENGTH OF THE OM THE NEAREST	DIFFERENCE SUM LINEAR	LINEAR RE RESONANCI	SONANCE: E:	0.01119636 0.38696843
	Trans	ition gamma =	2.2854066	2E+01		
dNu_	_y / dp/p = 1.0	aticities : 975937		dNu_z / dj	p/p = 2.215	3153

3.2 Coil current scan

3.2.1 Vertical to radial polarization: ring data

Direct triedra (X,Y,Z): long. (s increases going CCW), radial (Y points towards center of Yellow), vertical points up. Stable spin precession direction in Figs. 43, 44 is obtained from 1-turn spin matrix.

Figure 43: Components of stable spin precession direction at IP6, and spin tune.

Figure 44: Components of stable spin precession direction at pC-polarimeter.

step #	$ u_{ m sp}$	STAR			pC-polarimeter			
		$n_{0,X}$	$n_{0,Y}$	$n_{0,Z}$	$n_{0,X}$	$n_{0,Y}$	$n_{0,Z}$	
0	0.06214	-5.93769E-02	-0.42047	0.90535	0.16196	-0.41048	0.89737	
1	0.06462	3.41321E-02	-0.49669	0.86724	5.70525E-02	-0.47834	0.87631	
2	0.06803	0.11922	-0.55944	0.82024	-3.97697E-02	-0.53371	0.84473	
3	0.07223	0.19409	-0.60933	0.76879	-0.12603	-0.57722	0.80681	
4	0.07710	0.25857	-0.64798	0.71642	-0.20122	-0.61043	0.76608	
5	0.08252	0.31339	-0.67741	0.66548	-0.26579	-0.63535	0.72503	
6	0.07858	0.28135	-0.79081	0.54354	-0.18461	-0.75165	0.63318	
7	0.07700	0.23797	-0.88697	0.39578	-9.20225E-02	-0.85199	0.51539	
8	0.07792	0.17404	-0.97216	0.26762	4.43482E-03	-0.92483	0.38034	
9	0.08127	0.13066	-0.98872	7.30632E-02	9.58899E-02	-0.96566	0.24149	
10	0.08678	7.71128E-02	-0.99432	-7.30264E-02	0.17598	-0.97807	0.11131	

Table 2: Spin tune, and \vec{n}_0 vectors at STAR and at pC-polarimeter.

3.2.2 Reversal of vertical polarization: ring data

Direct triedra (X,Y,Z): long. (s increases going CCW), radial (Y points towards center of Yellow), vertical points up. Stable spin precession direction in Figs. 45, 46 is obtained from 1-turn spin matrix.

Figure 45: Components of stable spin precession direction at IP6, and spin tune.

Figure 46: Components of stable spin precession direction at pC-polarimeter.

step #	$ u_{ m sp}$		STAR		pC	2-polarime	ter
		$n_{0,X}$	$n_{0,Y}$	$n_{0,Z}$	$n_{0,X}$	$n_{0,Y}$	$n_{0,Z}$
0	0.06207	0.0594	0.4205	-0.9054	0.1619	-0.4105	0.8974
1	0.06407	-0.0341	0.4967	-0.8673	0.0740	-0.4679	0.8807
2	0.06672	-0.1192	0.5594	-0.8203	-0.0086	-0.5166	0.8562
3	0.04535	-0.1941	0.6093	-0.7688	0.0343	-0.7655	0.6425
4	0.03703	-0.2586	0.6480	-0.7164	0.0770	-0.9396	0.3335
5	0.03502	-0.3134	0.6774	-0.6655	0.1062	-0.9938	0.0331
6	0.03650	-0.2813	0.7908	-0.5435	0.1259	-0.9532	-0.2748
7	0.04428	-0.2380	0.8870	-0.3958	0.1338	-0.7844	-0.6056
8	0.06528	-0.1860	0.9543	-0.2337	0.1253	-0.5287	-0.8395
9	0.06355	-0.1307	0.9887	-0.0730	0.1827	-0.4479	-0.8752
10	0.06254	-0.0771	0.9943	0.0730	0.2405	-0.3583	-0.9021

Table 3: Spin tune, and \vec{n}_0 vectors at STAR and at pC-polarimeter.

