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EXACT MAPS TO SECOND ORDER FOR SELECTED ELEMENTS IN
MAD-X VARIABLES

J. Scott Berg*, Brookhaven National LaboratoryT, Upton, NY, USA

Abstract

This report presents calculations for exact maps to second
order about an arbitrary orbit for certain elements: drifts,
solenoids, and rotations about a transverse axis. These ex-
pressions were used in recent updates to MAD-X, and thus
the phase space variables used are those of MAD-X. Formu-
las are given here for the final orbit and its first and second
derivatives with respect to the incoming phase space coordi-
nates for a drift, solenoid, and coordinate system rotations
about transverse axes. I do not claim these results to be
new: these expressions are well-known, and are presented
here only for reference. This document does not collect all
maps that could be expressed exactly, in particular dipoles
are omitted.

INTRODUCTION

Exact expressions for the maps through certain elements
are well known; see, for instance, Ref. [1]. For the TWISS
command in MAD-X, the map about the orbit and its first
and second derivatives are needed in general. MAD ver-
sion 8 would preform computations using third order maps
about the zero phase space vector [2], and that model was
originally carried over to MAD-X. However, when a particle
follows a trajectory that is far off axis thorough a magnet
(or a drift), this could introduce unnecessary errors into the
calculation. Systems with such off-axis design orbits often
require coordinate transformations to be implemented; thus
I include expressions for the nontrivial forms of those as
well (rotations about a transverse axis). For implementation
of the exact maps in MAD-X, expressions for the map and
its first two derivatvies are needed; this report gives those
expressions, sufficient background to understand their calcu-
lation, and forms to improve numerical properties in a couple
cases. The only cases included are the drift, the solenoid,
and rotations about a transverse axis. I did not include ex-
pressions for a dipole, since the model in MAD-X handles
cases where there would be no exact expression (a dipole
with a quadrupole component, for instance). Other cases
cannnot be expressed exactly (a quadrupole, for instance);
though with some approximations many expressions could
be found, I do not propose to derive them here.
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VARIABLES AND HAMILTONIAN

The transverse variables are X, Py = px/po, Y, and Py, =
Py/po, where p, and p, are the physical momenta and pg
is an arbitrary reference momentum in the same physical
dimensions. The Hamiltonian, with s as the independent
variable is scaled by pg. The longitudinal coordinate is
T = —c[t — to(s)], and its conjugate momentum is P; =
(E — Ep)/(poc). Ep is the total energy corresponding to
Po, and similarly the relativistic parameters By and yo used
below will also correspond to pg.

Hamilton’s equations of motion in these variables are

d_X _ 0H dP, _[9_H 0
ds ~ 0P, ds ~— 0X
av _ on ary __oH
ds 0P, ds =~ oY
dT _ 0H dp,  9H 3
ds 0P, ds T
DRIFT
In these variables, the Hamiltonian for a drift is
~J1+2B5'P,+ P2~ P2 P} =P, “
Thus the map for a drift of length L is
Py
Xi=Xo+ 5oL Pa=Pyn (5
s0
y0
Y=Y+ ()L Py1=Py0 (6)
L By +Pio
T1=T()+—— P =P0 (7)
Bo Py ety

For better numerical precision, the time equation can be
written as

62285 P + P) = P, _Pio
ﬁgPSO(IB(;IPSO"',B(;I +Pt)

The nontrivial first derivatives of this map are given by

T =T+ (8)
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and the symmetry conditions
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Some of these can be rewritten for improved numerical prop-

erties
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The second derivatives are given by
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along with the symmetry conditions
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For improved numerical properties, some sub-expressions
can be rewritten:
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ROTATION ABOUT THE Y AXIS

Say the coordinate plane is rotated by an angle ,, about
the y axis. Then the momenta are transformed by

(39)
(40)

Px1 = Pxocos by, — Pyysinf,
Ps1 = Pxosinfy, + Pgycos by
Py, and P; are invariant so they are not subscripted with a 0

or 1. For a particle not at Xy = 0, the particle must be then
transported to the new plane. This transport results in

PS‘O

X = Xp— 41
1 0B 41)

. Py
Y1 = Yo — Xosiné, (42)

Psl

~“lip

Ty =Ty + Xo siné’yL (43)

Psl

For simplifying the calculations of the derivatives of the
map, it is helpful to derive the map from a mixed-variable
generating function. That generating function is
G(X()’ Px19 Pya PI)
= XoPxo(Px1, Py, Pt) + YoPy + Ty P;
= Xo[Px1cos 0y + Ps(Px1, Py, P;) sin 6]

+ Y()Py +TOPt (44)



and the coordinate components of the map can be written as

0G 0Py
= — =X, 45
"= 3P 03P, (45)
G 0Py
Y/ =Y0+ — =Y + X 46
1=Yo ap, 0 OOPy (46)
G 0P
T =Ty + — = X 47
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For compactness, I introduce a notation for derivatives,

9" Po
———— = Dox-xy-yrt (48)
OPY OPIOP;

