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EXACT MAPS TO SECOND ORDER FOR SELECTED ELEMENTS IN
MAD-X VARIABLES

J. Scott Berg∗, Brookhaven National Laboratory†, Upton, NY, USA

Abstract

This report presents calculations for exact maps to second
order about an arbitrary orbit for certain elements: drifts,
solenoids, and rotations about a transverse axis. These ex-
pressions were used in recent updates to MAD-X, and thus
the phase space variables used are those of MAD-X. Formu-
las are given here for the final orbit and its first and second
derivatives with respect to the incoming phase space coordi-
nates for a drift, solenoid, and coordinate system rotations
about transverse axes. I do not claim these results to be
new: these expressions are well-known, and are presented
here only for reference. This document does not collect all
maps that could be expressed exactly, in particular dipoles
are omitted.

INTRODUCTION

Exact expressions for the maps through certain elements
are well known; see, for instance, Ref. [1]. For the TWISS
command in MAD-X, the map about the orbit and its first
and second derivatives are needed in general. MAD ver-
sion 8 would preform computations using third order maps
about the zero phase space vector [2], and that model was
originally carried over to MAD-X. However, when a particle
follows a trajectory that is far off axis thorough a magnet
(or a drift), this could introduce unnecessary errors into the
calculation. Systems with such off-axis design orbits often
require coordinate transformations to be implemented; thus
I include expressions for the nontrivial forms of those as
well (rotations about a transverse axis). For implementation
of the exact maps in MAD-X, expressions for the map and
its first two derivatvies are needed; this report gives those
expressions, sufficient background to understand their calcu-
lation, and forms to improve numerical properties in a couple
cases. The only cases included are the drift, the solenoid,
and rotations about a transverse axis. I did not include ex-
pressions for a dipole, since the model in MAD-X handles
cases where there would be no exact expression (a dipole
with a quadrupole component, for instance). Other cases
cannnot be expressed exactly (a quadrupole, for instance);
though with some approximations many expressions could
be found, I do not propose to derive them here.
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VARIABLES AND HAMILTONIAN
The transverse variables are 𝑋 , 𝑃𝑥 = 𝑝𝑥/𝑝0, 𝑌 , and 𝑃𝑦 =

𝑝𝑦/𝑝0, where 𝑝𝑥 and 𝑝𝑦 are the physical momenta and 𝑝0
is an arbitrary reference momentum in the same physical
dimensions. The Hamiltonian, with 𝑠 as the independent
variable is scaled by 𝑝0. The longitudinal coordinate is
𝑇 = −𝑐[𝑡 − 𝑡0 (𝑠)], and its conjugate momentum is 𝑃𝑡 =

(𝐸 − 𝐸0)/(𝑝0𝑐). 𝐸0 is the total energy corresponding to
𝑝0, and similarly the relativistic parameters 𝛽0 and 𝛾0 used
below will also correspond to 𝑝0.

Hamilton’s equations of motion in these variables are

𝑑𝑋

𝑑𝑠
=

𝜕𝐻

𝜕𝑃𝑥

𝑑𝑃𝑥

𝑑𝑠
= −𝜕𝐻

𝜕𝑋
(1)

𝑑𝑌

𝑑𝑠
=

𝜕𝐻

𝜕𝑃𝑦

𝑑𝑃𝑦

𝑑𝑠
= −𝜕𝐻

𝜕𝑌
(2)

𝑑𝑇

𝑑𝑠
=

𝜕𝐻

𝜕𝑃𝑡

𝑑𝑃𝑡

𝑑𝑠
= −𝜕𝐻

𝜕𝑇
(3)

DRIFT
In these variables, the Hamiltonian for a drift is

−
√︃

1 + 2𝛽−1
0 𝑃𝑡 + 𝑃2

𝑡 − 𝑃2
𝑥 − 𝑃2

𝑦 = −𝑃𝑠 (4)

Thus the map for a drift of length 𝐿 is

𝑋1 = 𝑋0 +
𝑃𝑥0
𝑃𝑠0

𝐿 𝑃𝑥1 = 𝑃𝑥0 (5)

𝑌1 = 𝑌0 +
𝑃𝑦0

𝑃𝑠0
𝐿 𝑃𝑦1 = 𝑃𝑦0 (6)

𝑇1 = 𝑇0 +
𝐿

𝛽0
−

𝛽−1
0 + 𝑃𝑡0

𝑃𝑠0
𝐿 𝑃𝑦1 = 𝑃𝑦0 (7)

For better numerical precision, the time equation can be
written as

𝑇1 = 𝑇0 +
𝛾−2

0 (2𝛽−1
0 𝑃𝑡0 + 𝑃2

𝑡0) − 𝑃2
𝑥0 − 𝑃2

𝑦0

𝛽2
0𝑃𝑠0 (𝛽−1

0 𝑃𝑠0 + 𝛽−1
0 + 𝑃𝑡 )

𝐿 (8)

The nontrivial first derivatives of this map are given by

𝜕𝑋1
𝜕𝑃𝑥0

=

(
1
𝑃𝑠0

+
𝑃2
𝑥0

𝑃3
𝑠0

)
𝐿 (9)