3.3 Determine coil current from fitting, imposing constant spin tune

The fitting procedure has 4 variables: the 4 sake currents. It has 4 constraints: the 3 components of the stable spin precession direction at pC-polarimeter, and the spin tune.

3.3.1 Vertical to radial polarization: ring data

Direct triedra (X,Y,Z): long. (s increases going CCW), radial (Y points towards center of Yellow), vertical points up.

Stable spin precession direction in Fig. 47 is obtained from 1-turn spin matrix.

Spin tune 0.06 - a first series of constraint weights - Variables and constraints (and their weight) in the FIT/REBELOTE sequence for step by step scan is as follows:

Results are displayed in Figs. 47, 48.

Figure 47: Components of stable spin precession direction at pCPol, and spin tune.

Spin tune 0.06 - a second series of constraint weights - and Z spin \vec{n}_0 component values, relax as well on penalty:

'FIT2'		
4 save fitVals_	_n0_pCPol	
6 28 0 .9 !	! snake 1 (9 o'cl	lock) low B current
63209	snake 1 (9 o'c)	lock) high B current
6 3 6 0 0 1	l analta 2 (2 ol al	look) lou B current
6 36 0 .9	: Sliake 2 (3 0 Cl	IOCK) IOW B CUITERL
6 40 0 .9 !	! snake Z (3 o'c)	lock) nigh B current
4 1e-6 300		
10.3 1 1 #End 0	0. 1.e3 0 !	! maintain SX~0.; loose constraint
10.3 1 2 #End 0	0. 1. 0 !	! start with SY=0, REBELOTE will increase to 1.
10 3 1 3 #End 1	1 1 0	I start with S7=1 REBELOTE will decrease to 0
10.4 1.1 #End 0		. Scare with 55 1, hebberly will accrease to 0.
10.4 I I #Elia .0	00.1 0	: Spin tune maintained constant, strong constraint
FAISCEAU		
'SPNPRT' MATRIX P	PRINT	
'REBELOTE'		
10 0.1 0 1		! 10 additional steps
1		
F112 /4 0.1:1.		! Si constraint, increase from .1 to 1
FIT2 75 5.20.	40. 80. 200. 80.	. 40. 20. 10. 1. ! its weight
FIT2 84 0.9:0.		! SZ constraint, decrease from .9 to 0
FIT2 85 5.20.	40. 80. 200. 80.	. 40. 20. 10. 1. ! its weight

Results are displayed in Figs. 49, 50, detailed snake current values are given in Tab. 4.

Figure 49: Vertical to radial polarization exchange: components of stable spin precession direction at pCPol, with constant spin tune $\nu_{\rm sp} = 0.06$.

Figure 48: Snake currents (can be compared with Figs. 24, 25 page 8)

Relax on X component and on intermediate Y

Figure 50: Vertical to radial polarization exchange: snake currents (can be compared with non-constant ν_{sp} case of Figs. 24, 25, page 8). Detailed values are given in Tab. 4.

	9 oclock snake		3 oclock snake		
step #	$I1_{out}$	$I1_{in}$	$I2_{out}$	$I2_{in}$	
0.00	191.87844	204.64519	160.39338	219.43131	
1.00	196.17300	209.56110	160.64605	226.32252	
2.00	197.49818	213.54697	160.05965	228.64614	
3.00	197.41452	217.59918	159.59859	228.36775	
4.00	197.33729	220.03104	158.80599	227.86840	
5.00	197.13436	221.31062	158.57964	227.47993	
6.00	196.63208	226.56090	155.41987	227.43498	
7.00	196.83126	228.17767	152.15385	229.45722	
8.00	197.69624	227.87016	147.97539	231.97321	
9.00	193.10422	232.22474	147.48606	225.32010	
10.0	190.98916	227.93243	137.77474	224.12903	

Figure 51: Vertical to radial polarization exchange: orbits along 3OClock and 9OClock snakes at $G\gamma = 45.5$ over the ten steps of vertical to radial adjustment (cf. Figs. 49, 50)

Figure 52: Vertical to radial polarization exchange, case of $\nu_{\rm sp} = 0.06$; motion of spin \vec{n}_0 at IP6, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical IP6. Case of defect-free RHIC lattice

Spin tune 0.056 - Variables and constraints (and their weight) for a FIT/REBELOTE sequence for step by step scan is as follows:

'FIT2' 4 save fitVals_n0_pCPol 6 28 0 .9 6 32 0 .9 ! snake 1 (9 o'clock) low B current ! snake 1 (9 o'clock) high B current 6 36 0 .9 ! snake 2 (3 o'clock) low B current ! snake 2 (3 o'clock) high B current 6 40 0 .9 4 1e-6 300 1 1 #End 0. 1.e3 0 1 2 #End 0. 1. 0 1 3 #End 1. 1. 0 1 1 #End .056 .1 0 ! maintain SX~0.; loose constraint ! start with SY=0, REBELOTE will increase to 1. ! start with SZ=1, REBELOTE will decrease to 0. 10.3 10.3 10.3 10.4 0 ! Spin tune maintained constant, strong constraint 'FAISCEAU' 'SPNPRT' MATRIX PRINT 'REBELOTE' 10 0.1 0 1 ! 10 additional steps FIT2 74 0.1:1. ! SY constraint, increase from .1 to 1. 5. 20. 40. 80. 200. 80. 40. 20. 10. 1. ! its weight 0.9:0. ! SZ constraint, decrease from .9 to 0. FTT2 75 FIT2 84 85 5. 20. 40. 80. 200. 80. 40. 20. 10. 1. ! its weight FIT2

Results are displayed in Figs. 53, 54, detailed snake current values are given in Tab. 5. A 5000 turn tracking for cross-check is displayed in Fig. 55.

Figure 53: Components of stable spin precession direction at pCPol, and spin tune.

Figure 54: Snake currents (can be compared with Figs. 24, 25 page 8). Two values of FIT penalty are tried, 1e-6 and 1e-9, they provide slightly different paths.

Table 5: Vertical to radial polarization exchange; snake currents (correspond to Figs. 53, 54)

	9 oclock snake		3 oclock snake	
step #	$I1_{out}$	$I1_{in}$	$I2_{out}$	$I2_{in}$
0.00	191.05221	205.23546	159.67288	220.06857
1.00	194.15039	211.35839	161.18629	225.47141
2.00	195.23940	214.77308	160.56429	227.04852
3.00	195.94735	217.79968	159.42372	227.95135
4.00	195.90515	220.29429	158.44052	227.23955
5.00	195.98908	220.78342	158.06495	227.28741
6.00	196.46859	224.64421	155.72585	231.13759
7.00	194.62559	228.98185	153.93455	228.89063
8.00	189.96476	234.85141	155.45070	221.39170
9.00	188.99741	235.07534	151.64309	221.12475
10.0	184.54184	231.87676	144.47979	216.27449

Figure 55: Vertical to radial polarization exchange, case $\nu_{\rm sp} = 0.056$; motion of spin \vec{n}_0 observed at pC-polarimeter, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical at pC-polarimeter, Case of defect-free RHIC lattice

Figure 56: Vertical to radial polarization exchange; components of stable spin precession direction at pCPol, with constant spin tune $\nu_{sp} = 0.03$.

Figure 57: Vertical to radial polarization exchange; snake currents (can be compared with non-constant ν_{sp} case of Figs. 24, 25, page 8). Detailed values are given in Tab. 6

— • • • <i>–</i> –						
Table 6: Ver	rtical to radial r	olarization exo	change: snake	currents (correst	ond to Figs.	56.57)

	9 oclock snake		3 oclock snake		
step #	$I1_{out}$	$I1_{in}$	$I2_{out}$	$I2_{in}$	
0.00	185.60569	209.87763	155.45401	223.97781	
1.00	186.39633	214.97334	158.10399	225.83712	
2.00	187.45756	216.42659	157.37571	227.44329	
3.00	187.54336	218.17720	157.21401	227.62576	
4.00	187.74851	219.63344	156.54356	228.02416	
5.00	187.74937	219.90594	156.39506	228.07882	
6.00	187.39842	222.77682	155.04998	228.78774	
7.00	185.26239	225.71885	155.69754	224.86447	
8.00	184.04235	227.42992	155.03585	223.49143	
9.00	183.67640	227.35986	152.78126	223.68435	
10.0	181.47245	226.08769	149.53608	221.02084	

