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Abstract

Transition is crossed during acceleration in the Hadron Storage Ring (HSR) for all species other
than protons. A first-order transition jump scheme manipulates the value of the optical quantity γT and
distorts the optics of the HSR around the time that the beam energy γbeam crosses the nominal transition
value γT0. The jump scheme in the Relativistic Heavy Ion Collider (RHIC) uses 48 jump quads, driven
by 12 bi-polar power supplies that each drive 4 quads in series. Ten of those 48 are eliminated in the
preliminary September 2022 HSR layout (EIC-HSR-220921a) that was developed from RHIC with no
initial regard for transition crossing.

This note analyzes the performance of the 38-quad HSR scheme, by comparison with the 48-quad
RHIC scheme. It is concerned only with optics – the manipulation and response of Twiss functions and
related quantities – and not with beams. This evaluation is a necessary first step before enhancing the
transition jump scheme to restore RHIC performance in the HSR. Eventually full beam simulations
of transition crossing need to be performed.

1



1 Introduction

An on-momentum particle passes through transition at time t = 0, when

γbeam(t, 0) = γT0 + γ′ t (1)

where γ′ = dγ/dt is the acceleration ramp rate. More generally, a particle that is off-momentum by δ = ∆p/p
crosses transition when

γbeam(t, δ) = γT0 (2)

The maximum time delay or advance from the nominal crossing time – the so-called nonlinear time ±TNL

– occurs for a particle with δ = ±δMAX at the edge of the momentum distribution of the beam [1, 2]. It
depends on the optics through

TNL = (α1 +
3

2
β2
T )

γT0

γ′
δMAX (3)

where the “nonlinear parameter” α1 is the quadratic coefficient in the polynomial expansion of the change
in total circumference ∆C with respect to δ

∆C

C
=

δ

γT0

(
1 + α1δ +O(δ2)

)
(4)

and C is the nominal circumference. Equation 3 shows that moving the nonlinear parameter closer to its
ideal value of α1 ≈ −1.5 encourages all ions to cross transition in unison [3, 4].

The value of α1 varies with the optics and with the two chromaticities. RHIC optics with α1 = −3/2 can
be achieved with values of β∗ ≈ 3 m in both planes at each Interaction Point (IP). However, such small values
of β∗ makes the beam uncomfortably large in the focusing triplets. Further, the tune variation with ∆γT
becomes stronger when β∗ is smaller. In a compromise, RHIC routinely crosses transition with β∗ = 5 m at
all IPs. Even when α1 = −3/2 optics are possible and convenient, it is still necessary to manipulate ∆γT (t),
where

γT (t) = γT0 + ∆γT (t) (5)

The optical quantity ∆γT must vary from a maximum positive value to a minimum negative value over a
range of as much as

−1 < ∆γT < +1 (6)

in a time span of ±TNL around the nominal transition crossing.
This note doesn’t care about beam or time. It is concerned only with the optics of a lattice at a

stationary point in time – at a “stone” or a “strength vector” in RHIC and HSR jargon. The values of γbeam
and γ′ do not enter in what follows, except among the transition crossing parameters listed in Table 1. Nor
does α1 enter any further, even though it, like γT , is an optical quantity.

Quadrupoles

Dispersion

G

Q

Figure 1: G and Q families of jump quads in one of the 6 RHIC arcs.
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2 Power supply sensitivities dγT/dq and dQH/dq

In RHIC ∆γT is manipulated using 48 jump quads, driven by 12 fast bi-polar power supplies that are
connected in series to 4 quads, as sketched in Figure 1. In each arc the “G” set of jump quads (at high
dispersion locations) mainly controls ∆γT , while a second “Q” set (in low dispersion locations) mainly
compensates for the shift in horizontal tune ∆QH . Each of the jump quads is one layer of a four layer
iron-free superconducting corrector, in a Corrector-Quadrupole-Sextupole (CQS) cryomodule.