𝜕𝑋1
𝜕𝑃𝑦0

=
𝑃𝑥0𝑃𝑦0

𝑃3
𝑠0

𝐿 (10)

𝜕𝑋1
𝜕𝑃𝑡0

= −
𝑃𝑥0 (𝛽−1

0 + 𝑃𝑡0)
𝑃3
𝑠0

𝐿 (11)

𝜕𝑌1
𝜕𝑃𝑦0

=

(
1
𝑃𝑠0

+
𝑃2
𝑦0

𝑃3
𝑠0

)
𝐿 (12)



𝜕𝑌1
𝜕𝑃𝑡0

= −
𝑃𝑦0 (𝛽−1

0 + 𝑃𝑡0)
𝑃3
𝑠0

𝐿 (13)

𝜕𝑇1
𝜕𝑃𝑡0

= − 𝐿

𝑃𝑠0
+
(𝛽−1

0 + 𝑃𝑡0)2

𝑃3
𝑠0

𝐿 (14)

and the symmetry conditions

𝜕𝑌1
𝜕𝑃𝑥0

=
𝜕𝑋1
𝜕𝑃𝑦0

𝜕𝑇1
𝜕𝑃𝑥0

=
𝜕𝑋1
𝜕𝑃𝑡0

𝜕𝑇1
𝜕𝑃𝑦0

=
𝜕𝑌1
𝜕𝑃𝑡0

(15)

Some of these can be rewritten for improved numerical prop-
erties

𝜕𝑋1
𝜕𝑃𝑥0

=
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 − 𝑃2

𝑦0

𝑃3
𝑠0

𝐿 (16)

𝜕𝑌1
𝜕𝑃𝑦0

=
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 − 𝑃2

𝑥0

𝑃3
𝑠0

𝐿 (17)

𝜕𝑇1
𝜕𝑃𝑡0

=
𝛽−2

0 𝛾−2
0 + 𝑃2

𝑥0 + 𝑃2
𝑦0

𝑃3
𝑠0

𝐿 (18)

The second derivatives are given by

𝜕2𝑋1

𝜕𝑃2
𝑥0

= 3
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 − 𝑃2

𝑦0

𝑃5
𝑠0

𝑃𝑥0𝐿 (19)

𝜕2𝑋1
𝜕𝑃𝑥0𝑃𝑦0

=

(
1
𝑃3
𝑠0

+ 3
𝑃2
𝑥0

𝑃5
𝑠0

)
𝑃𝑦0𝐿 (20)

𝜕2𝑋1
𝜕𝑃𝑥0𝑃𝑡0

= −
(

1
𝑃3
𝑠0

+ 3
𝑃2
𝑥0

𝑃5
𝑠0

)
(𝛽−1

0 + 𝑃𝑡0)𝐿 (21)

𝜕2𝑋1

𝜕𝑃2
𝑦0

=

(
1
𝑃3
𝑠0

+ 3
𝑃2
𝑦0

𝑃5
𝑠0

)
𝑃𝑥0𝐿 (22)

𝜕2𝑋1
𝜕𝑃𝑦0𝑃𝑡0

= −3
𝑃𝑥0𝑃𝑦0 (𝛽−1

0 + 𝑃𝑡0)
𝑃5
𝑠0

𝐿 (23)

𝜕2𝑋1

𝜕𝑃2
𝑡0

=

(
3
(𝛽−1

0 + 𝑃𝑡0)2

𝑃5
𝑠0

− 1
𝑃3
𝑠0

)
𝑃𝑥0𝐿 (24)

𝜕2𝑌1

𝜕𝑃2
𝑦0

= 3
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 − 𝑃2

𝑥0

𝑃5
𝑠0

𝑃𝑦0𝐿 (25)

𝜕2𝑌1
𝜕𝑃𝑦0𝑃𝑡0

= −
(

1
𝑃3
𝑠0

+ 3
𝑃2
𝑦0

𝑃5
𝑠0

)
(𝛽−1

0 + 𝑃𝑡0)𝐿 (26)

𝜕2𝑌1

𝜕𝑃2
𝑡0

=

(
3
(𝛽−1

0 + 𝑃𝑡0)2

𝑃5
𝑠0

− 1
𝑃3
𝑠0

)
𝑃𝑦0𝐿 (27)

𝜕2𝑇1

𝜕𝑃2
𝑡0

= −3
𝛽−2

0 𝛾−2
0 + 𝑃2

𝑥0 + 𝑃2
𝑦0

𝑃5
𝑠0

(𝛽−1
0 + 𝑃𝑡0)𝐿 (28)

along with the symmetry conditions

𝜕2𝑌1

𝜕𝑃2
𝑥0

=
𝜕2𝑋1

𝜕𝑃𝑥0𝑃𝑦0
(29)

𝜕2𝑌1
𝜕𝑃𝑥0𝑃𝑦0

=
𝜕2𝑋1

𝜕𝑃2
𝑦0

(30)