3.3.2 Reversal of vertical polarization

Spin tune 0.056 - Variables and constraints (and their weight) in the FIT/REBELOTE sequence for step by step scan is as follows:

```
'FIT2'
 4
      save fitVals n0 pCPol
 6 28 0 .9
                       snake 1 (9 o'clock) low B current
 6 32 0 .9
                       snake 1 (9 o'clock) high B current
snake 2 (3 o'clock) low B current
 6 36 0 .9
 6 40 0 .9
                       snake 2 (3 o'clock) high B current
 4 le-6 300
                         1.e3 0
                                       ! maintain SX~0.; loose constraint
 10.3
       1 1 #End 0.
 10.3
         1 2 #End 0.
                         1.
                               0
                                        ! start with SY=0, REBELOTE will increase to 1.
                                       ! start with SZ=1, REBELOTE will decrease to 0.
! Spin tune maintained constant, strong constraint
 10.3
         1
           3
             #End
                   1.
                        1.
                               0
         1 1 #End .056
                          .1
 10.4
                                0
'FAISCEAU'
'SPNPRT'
            MATRIX PRINT
'REBELOTE'
10 0.1 0 1
                                                        ! 10 additional steps
4
FIT2
        74
                                                      ! SY constraint, ends up 0 as at start
             0.1:0.
             0.1:0.
5. 20. 40. 80. 200. 80. 40. 20. 10. 1. ! its weight
0.9:-1. ! SZ constraint, ends up flipped
FIT2
        75
FTT2
        84
             0.9:-1.
             5. 20. 40. 80. 200. 80. 40. 20. 10. 1. ! its weight
FIT2
        85
```

Results are displayed in Figs. 58, 59 and Tab. 7. A 5000 turn tracking check is displayed in Fig. 61.

direction at pCPol, and spin tune.

Figure 58: Spin flip; components of stable spin precession

Figure 59: Spin flip; snake currents

	9 ocloc	k snake	3 ocloc	k snake
step #	$I1_{out}$	$I1_{in}$	$I2_{out}$	$I2_{in}$
0.00	191.11102	205.27089	159.70140	220.11138
1.00	190.97453	215.23148	164.65156	221.73555
2.00	192.21764	219.10160	165.14016	228.10751
3.00	191.89136	222.29549	165.36883	233.08808
4.00	193.29926	221.73338	162.63299	239.71622
5.00	192.79550	223.41891	161.03232	243.05032
6.00	190.46811	225.60525	159.84549	245.79852
7.00	187.98431	228.00066	158.63360	246.32461
8.00	184.24024	230.33758	156.51299	246.32642
9.00	178.23768	232.98493	154.28758	243.79868
10.0	168.17614	229.96669	146.02882	236.94956

Table 7: Vertical to radial polarization exchange; snake currents (correspond to Figs. 58, 59)

Figure 60: Spin flip, case $\nu_{\rm sp} = 0.056$; motion of spin \vec{n}_0 observed at IP6, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical at IP6. Case of defect-free RHIC lattice

Figure 61: Spin flip, case $\nu_{\rm sp} = 0.056$; motion of spin \vec{n}_0 observed at pC-polarimeter, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical at pC-polarimeter, Case of defect-free RHIC lattice

Spin tune 0.03 - Variables and constraints (and their weight) in the FIT/REBELOTE sequence for step by step scan is as follows:

'FIT2'														
4 sa	ave f	fitVals_n0_pCPol												
6 28 0	.9 ! snake 1 (9 o'clock) low B current													
6 32 0	.9	! snake 1 (9 o'clock) high B current												
6360	.9		! sr	ake 3	B current									
6 40 0	.9 ! snake 2 (3 o'clock) high B current													
4 le-6 300														
10.3	1 1	#End	0.	1.e3	0	!	mair	ntair	n SX~0.; loose constraint					
10.3	1 2	#End	0.	1.	0	!	stai	ct wi	ith SY=0, REBELOTE will increase to 1.					
10.3	1 3	#End	1.	1.	0	!	stai	ct wi	ith SZ=1, REBELOTE will decrease to 0.					
10.4	1 1	#End	.03	.1	0	!	Spir	n tur	ne maintained constant, strong constraint					
'FAISCEAU'														
'SPNPRT' MATRIX PRINT														
'REBELOTE'														
10 0.1	0 1								! 10 additional steps					
4														
FIT2 7	74	0.1:0							! SY constraint, ends up 0 as at start					
FIT2 7	75	5. 20	. 40.	80.	200.	80.	40.	20.	10. 1. ! its weight					
FIT2 8	34	0.9:-3	1.						! SZ constraint, ends up flipped					

Results are displayed in Figs. 62, 63 and Tab. 8.