The strength of power supply number p is written as the integrated strength qp of one of its quads

qp = kpL =
1

fp
(7)

where kp is the geometric strength of the quad, L is its length, and fp is its focal length. It can be shown [6]
that to first order a set of jump quads powered at the same strength qp delivers

∆γT = qp ·
γ3T0

2C

∑
p quads

η2 (8)

where C is the accelerator circumference and η is the dispersion at each quad. Similarly, power supply p
shifts the horizontal tune QH according to

∆QH = qp ·
1

4π

∑
p quads

βH (9)

Parameter Units RHIC HSR

Layout Yellow, 2023 EIC-HSR-220921a
Optics β∗ = 5 m “275”, 2 collisions
Circumference C m 3833.845 3833.888
Number of jump quads 48 38
Gamma transition γT0 23.33 22.20
Gold rigidity at transition (Bρ) Tm 180.03 171.76
Maximum jump quad strength |B′L| T 1.5

|q| m−1 0.00833 0.00877
Phase advance per FODO cell, H 2π 0.229 0.219

V 2π 0.241 0.226
Tune, QH 28.238 28.228

QV 29.228 27.210
Chromaticity, CH −2→ +2

CV −2→ +2
Gold atomic number Z 79
Gold atomic weight A 196.97
Maximum momentum spread δmax 0.00432
RF voltage kV 200
Acceleration ramp rate γ′ s−1 0.278
Harmonic number h 360 315

Table 1: Transition crossing parameters in RHIC and HSR, with gold beam. There are only minor differences
in the values of the two sets of parameters, and so the optical performance requirements for HSR are
essentially identical to those in RHIC. The maximum absolute jump quad strength |q| occurs when a current
of 50 A delivers an integrated strength of |B′L| = 1.5 T, at the appropriate transition rigidity [5].
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The two linear sensitivities of primary interest for each power supply

SG,p ≡ dγT
dqp

(10)

SQ,p ≡ dQH

dqp

therefore have values of

SG,p =
γ3T0

2C

∑
p quads

η2 (11)

SQ,p =
1

4π

∑
p quads

βH

Both sensitivities SG,p and SQ,p have the dimension of length.
Equations 8 and 9 show that jump quads at large dispersion locations affect both ∆γT and ∆QH , while

those at small dispersion locations with η ≈ 0 mostly affect ∆QH , with little effect on ∆γT . Hence it is
natural to separate jump quads into families at high and low dispersion locations, in order to orthogonalize
the control of ∆QH and ∆γT as far as possible. For example, in a “2-knob solution” all 6 G power supplies
have strength qG, and all 6 Q power supplies have strength qQ.

In routine operation RHIC uses a 4-knob solution that groups 12 power supplies into 4 sets of 3 power
supplies, for a total of 4 independent variables. Two knobs control the G sets of jump quads, and two control
Q sets. 4-knob solutions are important when nonlinearities (in ∆γT and ∆QH versus strength q) come into
play. Nonetheless, the 4 values used in RHIC operations usually differ only slightly from the values that are
found in the 2-knob linear solution described here. A 2-knob scenario conveniently enables the comparison
of the contemporary RHIC-48 performance with the HSR-38 performance in the EIC-HSR-220921a layout.

The linear contributions to ∆γT and ∆QH in a 2-knob solution are(
∆γT
∆QH

)
= T

(
qG
qQ

)
(12)

where the 2-knob T matrix elements in

T =

(
TGG TGQ

TQG TQQ

)
=

( ∑
SG,p

∑
SG,p∑

SQ,p

∑
SQ,p

)
(13)

are found using Equation 11. The sums are over all G supplies for T matrix elements TGG and TQG, and
over all Q supplies for TGQ and TQQ. The 2-knob solution is found by inverting the matrix T(

qG
qQ

)
= T−1

(
∆γT
∆QH

)
(14)

to deliver the 2 strengths qG and qQ.
Usually the desired ∆QH is zero, in which case

∆QH = 0 = TQG · qG + TQG · qQ (15)

so that

qQ = −
(
TQG

TQQ

)
qG (16)

and

qG =
∆γT(

TGG − TGQ ·
(

TQG

TQQ

)) (17)

Equation 16 shows that the ratio of qQ to qG is a constant in this linear model, when ∆QH = 0.
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3 Optical distortions and jump quad spacing

Jump quads at horizontal phase locations φi cause a first order total horizontal beta wave of

∆βH
βH

=
1

2 sin(2πQH)

∑
i

qiβHi cos(2|φ− φi| − 2πQH) (18)

where QH is the nominal horizontal tune, and a total dispersion wave of

∆η√
βH

=
1

2 sin(πQH)

∑
i

qiηi
√
βi cos(|φ− φi| − πQH) (19)

Hence Q family jump quads at locations with small dispersions ηi generate relatively small dispersion waves.
Equations 18 and 19 show that the beta wave phase propagates twice as fast as the dispersion wave phase.