𝜕2𝑇1
𝜕𝑃𝑥0𝑃𝑦0

=
𝜕2𝑌1

𝜕𝑃𝑥0𝑃𝑡0
=

𝜕2𝑋1
𝜕𝑃𝑦0𝑃𝑡0

(31)

𝜕2𝑇1

𝜕𝑃2
𝑥0

=
𝜕2𝑋1

𝜕𝑃𝑥0𝑃𝑡0
(32)

𝜕2𝑇1
𝜕𝑃𝑥0𝑃𝑡0

=
𝜕2𝑋1

𝜕𝑃2
𝑡0

(33)

𝜕2𝑇1

𝜕𝑃2
𝑦0

=
𝜕2𝑌1

𝜕𝑃𝑦0𝑃𝑡0
(34)

𝜕2𝑇1
𝜕𝑃𝑦0𝑃𝑡0

=
𝜕2𝑌1

𝜕𝑃2
𝑡0

(35)

For improved numerical properties, some sub-expressions
can be rewritten:

1
𝑃3
𝑠0

+ 3
𝑃2
𝑥0

𝑃5
𝑠0

=
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 + 2𝑃2

𝑥0 − 𝑃2
𝑦0

𝑃5
𝑥0

(36)

1
𝑃3
𝑠0

+ 3
𝑃2
𝑦0

𝑃5
𝑠0

=
1 + 2𝛽−1

0 𝑃𝑡0 + 𝑃2
𝑡0 − 𝑃2

𝑥0 + 2𝑃2
𝑦0

𝑃5
𝑥0

(37)

3
(𝛽−1

0 + 𝑃𝑡0)2

𝑃5
𝑠0

− 1
𝑃3
𝑠0

=

2(𝛽−1
0 + 𝑃𝑡0)2 + 𝛽−2

0 𝛾−2
0 + 𝑃2

𝑥0 + 𝑃2
𝑦0

𝑃5
𝑠0

(38)

ROTATION ABOUT THE Y AXIS
Say the coordinate plane is rotated by an angle 𝜃𝑦 about

the 𝑦 axis. Then the momenta are transformed by

𝑃𝑥1 = 𝑃𝑥0 cos 𝜃𝑦 − 𝑃𝑠0 sin 𝜃𝑦 (39)
𝑃𝑠1 = 𝑃𝑥0 sin 𝜃𝑦 + 𝑃𝑠0 cos 𝜃𝑦 (40)

𝑃𝑦 and 𝑃𝑡 are invariant so they are not subscripted with a 0
or 1. For a particle not at 𝑋0 = 0, the particle must be then
transported to the new plane. This transport results in

𝑋1 = 𝑋0
𝑃𝑠0
𝑃𝑠1

(41)

𝑌1 = 𝑌0 − 𝑋0 sin 𝜃𝑦
𝑃𝑦

𝑃𝑠1
(42)

𝑇1 = 𝑇0 + 𝑋0 sin 𝜃𝑦
𝛽−1

0 + 𝑃𝑡

𝑃𝑠1
(43)

For simplifying the calculations of the derivatives of the
map, it is helpful to derive the map from a mixed-variable
generating function. That generating function is

𝐺 (𝑋0, 𝑃𝑥1, 𝑃𝑦 , 𝑃𝑡 )
= 𝑋0𝑃𝑥0 (𝑃𝑥1, 𝑃𝑦 , 𝑃𝑡 ) + 𝑌0𝑃𝑦 + 𝑇0𝑃𝑡

= 𝑋0 [𝑃𝑥1 cos 𝜃𝑦 + 𝑃𝑠 (𝑃𝑥1, 𝑃𝑦 , 𝑃𝑡 ) sin 𝜃𝑦]
+ 𝑌0𝑃𝑦 + 𝑇0𝑃𝑡 (44)



and the coordinate components of the map can be written as

𝑋1 =
𝜕𝐺

𝜕𝑃𝑥1
= 𝑋0

𝜕𝑃𝑥0
𝜕𝑃𝑥1

(45)

𝑌1 = 𝑌0 +
𝜕𝐺

𝜕𝑃𝑦

= 𝑌0 + 𝑋0
𝜕𝑃𝑥0
𝜕𝑃𝑦

(46)

𝑇1 = 𝑇0 +
𝜕𝐺

𝜕𝑃𝑡

= 𝑋0
𝜕𝑃𝑥0
𝜕𝑃𝑡

(47)

For compactness, I introduce a notation for derivatives,

𝜕𝑛𝑃𝑥0

𝜕𝑃
𝑝

𝑥1𝜕𝑃
𝑞
𝑦𝜕𝑃

𝑟
𝑡

= 𝐷0𝑥 · · ·𝑥𝑦 · · ·𝑦𝑡 · · ·𝑡 (48)

𝜕𝑛𝑃𝑥1

𝜕𝑃
𝑝

𝑥0𝜕𝑃
𝑞
𝑦𝜕𝑃

𝑟
𝑡

= 𝐷1𝑥 · · ·𝑥𝑦 · · ·𝑦𝑡 · · ·𝑡 (49)

where the number of copies of 𝑥, 𝑦, and 𝑡 in the subscript of
𝐺 are 𝑝, 𝑞, and 𝑟 respectively.