Figure 62: Spin flip, case $\nu_{sp} = 0.03$; components of stable spin precession direction at pCPol, and spin tune.

Figure 63: Spin flip, case $\nu_{sp} = 0.03$; snake currents

Table 8: Spin flip, case $\nu_{sp} = 0.03$; snake currents (correspond to Figs. 62, 63

	9 ocloc	k snake	3 oclock snake		
step #	$I1_{out}$	$I1_{in}$	$I2_{out}$	$I2_{in}$	
0.00	185.60569	209.87763	155.45401	223.97781	
1.00	186.39633	214.97334	158.10399	225.83712	
2.00	187.53374	216.68856	158.02268	230.42388	
3.00	187.60721	218.49601	157.51042	233.05578	
4.00	189.21352	216.40050	155.00736	238.22951	
5.00	188.40176	218.21973	154.42654	239.04661	
6.00	186.83031	219.64834	154.01458	239.98166	
7.00	184.80642	221.30386	153.56985	240.01427	
8.00	182.48285	222.91981	152.65502	239.45064	
9.00	179.49039	223.96664	151.53702	238.28708	
10.0	175.41416	221.28520	146.41859	235.69575	

3 IN RHIC YELLOW CCW AT INJECTION

Snake current SCALING function for a sweep (Fig. 66):

Figure 64: Spin flip, case $\nu_{sp} = 0.056$; motion of spin \vec{n}_0 at IP6, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical at IP6. Case of defect-free RHIC lattice

Mi-ma H/V: 1.00000E+00 5.00000E+03/ -1.00000E+00 1.00000E+00 Part# 1- 10000 (*); Lmnt# 1; pass# 1- 5001, [1]

* # COORDINATES - STORAGE FILE, 12-04-2022 06:02:16 *

Figure 65: Spin components at IP6 (left vertical axis), spin tune and betatron tune from Fourier analysis (right V axis). $\nu_{\rm sp} = 0$ in the region [2000,3500] is probably an artifact, TBC.

3000

Turn regior

4000

1000

2000

Figure 66: Spin flip, case $\nu_{\rm sp} = 0.056$; motion of spin \vec{n}_0 at pC-polarimeter, in the case of a continuous, 5000 turn ramp through the 10 steps, starting with \vec{n}_0 vertical at pC-polarimeter. Case of defect-free RHIC lattice

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

'sp,

n_o v

٦_{0 7}

/sc

v_Z-0.69

5000

4 APEX results: tentative simulation approach

4.1 Synchronized ramp (March 30th APEX)

Measured currents are displayed in Fig. 67, measurement data provided by Haixin.

Figure 67: Measured snake currents, March 30th APEX, vertical to radial polarization.

4.1.1 Polarization vector, expectations

• To check that working hypotheses are ok, a scan is performed first. Using SPINR for a change, results in TOSCA case are detailed in earlier Sections: field maps (using TOSCA) are replaced by pure spin rotation, SPINR. Orbits are maintained at entrance of snakes, canceled downstream, Fig. 68, as with field maps.

A sanity check: both methods yield same \vec{n}_0 results, Fig. 69, a good point.

Figure 68: Local orbit bumps in SPINR segments, similar to field map case

Figure 69: A scan of polarization vector at the 11 snake angle steps of the vertical to radial APEX. Left: using SPINR; right: using field maps.

• Back to using field maps, snake coils power supplies are now ramped following March 30th APEX operation, still just 1 particle launched on RHIC closed orbit. Expected polarization vector motion so obtained is displayed in Fig. 70.

Figure 70: Motion of spin \vec{n}_0 observed at pC-polarimeter, case of a single particle on closed orbit over 5,000 turns. Continuous vertical to radial polarization exchange over 5000 turns. Case of $\nu_{\rm sp} = 0.066$, constant. Linear interpolation of snake currents between steps. Observation is at pC-polarimeter, starting spin is \vec{n}_0

Snake coil currents are changed continuously over 5,000 turns. Figure 70 is fully consistent with the stationary scan using SPINR in Fig. 69. Note that ramp speed does not matter much: 500 turns yield similar result to the present 5000 turn ramp.