Therefore, if two jump quads with the same small strength qi are arranged in a doublet, with identical β
values and spaced by 90 degrees in phase, they generate a beta wave that is localized inside the doublet.
Similarly, if 4 jump quads are spaced by 90 degrees (with identical small strengths, betas, and dispersions)
then both beta and dispersion waves are localized. This motivates the arrangement of Q-family jump quads
in doublets, and G-family jump quads in quadruplets, as shown in Figures 1 and 2. All jump quads are
located in main arc “F” CQS cryomodules, with large values of βH ≈ 50 m and small values of βV ≈ 12 m.

Unfortunately Table 1 shows that the arc FODO cells in RHIC and HSR have horizontal and vertical
phase advances that are significantly smaller than 90 degrees, and so the beta and dispersion waves are not
fully localized. The amount of global leakage increases with increasing deviation from 90 degrees. Further,
optical distortions that are second order (and higher) in strength qi become more important at the larger
strengths that are necessary when there are fewer jump quads to generate useful ∆γT values.

Figure 2: Twelve power supplies drive 48 jump quadrupoles in the RHIC Yellow ring. Quads at high
dispersion locations are denoted by the black arrows outside the ring. Sets of low dispersion quads are
marked by the colored arrows inside the ring. All jump quads appear as doublets, placed next to main arc
F quads that are spaced by one FODO cell.

5



4 RHIC performance with 48 jump quads

Figures 1 and 2 show how each of the 6 RHIC Yellow arcs contains one G and one Q power supply. Table 2
lists the jump quad Twiss functions βH and η generated by an optics code like BMAD or MADX. It also
lists the individual power supply sensitivities SQ and SG that are generated via Equation 11, and which are
shown graphically in Figure 3. Finally, the power supply sensitivities are summed to produce the T -matrix
elements listed at the bottom-right of Table 2.
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Figure 3: Sensitivities SG and SQ for the RHIC Yellow jump quad power supplies, with β∗ = 5 m at each
IP. All 6 SG values are similar, while the SQ values are somewhat different in the inner and outer arcs.

The 2-knob T matrix for RHIC in Table 2 is

T =

(
TGG TGQ

TQG TQQ

)
=

(
114.689 12.385

88.171 95.797

)
(20)

where all elements have the dimensions of meters. The elements in its inverse

T−1 =

(
0.009681 −0.001252
−0.008911 0.011591

)
(21)

all have the dimensions of inverse meters. If the desired ∆QH is zero, then(
qG
qQ

)
=

(
0.009681
−0.008911

)
∆γT [m−1] (22)

and so the maximum value of q = 0.00833 m−1 recorded in Table 1 predicts a potential ∆γT range of

|∆γT | <
0.00833

0.009681
≈ 0.86 (23)

if the linear model holds. However, nonlinearities are significant. An optics code must be used to properly
include nonlinear effects, and to test the accuracy of this linear prediction.
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PS PS Quad Quad Twiss functions Quad Power supply sensitivities
index name name sensitivities G Q
p βH βV ηH µH µV SQ SG SQ SG SQ SG

m m m rad rad m m m m m m

1 yo1-qgt-ps yo1-qgt18 47.14 10.28 1.693 103.999 110.912 3.751 4.822 14.675 19.344
yo1-qgt16 44.96 10.40 1.724 105.487 112.426 3.577 4.997
yo1-qgt14 48.03 10.26 1.700 106.904 113.944 3.822 4.861
yo1-qgt12 44.29 10.42 1.665 108.375 115.460 3.525 4.663

2 yi2-qgt-ps yi2-qgt5 64.12 5.18 -0.202 120.382 127.113 5.103 0.068 17.765 1.125
yi2-qgt7 47.27 11.92 0.529 121.436 128.766 3.762 0.470
yi3-qgt7 48.15 12.13 0.578 141.483 149.934 3.831 0.561
yi3-qgt5 63.70 5.08 -0.124 142.529 151.590 5.069 0.026