The first derivatives required for the map are

𝜕𝑃𝑥0
𝜕𝑃𝑥1

= 𝐷0𝑥 =
𝑃𝑠0
𝑃𝑠1

(50)

𝜕𝑃𝑥0
𝜕𝑃𝑦

= 𝐷0𝑦 = − sin 𝜃
𝑃𝑦

𝑃𝑠1
(51)

𝜕𝑃𝑥0
𝜕𝑃𝑡

= 𝐷0𝑡 = sin 𝜃
𝛽−1

0 + 𝑃𝑡

𝑃𝑠1
(52)

As for the derivatives of this map, a few intermediate
calculations are helpful:

𝑃2
𝑚 = 𝑃2

𝑥 + 𝑃2
𝑠 = 1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦 (53)
𝜕𝑃𝑠0
𝜕𝑃𝑥0

= −𝑃𝑥0
𝑃𝑠0

(54)

𝜕𝑃𝑠0
𝜕𝑃𝑦

= −
𝑃𝑦

𝑃𝑠0
(55)

𝜕𝑃𝑠0
𝜕𝑃𝑡

=
𝛽−1

0 + 𝑃𝑡

𝑃𝑠0
(56)

𝜕𝑃𝑠1
𝜕𝑃𝑥0

= −𝑃𝑥1
𝑃𝑠0

(57)

𝜕𝑃𝑠1
𝜕𝑃𝑦

= −
𝑃𝑦

𝑃𝑠0
cos 𝜃𝑦 (58)

𝜕𝑃𝑠1
𝜕𝑃𝑡

=
𝛽−1

0 + 𝑃𝑡

𝑃𝑠0
cos 𝜃𝑦 (59)

From the generating function representation, we have

𝜕𝑋1
𝜕𝑋0

= 𝐷0𝑥 (60)

𝜕𝑋1
𝜕𝑃𝑥0

= 𝑋0𝐷0𝑥𝑥𝐷1𝑥 (61)

𝜕𝑋1
𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑥𝑦 + 𝐷0𝑥𝑥𝐷1𝑦) (62)

𝜕𝑋1
𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑥𝑡 + 𝐷0𝑥𝑥𝐷1𝑡 ) (63)

𝜕𝑌1
𝜕𝑋0

= 𝐷0𝑦 (64)

𝜕𝑌1
𝜕𝑃𝑥0

= 𝑋0𝐷0𝑥𝑦𝐷1𝑥 (65)

𝜕𝑌1
𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑦𝑦 + 𝐷0𝑥𝑦𝐷1𝑦) (66)

𝜕𝑌1
𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑦𝑡 + 𝐷0𝑥𝑦𝐷1𝑡 ) (67)

𝜕𝑇1
𝜕𝑋0

= 𝐷0𝑡 (68)

𝜕𝑇1
𝜕𝑃𝑥0

= 𝑋0𝐷0𝑥𝑡𝐷1𝑥 (69)

𝜕𝑇1
𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑦𝑡 + 𝐷0𝑥𝑡𝐷1𝑦) (70)

𝜕𝑇1
𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑡𝑡 + 𝐷0𝑥𝑡𝐷1𝑡 ) (71)

Note in these computations that when a partial derivative is
taken of 𝑃𝑥0 it is treated as a function of 𝑃𝑥1, 𝑃𝑦 , and 𝑃𝑡 ,
while if a partial derivative is taken of 𝑃𝑥1, it is treated as a
function of 𝑃𝑥0, 𝑃𝑦 , and 𝑃𝑡 . The second derivatives of 𝑃𝑥0
are

𝐷0𝑥𝑥 = − sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦

𝑃3
𝑠1

(72)

𝐷0𝑥𝑦 = − sin 𝜃𝑦
𝑃𝑥1𝑃𝑦

𝑃3
𝑠1

(73)

𝐷0𝑥𝑡 = sin 𝜃𝑦
𝑃𝑥1 (𝛽−1

0 + 𝑃𝑡 )
𝑃3
𝑠1

(74)

𝐷0𝑦𝑦 = − sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑥1

𝑃3
𝑠1

(75)

𝐷0𝑦𝑡 = sin 𝜃𝑦
𝑃𝑦 (𝛽−1

0 + 𝑃𝑡 )
𝑃3
𝑠1

(76)

𝐷0𝑡𝑡 = − sin 𝜃𝑦
𝛽−2

0 𝛾−2
0 + 𝑃2

𝑥1 + 𝑃2
𝑦

𝑃3
𝑠1

(77)

To compute the first derivatives of the map, first com-
pute the first derivatives of 𝑃𝑥1 which are needed for the
generating function derivatives:

𝜕𝑃𝑥1
𝜕𝑃𝑥0

= 𝐷1𝑥 =
𝑃𝑠1
𝑃𝑠0

(78)