4.1.2 6D bunch tracking, 15,000 turns, using field maps

The initial 6D bunch launched in this tracking is shown in Fig. 71.

Figure 71: Left: transverse phase-spaces, $2.5 \,\mu\text{m}$ normalized. Right: longitudinal, dp/p in $\pm 510^{-4}$, dt= ± 50 /c= $\pm 80 \,\text{ns} \Rightarrow 2310^9 \times 0.0005 * 8010^{-9} \approx 0.9 \,\pi\text{eV.s}$ (not matched to the RF bucket).

Double-RF parameters:

'CAVITE' 2 3833.84857 { 120., 2520. } ! Orbit length, harmonic numbers. { 17.d3, 11.d3 } 3.14159265359 ! Volts, synch. phase.

Outcomes of the 5000 turn tracking:

- transverse phase spaces (initially as shown in Fig. 71) are preserved, $2.5 \pi \mu m$ norm. all the way. This is an indication that tracking using snake field maps (TOSCA) behaves well - a possible double-check: re-do using SPINR (pure spin rotation) and compare particle dynamics;

- longitudinal phase space over 15,000 turns is displayed in Fig. 72.

- Figure 73 displays a few individual particle spin motion, their turn-by-turn average over 1,000 particles, and polarization (i.e., the average value of the projection of individual spins on the average spin vector).

Figure 73: Polarization rotation from vertical to radial, a few individual particle spin motion, and spin component averages. An initial 5000 turns is allowed to allow momentum spread and polarization to stabilize. Snake currents then are ramped smoothly over 10,000 turns. Initial bunch is shown in Fig. 71: transverse emittances $2.5 \pi \mu m$ normalized, Gaussian, momentum spread dp/p in $\pm 10^{-3}$, longitudinal motion is shown in Fig. 72.

Appendix

A Optical sequences for 9 o'clock snake in Yellow, going clockwise

The file below includes the FIT command to get low-field (coils 1 and 4) and high-field (coils 2 and 3) currents, given spin precession angle and precession vector constrained values.

Snake 1. 9 o'clock snake, in Yellow going clockwise. 'OBJET' 'DRIFT' 2.162m_C2toC3 79.366778931425273 * 1d3 -37.6 1 1 1 1 1 0.00. 0.00. 0.00. 0.00. 0.00 0.000000E+00 0. 0. 0.85093379 0. 0. 1. 'TOSCA' snk1HighB 0 0002 ! .plt +1. 1.000. 1.000. 1.0000000E+00 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 'PARTICUL' ! = 1/4.060e4PROTON b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table 0 0 0 0 'SPNTRK' 2 .3 1.0000000E+00 0.0000000E+00 0.0000000E+00 2 0.000. 0.000. 0.0000000E+00 0.0000000E+00 1.0000000E+00 0.0000000E+00 0.00000000E+00 0.0000000E+00 1.0000000E+00 'DRIFT' 2.162m_C3toC4 -98.800000 'SCALING' 1 2 'TOSCA' snklLowB TOSCA snk1LowB 0 0002 ! .plt -1. 1.000. 1.0 -1 1.000. 1.00000000E+00 164.16759 ! low-field coils current (A) HEADER_8 RHIC_helix 361 81 81 15.1 0.748502994012e-4 ! = 1/1.3360e4TOSCA snk1HighB b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table 0 0 0 0 220.45332 ! high-field coils current (A) .3 2 0.000. 0.000. 0.0000000E+00 ! start snake 1 'DRIFT' 'MARKER' SNK1 16.4 'DRIFT' -78.2 'DRIFT' -78.2 'DRIFT' 3.6 ! end snake 1 'DRIFT' 16.4 'FAISCEAU' 'SPNPRT' MATRIX 'TOSCA' snk1LowB 0 0002 ! .plt 'FIT2' 1.0000. 1.00000000E+00 1.0000. 1 42 0 .1 ! Z_0, vertical position of reference orbit at OBJET. 4 4 0 .1 ! Low B coil current. b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table . 80.1 5 1e-12 7.3 ! High B coil current. 0 0 0 0 2 7.3 1 4 12 0. 1.0 ! Vertically center traj #1 in 3rd helix; .3 10.2 1 0 #End 3.14159265359 10.3 1 1 #End 1. 1. 0 10.3 1 2 #End 0. 1. 0 ! D-group 1. Spin rotation angle = pi; ! X component of rotation axis = cos 0deg; 1. 0 2 0.0000. 0.0000. 0.0000000E+00 'DRIFT' 2.162m_C1toC2 ! Y component of rotation axis = sin Odeg. -98.800000 10 1 4 #End 1 1 0 ! |S|==1. ! FIT DATA FOR PRECESSION AXIS AT 10DEG TO X AXIS: 'TOSCA' snklHighB 0 0002 !.plt -1. 1.0000. 1.0000. 1.0000000E+00 ! 'FIT2' ! 1 42 0 . 2 ! Z 0, vertical position of reference orbit at OBJET. ! 4 4 0 .2 ! 4 8 0 .2 Low B coil current. HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 != 1/4.060e4 ! High B coil current. ! 5 1e-12 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table ! 7.3 1 4 12 0. ! 10.2 1 0 #End 3.14159265359 ! Vertically center traj #1 in 3rd helix; 1. 0 0 0 0 0 1. 0 1. 0 ! D-group 1. Spin rotation angle = pi; ! X component of rotation axis = cos 10deg; 2 10.3 1 1 #End 0.984807753012 .3 2 0.0000. 0.0000. 0.0000000E+00 ! 10.3 1 2 #End 0.173648177667 1. 0 ! Y component of rotation axis = sin 10deg; ! 10 1 4 #End 1. .1 0 ! |S|==1. DRIFT' YO9_B7.1 VMON ! center of 9 oclock snake 'END' -37.6