3 yi3-qgt-ps yi3-qgt17 47.82 10.20 1.642 134.368 142.481 3.806 4.535 14.704 19.059
yi3-qgt15 44.50 10.67 1.681 135.791 143.981 3.541 4.752
yi3-qgt13 47.17 10.15 1.719 137.281 145.489 3.754 4.969
yi3-qgt11 45.29 10.73 1.690 138.690 146.994 3.604 4.803

4 yo4-qgt-ps yo4-qgt6 46.06 15.39 0.074 150.320 158.990 3.665 0.009 14.158 2.825
yo4-qgt8 42.95 12.14 0.895 151.641 160.269 3.418 1.348
yo5-qgt8 43.28 12.01 0.934 170.466 179.607 3.444 1.466
yo5-qgt6 45.63 15.36 0.025 171.791 180.907 3.631 0.001

5 yo5-qgt-ps yo5-qgt18 46.72 10.49 1.709 163.170 172.107 3.718 4.912 14.641 18.837
yo5-qgt16 45.28 10.26 1.643 164.658 173.619 3.604 4.541
yo5-qgt14 47.21 10.54 1.638 166.088 175.130 3.757 4.512
yo5-qgt12 44.76 10.30 1.702 167.566 176.634 3.562 4.872

6 yi6-qgt-ps yi6-qgt5 64.33 5.24 -0.189 2.158 4.641 5.119 0.060 17.769 1.333
yi6-qgt7 47.58 11.79 0.589 3.204 6.307 3.786 0.583
yi7-qgt7 47.64 12.13 0.622 23.226 27.488 3.791 0.651
yi7-qgt5 63.75 5.11 -0.151 24.279 29.150 5.073 0.038

7 yi7-qgt-ps yi7-qgt17 48.54 10.24 1.708 16.127 20.023 3.863 4.903 14.746 19.163
yi7-qgt15 44.04 10.55 1.700 17.547 21.525 3.505 4.862
yi7-qgt13 47.75 10.21 1.674 19.035 23.039 3.800 4.709
yi7-qgt11 44.97 10.60 1.670 20.437 24.545 3.579 4.689

8 yo8-qgt-ps yo8-qgt6 46.26 15.63 0.006 32.067 36.538 3.681 6.9e-5 14.155 2.735
yo8-qgt8 42.71 12.00 0.898 33.391 37.813 3.399 1.355
yo9-qgt8 42.88 11.81 0.904 52.177 57.182 3.412 1.374
yo9-qgt6 46.03 15.59 0.060 53.503 58.488 3.663 0.006

9 yo9-qgt-ps yo9-qgt18 46.40 10.70 1.660 44.898 49.660 3.692 4.634 14.647 19.173
yo9-qgt16 45.60 10.01 1.649 46.392 51.181 3.628 4.575
yo9-qgt14 47.40 10.67 1.708 47.804 52.694 3.772 4.907
yo9-qgt12 44.67 10.07 1.734 49.288 54.207 3.555 5.058

10 yi10-qgt-ps yi10-qgt5 63.98 5.20 -0.139 61.291 65.855 5.091 0.033 17.797 1.219
yi10-qgt7 47.96 11.94 0.581 62.335 67.538 3.817 0.568
yi11-qgt7 47.91 11.78 0.558 82.329 88.742 3.813 0.524
yi11-qgt5 63.79 5.25 -0.236 83.376 90.397 5.076 0.093

11 yi11-qgt-ps yi11-qgt17 48.41 10.39 1.692 75.234 81.266 3.853 4.813 14.758 19.113
yi11-qgt15 44.10 10.45 1.633 76.649 82.786 3.509 4.486
yi11-qgt13 47.67 10.36 1.672 78.141 84.281 3.793 4.701
yi11-qgt11 45.27 10.36 1.744 79.538 85.806 3.602 5.113

12 yo12-qgt-ps yo12-qgt6 46.23 15.19 0.030 91.169 97.784 3.679 0.002 14.153 3.148
yo12-qgt8 42.91 12.13 0.971 92.485 99.087 3.415 1.584
yo1-qgt8 42.81 12.11 0.960 111.270 118.434 3.407 1.551
yo1-qgt6 45.91 15.35 0.084 112.604 119.725 3.653 0.012