𝜕𝑃𝑥1
𝜕𝑃𝑦

= 𝐷1𝑦 = sin 𝜃𝑦
𝑃𝑦

𝑃𝑠0
(79)

𝜕𝑃𝑥1
𝜕𝑃𝑡

= 𝐷1𝑡 = − sin 𝜃𝑦
𝛽−1

0 + 𝑃𝑡

𝑃𝑠0
(80)

Then the first derivatives of the map become

𝜕𝑋1
𝜕𝑋0

=
𝑃𝑠0
𝑃𝑠1

(81)

𝜕𝑋1
𝜕𝑃𝑥0

= −𝑋0 sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦

𝑃
𝑠0𝑃

2
𝑠1

(82)

𝜕𝑋1
𝜕𝑃𝑦

= −𝑋0 sin 𝜃𝑦
𝑃𝑥0𝑃𝑦

𝑃
𝑠0𝑃

2
𝑠1

(83)



𝜕𝑋1
𝜕𝑃𝑡

= 𝑋0 sin 𝜃𝑦
𝑃𝑥0 (𝛽−1

0 + 𝑃𝑡 )
𝑃
𝑠0𝑃

2
𝑠1

(84)

𝜕𝑌1
𝜕𝑋0

= − sin 𝜃𝑦
𝑃𝑦

𝑃𝑠1
(85)

𝜕𝑌1
𝜕𝑃𝑥0

= −𝑋0 sin 𝜃𝑦
𝑃𝑥1𝑃𝑦

𝑃
𝑠0𝑃

2
𝑠1

(86)

𝜕𝑌1
𝜕𝑃𝑦

= 𝑋0 sin 𝜃𝑦

𝑃𝑥0𝑃𝑥1 − (1 + 2𝛽−1
0 𝑃𝑡 + 𝑃2

𝑡 ) cos 𝜃𝑦
𝑃
𝑠0𝑃

2
𝑠1

(87)

𝜕𝑌1
𝜕𝑃𝑡

= 𝑋0 sin 𝜃𝑦 cos 𝜃𝑦
𝑃𝑦 (𝛽−1

0 + 𝑃𝑡 )
𝑃
𝑠0𝑃

2
𝑠1

(88)

𝜕𝑇1
𝜕𝑋0

= sin 𝜃𝑦
𝛽−1

0 + 𝑃𝑡

𝑃𝑠1
(89)

𝜕𝑇1
𝜕𝑃𝑥0

= 𝑋0 sin 𝜃𝑦
𝑃𝑥1 (𝛽−1

0 + 𝑃𝑡 )
𝑃
𝑠0𝑃

2
𝑠1

(90)

𝜕𝑇1
𝜕𝑃𝑦

= 𝑋0 sin 𝜃𝑦 cos 𝜃𝑦
𝑃𝑦 (𝛽−1

0 + 𝑃𝑡 )
𝑃
𝑠0𝑃

2
𝑠1

(91)

𝜕𝑇1
𝜕𝑃𝑡

= −𝑋0 sin 𝜃𝑦

𝑃𝑥0𝑃𝑥1 + (𝛽−2
0 𝛾−2

0 + 𝑃2
𝑦) cos 𝜃𝑦

𝑃
𝑠0𝑃

2
𝑠1

(92)

For computing the second derivatives, use

𝜕2𝑋1

𝜕𝑃2
𝑥0

= 𝑋0 (𝐷0𝑥𝑥𝑥𝐷
2
1𝑥 + 𝐷0𝑥𝑥𝐷1𝑥𝑥) (93)

𝜕2𝑋1
𝜕𝑃𝑥0𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑥𝑥𝑦𝐷1𝑥 + 𝐷0𝑥𝑥𝑥𝐷1𝑥𝐷1𝑦

+ 𝐷0𝑥𝑥𝐷1𝑥𝑦) (94)
𝜕2𝑋1

𝜕𝑃𝑥0𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑥𝑥𝑡𝐷1𝑥 + 𝐷0𝑥𝑥𝑥𝐷1𝑥𝐷1𝑡

+ 𝐷0𝑥𝑥𝐷1𝑥𝑡 ) (95)
𝜕2𝑋1

𝜕𝑃2
𝑦

= 𝑋0 (𝐷0𝑥𝑦𝑦 + 2𝐷0𝑥𝑥𝑦𝐷1𝑦

+ 𝐷0𝑥𝑥𝑥𝐷
2
1𝑦 + 𝐷0𝑥𝑥𝐷1𝑦𝑦) (96)

𝜕2𝑋1
𝜕𝑃𝑦𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑥𝑦𝑡 + 𝐷0𝑥𝑥𝑦𝐷1𝑡 + 𝐷0𝑥𝑥𝑡𝐷1𝑦

+ 𝐷0𝑥𝑥𝑥𝐷1𝑦𝐷1𝑡 + 𝐷0𝑥𝑥𝐷1𝑦𝑡 ) (97)
𝜕2𝑋1

𝜕𝑃2
𝑡

= 𝑋0 (𝐷0𝑥𝑡𝑡 + 2𝐷0𝑥𝑥𝑡𝐷1𝑡

+ 𝐷0𝑥𝑥𝑥𝐷
2
1𝑡 + 𝐷0𝑥𝑥𝐷1𝑡𝑡 ) (98)