9" Py
————=Dixxyyis (49)
PLOPIIP;

where the number of copies of x, y, and ¢ in the subscript of
G are p, q, and r respectively.
The first derivatives required for the map are

anO PsO

= Doy = — 50
anl 0 Psl ( )
6Px0 . PY

= Do, = —sin@ 51
ap, 0y sin P (G2))
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As for the derivatives of this map, a few intermediate
calculations are helpful:

P =Pi+P;=1+28;'P,+P; - P}  (53)
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— == (54)
0PXO PsO
0P P
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From the generating function representation, we have

Z—;l) = Dox (60)
68::0 = XoDoxxD1x (61)
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Note in these computations that when a partial derivative is
taken of Py it is treated as a function of Py, Py, and P,
while if a partial derivative is taken of P,1, it is treated as a
function of Py, Py, and P;. The second derivatives of P
are

1+2B;'P, + P} - P2

Doxy = —sinf, 3 (72)
Psl
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Oxy = y P3
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) Py(,B(;l +Py)
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Doy = —sin -2 = X (77)

sl

To compute the first derivatives of the map, first com-
pute the first derivatives of P,; which are needed for the
generating function derivatives:

0Py Py
=D, = — (78)
anO Ps()
0Py .
=Dy, =sin6 79
ap, 1y = sin VB (79)
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Then the first derivatives of the map become
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For computing the second derivatives, use
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%X,
OPr00Py
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= XO(DOxxxD%X + DOxxDlxx)

= Xo(DoxxyD1x + DoxxxD1xD1y
+DoxxDixy)
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+DoxxD1xt)
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+ Doxxx D7, + DoxxDiyy)
= Xo(Doxyr + DoxxyD1s + Doxxt D1y
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= Xo(Doxtr + 2Doxxt D1y
+ Doxxx D}, + DoxxDinr)
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+ DoxxyDT, + DoxyD1yy)  (102)
d%Y,
—L = XO(DOyyt + DOxnylt + DOxytDly
apyapt
+ DOxxyDlyDlt + D()xyDlyt) (103)
%Y,
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The third derivatives of P, are needed:
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DOxtt = —le sin Qy
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5
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sl
and the second derivatives of P, are
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SOLENOID
The Hamiltonian for a uniform solenoid is
14285 P+ P? — (Py + kY [2)?
_ ) =-P, (127)
—(Py - ksX/2)

The map for this can be solved exactly. All calculations will
be done using canonical momenta, which are the same as the
kinetic momenta outside the solenoid, but differ from the ki-
netic momenta inside the solenoid. On passing from outside
to inside the solenoid, the canonical momenta are unchnaged,
but the kinetic momenta have a discrete change depending
on the position. Pj is invariant within the solenoid, but
changes from inside to outside the solenoid. In the following
equations, when Py appears, it refers to its value inside the
solneoid.

The map is straightforward to compute:

X Xo
Py ks ksL Pxo
= Mgy | =, 128
Yi 50(2 2PS) Yo (128)
Py Pyo
-1
L +P
T1=T0+——'80 ‘L (129)
,80 Py
where
cos® ¢ k™1 cos ¢ sin ¢
_|-kcos¢sing cos’ ¢
Mso(k,0) =1 _ ;o5 psing  —k'sin’ ¢
k sin’ ¢ —Cos ¢ sin ¢
cos ¢ sin ¢ k~'sin? ¢
.2 .
—K sin” ¢ coSs ¢ sin ¢
cos® ¢ k™1 cos ¢ sin ¢ (130)
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and L the length of the solenoid. For numerical precision,

Y52 (285 P+ P - P2

Ty =Ty +
BiPy(By ' Ps+ By + Py)

L (131

with

P2 = (P + kY /2)* + (Py — kX /2)? (132)
which is invariant within the solenoid.

For derivatives, it will be convenient index in the trans-
verse variables, so we define a transverse phase space vector
Z = (X,P,Y,Py). Thus, for instance,

0P 1 ks
=——TII|(—=|Z 133
7= 7(3) 33
with
¥ 0 0 -«
0 1 « O
H(K) = 0 % K2 0 (134)
-k 0 0 1
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we have
0Zy (ks kL) 4
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— == 139
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with
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x=11{=) Zo (140)
kgL ks kgL
=—M —, — | Z 141
Ju 2P SI(Z’PS)O (141)

Note the difference between the second arguments of Mg
and M. S1-
For the second derivatives,

?Zy;  ksL

TP S (Mg e + Ms1akn;
0200 Zok 2P§( st + Mstier)

+ il + Tim g (142)
VA | kL
=—Bl+pP =—M 14
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8%Z ~
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dP?
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0Zy0Z P} P3
2 3Byt + Py)? - P2
0 Tl - L (:80 t) sn_ (146)
0Zy0P; Pg
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2
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Pgﬂ 2(P§) s2(2 PS)O (148)
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K CcoS Y sin Y
cos Yy k~!siny (149)
—K siny cos i
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