Σ TQG = 88.17

Σ TGG = 114.69
Σ TQQ = 95.80

Σ TGQ = 12.39

Table 2: Jump quad and power supply sensitivities in the RHIC Yellow ring with the 2023 layout. The
corresponding optical parameters, listed in Table 1, have β∗ = 5 m in both planes at every IP.
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Figure 4: Optical performance in a 2-knob linear jump scheme in the RHIC Yellow ring with the 2023 layout,
in transition optics with β∗ = 5 m in both planes at all IPs.
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Figure 4 shows results from a scan of the G family strength across the range

−0.01 [m−1] < qG < 0.01 [m−1] (24)

always with

qQ =
−0.008911

0.009681
qG = −0.921 qG (25)

in order to deliver the 2-knob solution of Equation 22. The top plot shows that ∆γT is reasonably linear in
qG over power supply range of ±50 A [5], with

|qG| ≤ 0.00833 [m−1] (26)

|qQ| ≤ 0.00767 [m−1]

These power supply limits lead to a more realistic range of

−1.14 . ∆γT . 0.71 (27)

The bottom plot shows that the desire for ∆QH = 0 is only reasonably well met over the power supply
range. Further suppression of ∆QH requires a 4-knob solution.

Figure 5 shows the global maximum values of βH , βV , and dispersion η in the distorted optics, as a function
of ∆γT . The distortions are significant, but tolerable. Their 2-knob values are reasonably consistent with
those of the 4-knob scheme that is routinely used in RHIC operations.
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Figure 5: Optical distortions in a 2-knob linear jump scheme in the RHIC Yellow ring with the 2023 layout,
and optics with β∗ = 5 m in both planes at all IPs.
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5 HSR performance with 38 jump quads

Figure 6 shows where the HSR lost 10 jump quads, compared to the RHIC layout in Figure 2. Six G power
supplies still drive 4 quads, but now there are only 5 Q power supplies, 3 of which drive only 2 quads.

Table 3 records the HSR power supply sensitivities and shows that the net 2-knob T matrix is

T =

(
TGG TGQ

TQG TQQ

)
=

(
111.892 9.338
87.582 55.280

)
(28)

where all matrix elements have the dimensions of meters. All elements in the inverse matrix

T−1 =

(
0.010299 −0.001740
−0.016317 0.020846

)
(29)

have the dimensions of inverse meters. If the desired ∆QH is zero, then(
qG
qQ

)
=

(
0.010299
−0.016317

)
∆γT [m−1] (30)

and so the maximum value of q recorded in Table 1 predicts a potential ∆γT range of

|∆γT | <
0.00877

0.016317
≈ 0.54 (31)

insofar as the linear model holds.

Figure 6: The layout of the 11 transition jump power supplies and 38 jump quads in the preliminary HSR
layout EIC-HSR-20220921a that was prepared for 275 GeV proton squeezed collisions at IP6 and IP8. Some
or all of the 10 quads that have been eliminated need to be restored. Six G power supplies drive quadruplets
of high dispersion quads at the locations indicated by the black arrows outside the ring. Two Q power
supplies that drive 4 low dispersion jump quads are indicated by colored arrows inside the ring. The 3 Q
power supplies that drive only 2 jump quads are indicated by colored ellipses.
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PS PS Quad Quad Twiss functions Quad Power supply sensitivities
index name name sensitivities G Q
p βH βV ηH φH φV SQ SG SQ SG SQ SG

m m m rad rad m m m m m m

1 bi1-qgt-ps bi12-qgt5 63.34 6.87 -0.317 98.381 91.559 5.040 0.141 8.816 0.629
bi12-qgt7 47.45 11.16 0.589 99.403 93.078 3.776 0.487

2 yi2-qgt-ps yi3-qgt5 66.07 6.55 -0.321 144.208 137.034 5.258 0.145 8.891 0.592
yi3-qgt7 45.66 11.67 0.564 143.188 135.484 3.634 0.446

3 yi3-qgt-ps yi3-qgt11 44.77 11.83 1.802 140.453 132.663 3.562 4.565 14.250 18.260
yi3-qgt13 44.77 11.83 1.802 139.080 131.244 3.562 4.565
yi3-qgt15 44.77 11.83 1.802 137.706 129.826 3.562 4.565
yi3-qgt17 44.77 11.83 1.802 136.333 128.408 3.562 4.565