𝜕2𝑌1

𝜕𝑃2
𝑥0

= 𝑋0 (𝐷0𝑥𝑥𝑦𝐷
2
1𝑥 + 𝐷0𝑥𝑦𝐷1𝑥𝑥) (99)

𝜕2𝑌1
𝜕𝑃𝑥0𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑥𝑦𝑦𝐷1𝑥 + 𝐷0𝑥𝑥𝑦𝐷1𝑥𝐷1𝑦

+ 𝐷0𝑥𝑦𝐷1𝑥𝑦) (100)

𝜕2𝑌1
𝜕𝑃𝑥0𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑥𝑦𝑡𝐷1𝑥 + 𝐷0𝑥𝑥𝑦𝐷1𝑥𝐷1𝑡

+ 𝐷0𝑥𝑦𝐷1𝑥𝑡 ) (101)
𝜕2𝑌1

𝜕𝑃2
𝑦

= 𝑋0 (𝐷0𝑦𝑦𝑦 + 2𝐷0𝑥𝑦𝑦𝐷1𝑦

+ 𝐷0𝑥𝑥𝑦𝐷
2
1𝑦 + 𝐷0𝑥𝑦𝐷1𝑦𝑦) (102)

𝜕2𝑌1
𝜕𝑃𝑦𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑦𝑦𝑡 + 𝐷0𝑥𝑦𝑦𝐷1𝑡 + 𝐷0𝑥𝑦𝑡𝐷1𝑦

+ 𝐷0𝑥𝑥𝑦𝐷1𝑦𝐷1𝑡 + 𝐷0𝑥𝑦𝐷1𝑦𝑡 ) (103)
𝜕2𝑌1

𝜕𝑃2
𝑡

= 𝑋0 (𝐷0𝑦𝑡𝑡 + 2𝐷0𝑥𝑦𝑡𝐷1𝑡

+ 𝐷0𝑥𝑥𝑦𝐷
2
1𝑡 + 𝐷0𝑥𝑦𝐷1𝑡𝑡 ) (104)

𝜕2𝑇1

𝜕𝑃2
𝑥0

= 𝑋0 (𝐷0𝑥𝑥𝑡𝐷
2
1𝑥 + 𝐷0𝑥𝑡𝐷1𝑥𝑥) (105)

𝜕2𝑇1
𝜕𝑃𝑥0𝜕𝑃𝑦

= 𝑋0 (𝐷0𝑥𝑦𝑡𝐷1𝑥 + 𝐷0𝑥𝑥𝑡𝐷1𝑥𝐷1𝑦

+ 𝐷0𝑥𝑡𝐷1𝑥𝑦) (106)
𝜕2𝑇1

𝜕𝑃𝑥0𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑥𝑡𝑡𝐷1𝑥 + 𝐷0𝑥𝑥𝑡𝐷1𝑥𝐷1𝑡

+ 𝐷0𝑥𝑡𝐷1𝑥𝑡 ) (107)
𝜕2𝑇1

𝜕𝑃2
𝑦

= 𝑋0 (𝐷0𝑦𝑦𝑡 + 2𝐷0𝑥𝑦𝑡𝐷1𝑦

+ 𝐷0𝑥𝑥𝑡𝐷
2
1𝑦 + 𝐷0𝑥𝑡𝐷1𝑦𝑦) (108)

𝜕2𝑇1
𝜕𝑃𝑦𝜕𝑃𝑡

= 𝑋0 (𝐷0𝑦𝑡𝑡 + 𝐷0𝑥𝑦𝑡𝐷1𝑡 + 𝐷0𝑥𝑡𝑡𝐷1𝑦

+ 𝐷0𝑥𝑥𝑡𝐷1𝑦𝐷1𝑡 + 𝐷0𝑥𝑡𝐷1𝑦𝑡 ) (109)
𝜕2𝑇1

𝜕𝑃2
𝑡

= 𝑋0 (𝐷0𝑡𝑡𝑡 + 2𝐷0𝑥𝑡𝑡𝐷1𝑡

+ 𝐷0𝑥𝑥𝑡𝐷
2
1𝑡 + 𝐷0𝑥𝑡𝐷1𝑡𝑡 ) (110)

The third derivatives of 𝑃𝑥0 are needed:

𝐷0𝑥𝑥𝑥 = −3𝑃𝑥1 sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦

𝑃5
𝑠1

(111)

𝐷0𝑥𝑥𝑦 = −𝑃𝑦 sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦 + 2𝑃2
𝑥1

𝑃5
𝑠1

(112)

𝐷0𝑥𝑥𝑡 = (𝛽−1
0 + 𝑃𝑡 ) sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦 + 2𝑃2
𝑥1

𝑃5
𝑠1

(113)

𝐷0𝑥𝑦𝑦 = −𝑃𝑥1 sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑥1 + 2𝑃2
𝑦

𝑃5
𝑠1

(114)