Optical sequences for μ **and** ϕ **scan for transparency experiment** B

OBJET'

'END'

3 1 1 1 1 1

79.366778931425273d3

The file below includes the FIT+REBELOTE commands. They result in Figs. 24, 25.

Snake 1. 9 o'clock snake in Yellow, going counter-clockwise. 'OBJET' 79.366778931425273 * 1d3 1 3 1 1 1 1 1 0.0 0.0 0.0 0.0 0.00 0.000000E+00 0. 0. -1.3206397 0. 0. 1. 'PARTICUL' PROTON 'SPNTRK' 4 1.000 0.000 0.0000000E+00 0.00000000E+00 0 0 0 0 1.000 0.000 0.000 1.0000000E+00 'SCALING' 1 2 TOSCA snk1LowB 184.47838 ! low-field coils current (A) snk1HighB TOSCA 198.70954 ! high-field coils current (A) 1 snk1Low^B 'TOSCA' 1.000 1.0000000E+00 ! = 1/1.3360e4b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table etc. 'DRIFT' 2.162m_CltoC2 -98.800000 snk1HighB 'TOSCA' 0 0002 !.plt HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 ! = 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table etc. 'DRIFT' YO9_B7.1 VMON ! center of 9 oclock snake -37.6 'DRIFT' 2.162m_C2toC3 -37.6 'TOSCA' snk1HighB 0 0002 ! .plt 1.000 1.0000000E+00 -1 1.000 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 != 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table etc. 'DRIFT' 2.162m_C3toC4 -98.800000 'TOSCA' snk1LowB 0 0002 ! .plt 0 0002 ! .plt +1. 1.000 1.000 1.00000000E+00 HEADER_8 RHIC_helix 361 81 81 15.1 0.748502994012e-4 ! = 1/1.33 b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table ! = 1/1.3360e4etc. 'FTT2' save ! Save variable values, penalty, etc., to zgoubi.FITVALS.out. 3 1 42 0 1.5 ! Z_0, vertical position of reference orbit at OBJET. ! Low B coil current. 4 4 0 1.5 8 0 1.5 ! High B coil current. 1e-12 5 7.3 1 4 10 1. 0 ! Vertically center traj #1 in 3rd helix; 10.2 1 0 #End 3.14159265359 1. 0 ! D-group 1. Spin rotation angle = 180; 10.3 1 1 #End -0.984807753012 1. 0 ! X component of rot. axis=cos(-10deg); 10.3 1 2 #End 0.173648177667 .01 0 ! Y component of rot. axis=sin(-10deg); 1 4 #End 1. .1 0 10 'FAISCEAU' 'SPNPRT' MATRIX PRINT 'REBELOTE' 12 0.1 0 1 3 ! 1 2 3 4 5 6 FIT2 64 3.1415926 3.14159265 3.14159265 3.14159265 3.14159265 3.0892327 3.0368728 2.9845130 2.932153143 2.87979326579 2.87979326579 FIT2 74 -0.9848077 -.98480775 -.984807753 -.984807753 -.98480775 -.9848077530