4 yo4-qgt-ps yo4-qgt6 39.87 16.70 -0.074 152.464 144.070 3.172 0.008 15.936 3.225
yo4-qgt8 44.88 11.87 1.089 153.911 145.373 3.572 1.666
yo5-qgt6 74.47 33.97 0.414 172.666 164.398 5.926 0.240
yo5-qgt8 41.05 19.04 0.966 171.822 163.502 3.267 1.311

5 yo5-qgt-ps yo5-qgt12 46.95 11.20 1.840 169.014 160.819 3.736 4.759 14.945 19.037
yo5-qgt14 46.95 11.20 1.840 167.636 159.396 3.736 4.759
yo5-qgt16 46.95 11.20 1.840 166.259 157.973 3.736 4.759
yo5-qgt18 46.95 11.20 1.840 164.881 156.551 3.736 4.759

6 NONE 0.000 0.000

7 yi7-qgt-ps yi7-qgt11 44.77 11.83 1.802 22.326 21.710 3.562 4.565 14.250 18.260
yi7-qgt13 44.77 11.83 1.802 20.952 20.291 3.562 4.565
yi7-qgt15 44.77 11.83 1.802 19.579 18.873 3.562 4.565
yi7-qgt17 44.77 11.83 1.802 18.205 17.454 3.562 4.565

8 yo8-qgt-ps yo9-qgt6 48.63 14.05 0.109 58.006 58.012 3.870 0.017 7.446 1.603
yo9-qgt8 44.94 13.51 1.063 56.777 56.789 3.576 1.587

9 yo9-qgt-ps yo9-qgt12 46.95 11.20 1.840 54.007 54.008 3.736 4.759 14.945 19.037
yo9-qgt14 46.95 11.20 1.840 52.630 52.585 3.736 4.759
yo9-qgt16 46.95 11.20 1.840 51.252 51.163 3.736 4.759
yo9-qgt18 46.95 11.20 1.840 49.875 49.740 3.736 4.759

10 bo10-qgt-ps bo10-qgt12 44.88 11.80 1.799 73.578 67.744 3.571 4.547 14.286 18.188
bo10-qgt14 44.88 11.80 1.799 74.955 69.166 3.571 4.547
bo10-qgt16 44.88 11.80 1.799 76.332 70.589 3.571 4.547
bo10-qgt18 44.88 11.80 1.799 77.710 72.011 3.571 4.547

11 bo11-qgt-ps bo10-qgt6 46.67 14.73 0.115 69.578 63.731 3.714 0.019 14.190 3.289
bo10-qgt8 42.97 14.13 1.043 70.808 64.955 3.420 1.530
bo11-qgt6 41.73 16.05 -0.086 90.128 84.479 3.321 0.010
bo11-qgt8 46.95 11.27 1.110 88.681 83.189 3.736 1.731

12 bi12-qgt-ps bi12-qgt11 46.83 11.23 1.844 102.138 95.899 3.727 4.778 14.907 19.111
bi12-qgt-13 46.83 11.23 1.844 103.512 97.318 3.727 4.778
bi12-qgt-15 46.83 11.23 1.844 104.885 98.736 3.727 4.778
bi12-qgt-17 46.83 11.23 1.844 106.258 100.155 3.727 4.778

Σ TQG = 87.582
Σ TGG = 111.892
Σ TQQ = 55.280
Σ TGQ = 9.338

Table 3: Jump quad and power supply sensitivities in the HSR layout EIC-HSR-20220921a, with nominal
optics for two squeezed collisions of 275 GeV protons. Six G power supplies each drive 4 quads, as in RHIC.
There are only 5 Q power supplies, 3 of which drive only 2 quads, for a net reduction of 10 jump quads.
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Figure 7: Optical distortions in a 2-knob linear jump scheme in the HSR with layout EIC-HSR-20220921a
and squeezed 2-collision optics.
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Figure 7 tests this prediction. It shows results from a scan of the G family strength across the range

−0.01 [m−1] < qG < 0.01 [m−1] (32)

always with

qQ =
−0.016317

0.010299
qG = −1.584 qG (33)

in order to deliver the 2-knob solution of Equation 30. The top plot in Figure 7 shows that ∆γT is reasonably
linear in qG, but with a saturated response at about qG ≈ 0.005, and with unstable optics at about qG ≈ 0.007,
just beyond the power supply limits of

|qG| ≤ 0.00554 [m−1] (34)

|qQ| ≤ 0.00877 [m−1]

Nonlinear deviations from the linear model lead to a more realistic range of

−0.69 . ∆γT . 0.34 (35)

at the extremes of jump quad capabilities. The bottom plot in Figure 7 shows that the desire for ∆QH = 0
is not as well met as in RHIC, and that the ∆QV behavior is much worse. It is not clear that a 4-knob
solution could remediate these problems in the HSR.