𝐷0𝑥𝑦𝑡 = 3 sin 𝜃𝑦
𝑃𝑥1𝑃𝑦 (𝛽−1

0 + 𝑃𝑡 )
𝑃5
𝑠1

(115)



𝐷0𝑥𝑡𝑡 = −𝑃𝑥1 sin 𝜃𝑦
2(𝛽−1

0 + 𝑃𝑡 )2 + 𝛽−2
0 𝛾−2

0 + 𝑃2
𝑥1 + 𝑃2

𝑦

𝑃5
𝑠1

(116)

𝐷0𝑦𝑦𝑦 = −3𝑃𝑦 sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑥1

𝑃5
𝑠1

(117)

𝐷0𝑦𝑦𝑡 = (𝛽−1
0 + 𝑃𝑡 ) sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑥1 + 2𝑃2
𝑦

𝑃5
𝑠1

(118)

𝐷0𝑦𝑡𝑡 = −𝑃𝑦 sin 𝜃𝑦
2(𝛽−1

0 + 𝑃𝑡 )2 + 𝛽−2
0 𝛾−2

0 + 𝑃2
𝑥1 + 𝑃2

𝑦

𝑃5
𝑠1

(119)

𝐷0𝑡𝑡𝑡 = 3(𝛽−1
0 + 𝑃𝑡 ) sin 𝜃𝑦

𝛽−2
0 𝛾−2

0 + 𝑃2
𝑥1 + 𝑃2

𝑦

𝑃3
𝑠1

(120)

and the second derivatives of 𝑃𝑥1 are

𝐷1𝑥𝑥 = sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑦

𝑃3
𝑠0

(121)

𝐷1𝑥𝑦 = sin 𝜃𝑦
𝑃𝑥0𝑃𝑦

𝑃3
𝑠0

(122)

𝐷1𝑥𝑡 = − sin 𝜃𝑦
𝑃𝑥0 (𝛽−1

0 + 𝑃𝑡 )
𝑃3
𝑠0

(123)

𝐷1𝑦𝑦 = sin 𝜃𝑦
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − 𝑃2

𝑥0

𝑃3
𝑠0

(124)

𝐷1𝑦𝑡 = − sin 𝜃𝑦
𝑃𝑦 (𝛽−1

0 + 𝑃𝑡 )
𝑃3
𝑠0

(125)

𝐷1𝑡𝑡 = sin 𝜃𝑦
𝛽−2

0 𝛾−2
0 + 𝑃2

𝑥0 + 𝑃2
𝑦

𝑃3
𝑠0

(126)

SOLENOID
The Hamiltonian for a uniform solenoid is

−

√√
1 + 2𝛽−1

0 𝑃𝑡 + 𝑃2
𝑡 − (𝑃𝑥 + 𝑘𝑠𝑌/2)2

− (𝑃𝑦 − 𝑘𝑠𝑋/2)2 = −𝑃𝑠 (127)

The map for this can be solved exactly. All calculations will
be done using canonical momenta, which are the same as the
kinetic momenta outside the solenoid, but differ from the ki-
netic momenta inside the solenoid. On passing from outside
to inside the solenoid, the canonical momenta are unchnaged,
but the kinetic momenta have a discrete change depending
on the position. 𝑃𝑠 is invariant within the solenoid, but
changes from inside to outside the solenoid. In the following
equations, when 𝑃𝑠 appears, it refers to its value inside the
solneoid.

The map is straightforward to compute:


𝑋1
𝑃𝑥1
𝑌1
𝑃𝑦1

 = 𝑀𝑆0

(
𝑘𝑠

2
,
𝑘𝑠𝐿

2𝑃𝑠

) 
𝑋0
𝑃𝑥0
𝑌0
𝑃𝑦0

 (128)

𝑇1 = 𝑇0 +
𝐿

𝛽0
−

𝛽−1
0 + 𝑃𝑡

𝑃𝑠

𝐿 (129)

where

𝑀𝑆0 (𝜅, 𝜙) =


cos2 𝜙 𝜅−1 cos 𝜙 sin 𝜙

−𝜅 cos 𝜙 sin 𝜙 cos2 𝜙

− cos 𝜙 sin 𝜙 −𝜅−1 sin2 𝜙

𝜅 sin2 𝜙 − cos 𝜙 sin 𝜙
cos 𝜙 sin 𝜙 𝜅−1 sin2 𝜙

−𝜅 sin2 𝜙 cos 𝜙 sin 𝜙
cos2 𝜙 𝜅−1 cos 𝜙 sin 𝜙

−𝜅 cos 𝜙 sin 𝜙 cos2 𝜙

 (130)

and 𝐿 the length of the solenoid. For numerical precision,

𝑇1 = 𝑇0 +
𝛾−2

0 (2𝛽−1
0 𝑃𝑡 + 𝑃2

𝑡 ) − 𝑃2
⊥

𝛽2
0𝑃𝑠 (𝛽−1

0 𝑃𝑠 + 𝛽−1
0 + 𝑃𝑡 )