'SPNPRT' MATRIX PRINT ! Shows final case results, just for check. 'SYSTEM' 1

E+00 0.000000E+00 0.000000E+00 0.85357994 0. 0.00 1.00000000E+00 0.000000E+00 0.00 0.000000E+00 0.000000E+00 Ο. Ο. 'PARTICUL' PROTON 'SPNTRK' 4 1.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 'SCALING' 1 2 TOSCA snk2LowB 164.43807 ! low-field coils current (A) TOSCA snk2HighB 220.65730 ! high-field coils current (A) 'TOSCA' sn 0 002 ! .plt snk2LowB +1. 1.0000000E+00 1.0000000E+00 1.0000000E+00 HEADER 8 RHTC_helix 361 81 81 15.1 0.748502994012e-4 != 1/1.3360e4 b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table etc. 'DRIFT' 2.162m_C1toC2 -98.800000 'TOSCA' snk2HighB 0 002 !.plt -1. 1.0000000E+00 1.0000000E+00 1.0000000E+00 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 != 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table etc. YI3_B7.1 VMON ! center of 3 oclock snake 'DRIFT' -37.6 'DRIFT' 2.162m_C2toC3 -37.6 'TOSCA' snk2HighB 0 002 ! .plt +1. 1.0000000E+00 1.0000000E+00 1.0000000E+00 HEADER_8 RHIC_helix 361 81 81 15.1 0.246305418719e-4 ! = 1/4.060e4 b_model3a2a322a-x-4_4_y-4_4_z-180_180-integral.table etc. 'DRIFT' 2.162m_C3toC4 -98.800000 'TOSCA' sr 0 002 ! .plt snk2LowB -1. 1.0000000E+00 1.0000000E+00 1.0000000E+00 HEADER_8 RHIC_helix 361 81 81 15.1 0.748502994012e-4 ! = 1/1.3360e4 b_model3a2a-x-4_4_y-4_4_z-180_180-integral.table etc. 'FTT2' 3 save ! Save variable values, penalty, ... to zgoubi.FITVALS.out. 1 42 0 1.5 ! Z_0, vertical position of reference orbit at OBJET. 4 4 0 1.5 ! Low B coil current. 4 8 0 ! High B coil current. 1.5 5 1e-12

 5
 1e=12

 7.3
 1
 4
 10
 0.
 1.0
 ! Vertically center traj #1
 11
 5.0
 1.0

 10.2
 1
 0
 #End
 3.14159265359
 1.0
 ! D-group 1. Spin rotation angle = 180;

 10.3
 1
 #End
 1.
 1.0
 ! X component of rotation axis = cos(0);

 10.3
 1.2
 #End
 0.
 .10
 ! Y component of rotation axis = sin(0);

 ! |S|==1. 1 4 #End 1. .1 0 'FAISCEAU' 'SPNPRT' MATRIX PRINT 'REBELOTE' 12 0.1 0 1 1 0 FIT2 64 3.1415926535 3.0892327760 3.0368728984 2.9845130209 2.93215314335 -0.9902680687 -0.9945218953 -0.997564050 -0.999390827 -1. -1. 2.87979326 2.8797928 2.8797928 2.87979326 2.87979326 2.8797928 2.87979 'SYSTEM' 1 gnuplot <./gnuplot_FITVALS.gnu</pre>

Snake 2. 3 o'clock snake in Yellow, going counter-clockwise.

gnuplot <./gnuplot_FITVALS.gnu

References

 F. Méot, Gupta, R., Huang, H., Ranjbar, V., Robert-Demolaize, G.: Re-visiting RHIC snakes: OPERA fields, *n*₀ dance. C-A/AP/590; BNL-114379-2017-IR (Sept. 2017). https://technotes.bnl.gov/PDF?publicationId=42159