Figure 8 shows the optical distortions of βH , βV , and dispersion η, as a function of ∆γT . The β-functions
here are much larger in general than in Figure 5, because the HSR results use collision optics, while the
RHIC results use optimized transition crossing optics.
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Figure 8: Optical distortions in a 2-knob linear jump scheme in the HSR with layout EIC-HSR-20220921a
and squeezed 2-collision optics.
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6 Comparing HSR-38 and RHIC-48

Table 4 summarizes how HSR performs with 38 jump quads, compared to RHIC performance with 48 jump
quads, in the 2-knob scenario.

Missing Q jump quads. All 10 of the jump quads that were displaced in developing HSR-38 from
RHIC-48 were lost from low-dispersion locations, where Q jump quads reside. Consequently the 2-knob
sensitivity TQQ is approximately halved, going from 95.8 m in RHIC to 55.3 m in HSR. This makes it
necessary for the Q-family strength |qQ| to be 1.584 times larger than the G-family strength |qG| in the HSR.
The opposite is true in RHIC, where |qQ| = 0.921|qG|.

Parameter Units RHIC-48 HSR-38

Number of jump quads G 24 24
Q 24 14

2-knob sensitivity TGG m 114.7 111.9
TQQ m 95.8 55.3

2-knob strength ratio, qQ/qG −0.921 −1.584

Maximum jump quad strength |qG| m−1 0.00833 0.00554
|qQ| m−1 0.00737 0.00877

∆γT range, linear prediction, max/min ±0.86 ±0.54
simulated, min −1.13 −0.68

max 0.71 0.35
span 1.84 1.03

∆Q range, linear prediction, H span 0 0
simulated, H min 0 −0.075

H max 0.102 0
H span 0.102 0.075

linear prediction, V span – –
simulated, V min −0.003 −0.023

V max 0.002 0.015
V span 0.005 0.038

Optical distortions, βmax, H min m 269 1297
H nominal m 273 1300
H max m 884 1939
V min m 266 1005
V nominal m 275 1213
V max m 292 1451

ηmax, min m 1.81 1.87
nominal m 1.81 1.87
max m 2.91 9.57

Table 4: Transition crossing optical performance in RHIC-48 and HSR-38. Linear predictions are calculated
in the 2-knob scenario. Minimum and maximum simulated values of ∆γT and ∆Q are calculated across the
achievable range of jump quad strengths q. These extreme strengths occur when a current of ±50 A delivers
an integrated strength of |B′L| = 1.5 T at the appropriate transition rigidity [5]. The maximum of |qG|
and |qQ| differs slightly between RHIC-48 and HSR-38 (with values 0.00833 and 0.00877 m−1) because γT0

differs slightly between RHIC and HSR, as noted in Table 1.
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Range of ∆γT . In consequence the linearly predicted range of ∆γT drops from ±0.86 in RHIC to
±0.54 in HSR, with predicted total spans of twice that: 1.72 and 1.08 in RHIC and HSR, respectively.
Nonlinearities (with respect to q) are important in both RHIC and HSR. Simulations show that they change
the predicted span to 1.84 in RHIC, and 1.03 in HSR. The loss in ∆γT span from RHIC to HSR is significant.

Asymmetric jumps. The loss in ∆γT span is somewhat ameliorated by the fact that the response
curves – in ∆γT ,∆QH ,∆QV , βH,max, βV,max, and ηmax versus ∆γT – are asymmetric about ∆γT = 0. In
consequence the fast jump in HSR could be centered around a non-zero (negative) value of ∆γT , as it is
already in RHIC operations.

Tune shifts. The horizontal and vertical tune shifts span a range of 0.102 and 0.005 in RHIC, and 0.075
and 0.038 in HSR, over the full power supply range. This is a significant concern in RHIC operations, where
it is satisfactorily ameliorated by using a 4-knob scheme, while no further attention to vertical tune shifts,
which are already negligibly small in the 2-knob scheme. By contrast, both vertical and horizontal tune
shifts in HSR need further attention in the HSR, for example by implementing a 4-knob solution, eventually.