𝐿 (131)

with

𝑃2
⊥ = (𝑃𝑥 + 𝑘𝑠𝑌/2)2 + (𝑃𝑦 − 𝑘𝑠𝑋/2)2 (132)

which is invariant within the solenoid.
For derivatives, it will be convenient index in the trans-

verse variables, so we define a transverse phase space vector
𝒁 = (𝑋, 𝑃𝑥 , 𝑌 , 𝑃𝑦). Thus, for instance,

𝜕𝑃𝑠

𝜕𝒁
= − 1

𝑃𝑠

Π

(
𝑘𝑠

2

)
𝒁 (133)

with

Π(𝜅) =


𝜅2 0 0 −𝜅
0 1 𝜅 0
0 𝜅 𝜅2 0
−𝜅 0 0 1

 (134)

Further defining

𝑀𝑆1 (𝜅, 𝜓) =


− sin𝜓 𝜅−1 cos𝜓
−𝜅 cos𝜓 − sin𝜓
− cos𝜓 −𝜅−1 sin𝜓
𝜅 sin𝜓 − cos𝜓

cos𝜓 𝜅−1 sin𝜓
−𝜅 sin𝜓 cos𝜓
− sin𝜓 𝜅−1 cos𝜓
−𝜅 cos𝜓 − sin𝜓

 (135)



we have
𝜕𝒁1
𝜕𝒁0

= 𝑀𝑆0

(
𝑘𝑠

2
,
𝑘𝑠𝐿

2𝑃𝑠

)
+ 𝜇𝜋𝑇 (136)

𝜕𝒁1
𝜕𝑃𝑡

= −(𝛽−1
0 + 𝑃𝑡 )𝝁 (137)

𝜕𝑇1
𝜕𝒁0

= −𝐿
𝛽−1

0 + 𝑃𝑡

𝑃3
𝑠

𝝅 (138)

𝜕𝑇1
𝜕𝑃𝑡

=
𝛽−2

0 𝛾−2
0 + 𝑃2

⊥

𝑃3
𝑠

𝐿 (139)

with

𝝅 = Π

(
𝑘𝑠

2

)
𝒁0 (140)

𝝁 =
𝑘𝑠𝐿

2𝑃3
𝑠

𝑀𝑆1

(
𝑘𝑠

2
,
𝑘𝑠𝐿

𝑃𝑠

)
𝒁0 (141)

Note the difference between the second arguments of 𝑀𝑆0
and 𝑀𝑆1.

For the second derivatives,

𝜕2𝑍1𝑖
𝜕𝑍0 𝑗𝜕𝑍0𝑘

=
𝑘𝑠𝐿

2𝑃3
𝑠

(𝑀𝑆1;𝑖 𝑗𝜋𝑘 + 𝑀𝑆1;𝑖𝑘𝜋 𝑗 )

+ 𝜇𝑖Π 𝑗𝑘 + 𝜏𝑖𝜋 𝑗𝜋𝑘 (142)

𝜕2𝒁1
𝜕𝒁0𝜕𝑃𝑡

= −(𝛽−1
0 + 𝑃𝑡 )

(
𝝉𝝅𝑇 + 𝑘𝑠𝐿

2𝑃3
𝑠

𝑀𝑆1

)
(143)

𝜕2𝒁1

𝜕𝑃2
𝑡

= (𝛽−1
0 + 𝑃𝑡 )2𝝉 − 𝝁 (144)

𝜕2𝑇1
𝜕𝒁0𝜕𝒁0

= −3𝐿
𝛽−1

0 + 𝑃𝑡

𝑃5
𝑠

𝝅𝝅𝑇 − 𝐿
𝛽−1

0 + 𝑃𝑡

𝑃3
𝑠

Π (145)

𝜕2𝑇1
𝜕𝒁0𝜕𝑃𝑡

= 𝐿
3(𝛽−1

0 + 𝑃𝑡 )2 − 𝑃2
𝑠

𝑃5
𝑠

𝝅 (146)

𝜕2𝑇1

𝜕𝑃2
𝑡

= −3
(𝛽−1

0 + 𝑃𝑡 ) (𝛽−2
0 𝛾−2

0 + 𝑃2
⊥)

𝑃5
𝑠

𝐿 (147)

with

𝝉 =
3
𝑃2
𝑠

𝝁 − 1
2

(
𝑘𝑠𝐿

𝑃3
𝑠

)2
𝑀𝑆2

(
𝑘𝑠

2
,
𝑘𝑠𝐿

𝑃𝑠

)
𝒁0 (148)

𝑀𝑆2 (𝜅, 𝜓) =


cos𝜓 𝜅−1 sin𝜓

−𝜅 sin𝜓 cos𝜓
− sin𝜓 𝜅−1 cos𝜓
−𝜅 cos𝜓 − sin𝜓

sin𝜓 −𝜅−1 cos𝜓
𝜅 cos𝜓 sin𝜓
cos𝜓 𝜅−1 sin𝜓

−𝜅 sin𝜓 cos𝜓

 (149)
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