Optical distortions. Optical distortions are a major concern. Table 4 shows that βV,max and ηmax

values in RHIC are relatively well-controlled, varying only from 266 m to 292 m, and from 1.81 m to 2.91 m,
over the full power supply range. Distortions of βH,max in RHIC are large, varying from 269 m to 884 m.
Optical distortions in HSR are in general larger, with βV,max and ηmax varying from 1005 m to 1451 m, and
from 1.87 m to 9.57 m, respectively. Nonetheless βH,max distortions in HSR are better than in RHIC, with
values varying from 1297 m to 1939 m.
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7 Summary of potential avenues for future work

This technical note analyses the loss in transition crossing performance that occurred during the early
development of the HSR layout, and collision optics. Insofar as there is little “head room” in the current
RHIC first order jump scheme, the question becomes: How to restore RHIC performance in the
HSR? There are several potential directions for future work aimed at achieving this restoration. The
following unordered and partial list describes potential avenues:

1. Updating the jump quad distribution. This necessitates moving CQS modules around, for exam-
ple by reinstalling elsewhere modules with jump quads that are decommissioned from the Blue ring.
Some or all of the 10 missing Q jump quads (see Table 4) could be replaced. The jump quads in the
two Blue arcs (see Figure 6) could be relocated at the other end of their respective arcs, in order to
maintain the RHIC layout of the G families and reestablish phase advance intervals between thems

2. Increasing the integer tunes for ions, but not for protons. Optical distortions become more
severe, the further the horizontal and vertical phase advances per main arc FODO cell deviate from
90 degrees. These phase advances were further reduced from 90 degrees in the HSR optics analyzed
here, in part to enable the highest possible proton collision energies (see Table 1). However, protons
do not cross transition, and achieving the highest possible energy is not a concern for ions like gold.
Thus, ion optics could include larger integer tunes than proton optics, with larger phases advance
per FODO cell and milder optical distortions around jump time. This could restore RHIC transition
crossing performance, provided that the necessary increase in Q and G strengths (with 10 missing Q
jump quads) is achievable.

3. Developing transition (and injection) optics. At the time of writing only one optic has been
officially released for the EIC-HSR-20220921a layout, for proton-electron collisions with two collision
points. This explains the anomalously large βmax values shown in Figure 7, and listed in Table 4. In
practice the HSR will cross transition in optics that are closely similar to injection optics, just as in
RHIC. Transition optics may well ameliorate the optical distortions reported here for HSR-38.

4. Blue quadrupole quench diode polarity. If the main arc quadrupole quench diodes are not reversed
in the Blue ring, then Blue jump quads will no longer be at F locations with large values of βH ≈ 50 m
and η ≈ 2 m, but at D locations with small values of βH ≈ 12 m and η ≈ 1 m. Equation 11 shows that
this would weaken both SG and SQ sensitivities by a factor of about 4, for the 14 jump quads that
Table 3 lists in the Blue ring. This would further impair the performance of the HSR jump scheme.

5. Alternate schemes. The first order transition jump scheme in RHIC could be abandoned for use
in HSR, in favor of an alternate scheme. For example, a second order jump scheme could be invoked.
Recently “A novel non-adiabatic approach to transition crossing in a circular hadron accelerator” was
proposed by Giovannozzi et al, for potential use in the CERN SPS [7]. It follows some of the concepts
implemented in Multi-Turn Extraction, as routinely performed in the CERN PS. Such a resonance
island scheme could also be evaluated for use in HSR.

6. Beam simulations. This note explicitly “doesn’t care about beam or time”, in favor of focusing
on static optical performance. Sooner or later fuller simulations need to be performed, including
longitudinal motion, accelerating beam with realistic parameters through transition in the presence of
errors.

7. Beam studies. RHIC transition crossing studies could be performed with 8 or 12 Q jump quads turned
off, to better emulate HSR-38. The fundamentals of the alternative scheme proposed by Giovannozzi
et al [7] could first be tested by injecting into open islands, with no additional instrumentation. If early
studies are successful, and if appropriate instrumentation is in place, then later studies could include
crossing transition with beam stored in resonance islands.

Not all of these avenues need to be explored. Their relative prioritization is not clear at the time of writing.
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