HSR transition jump optics in the September 2022 layout

S. Peggs
March 2023
\title{ Electron-Ion Collider

Brookhaven National Laboratory }
\section*{U.S. Department of Energy

USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)}

[^0]
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

HSR transition jump optics in the September 2022 layout

S. Peggs, A. Drees, H. Lovelace III, G. Robert-Demolaize.

March 14, 2023

Contents

1 Introduction 2
2 Power supply sensitivities $d \gamma_{T} / d q$ and $d Q_{H} / d q$ 3
3 Optical distortions and jump quad spacing 5
4 RHIC performance with 48 jump quads 6
5 HSR performance with 38 jump quads 10
6 Comparing HSR-38 and RHIC-48 14
7 Summary of potential avenues for future work 16

Abstract

Transition is crossed during acceleration in the Hadron Storage Ring (HSR) for all species other than protons. A first-order transition jump scheme manipulates the value of the optical quantity γ_{T} and distorts the optics of the HSR around the time that the beam energy $\gamma_{\text {beam }}$ crosses the nominal transition value $\gamma_{T 0}$. The jump scheme in the Relativistic Heavy Ion Collider (RHIC) uses 48 jump quads, driven by 12 bi-polar power supplies that each drive 4 quads in series. Ten of those 48 are eliminated in the preliminary September 2022 HSR layout (EIC-HSR-220921a) that was developed from RHIC with no initial regard for transition crossing.

This note analyzes the performance of the 38 -quad HSR scheme, by comparison with the 48-quad RHIC scheme. It is concerned only with optics - the manipulation and response of Twiss functions and related quantities - and not with beams. This evaluation is a necessary first step before enhancing the transition jump scheme to restore RHIC performance in the HSR. Eventually full beam simulations of transition crossing need to be performed.

1 Introduction

An on-momentum particle passes through transition at time $t=0$, when

$$
\begin{equation*}
\gamma_{\text {beam }}(t, 0)=\gamma_{T 0}+\gamma^{\prime} t \tag{1}
\end{equation*}
$$

where $\gamma^{\prime}=d \gamma / d t$ is the acceleration ramp rate. More generally, a particle that is off-momentum by $\delta=\Delta p / p$ crosses transition when

$$
\begin{equation*}
\gamma_{b e a m}(t, \delta)=\gamma_{T 0} \tag{2}
\end{equation*}
$$

The maximum time delay or advance from the nominal crossing time - the so-called nonlinear time $\pm T_{N L}$ - occurs for a particle with $\delta= \pm \delta_{M A X}$ at the edge of the momentum distribution of the beam [1, 2]. It depends on the optics through

$$
\begin{equation*}
T_{N L}=\left(\alpha_{1}+\frac{3}{2} \beta_{T}^{2}\right) \frac{\gamma_{T 0}}{\gamma^{\prime}} \delta_{M A X} \tag{3}
\end{equation*}
$$

where the "nonlinear parameter" α_{1} is the quadratic coefficient in the polynomial expansion of the change in total circumference ΔC with respect to δ

$$
\begin{equation*}
\frac{\Delta C}{C}=\frac{\delta}{\gamma_{T 0}}\left(1+\alpha_{1} \delta+O\left(\delta^{2}\right)\right) \tag{4}
\end{equation*}
$$

and C is the nominal circumference. Equation 3 shows that moving the nonlinear parameter closer to its ideal value of $\alpha_{1} \approx-1.5$ encourages all ions to cross transition in unison [3, 4].

The value of α_{1} varies with the optics and with the two chromaticities. RHIC optics with $\alpha_{1}=-3 / 2$ can be achieved with values of $\beta^{*} \approx 3 \mathrm{~m}$ in both planes at each Interaction Point (IP). However, such small values of β^{*} makes the beam uncomfortably large in the focusing triplets. Further, the tune variation with $\Delta \gamma_{T}$ becomes stronger when β^{*} is smaller. In a compromise, RHIC routinely crosses transition with $\beta^{*}=5 \mathrm{~m}$ at all IPs. Even when $\alpha_{1}=-3 / 2$ optics are possible and convenient, it is still necessary to manipulate $\Delta \gamma_{T}(t)$, where

$$
\begin{equation*}
\gamma_{T}(t)=\gamma_{T 0}+\Delta \gamma_{T}(t) \tag{5}
\end{equation*}
$$

The optical quantity $\Delta \gamma_{T}$ must vary from a maximum positive value to a minimum negative value over a range of as much as

$$
\begin{equation*}
-1<\Delta \gamma_{T}<+1 \tag{6}
\end{equation*}
$$

in a time span of $\pm T_{N L}$ around the nominal transition crossing.
This note doesn't care about beam or time. It is concerned only with the optics of a lattice at a stationary point in time - at a "stone" or a "strength vector" in RHIC and HSR jargon. The values of $\gamma_{b e a m}$ and γ^{\prime} do not enter in what follows, except among the transition crossing parameters listed in Table 1. Nor does α_{1} enter any further, even though it, like γ_{T}, is an optical quantity.

Figure 1: G and Q families of jump quads in one of the 6 RHIC arcs.

2 Power supply sensitivities $d \gamma_{T} / d q$ and $d Q_{H} / d q$

In RHIC $\Delta \gamma_{T}$ is manipulated using 48 jump quads, driven by 12 fast bi-polar power supplies that are connected in series to 4 quads, as sketched in Figure 1. In each arc the "G" set of jump quads (at high dispersion locations) mainly controls $\Delta \gamma_{T}$, while a second "Q" set (in low dispersion locations) mainly compensates for the shift in horizontal tune ΔQ_{H}. Each of the jump quads is one layer of a four layer iron-free superconducting corrector, in a Corrector-Quadrupole-Sextupole (CQS) cryomodule.

The strength of power supply number p is written as the integrated strength q_{p} of one of its quads

$$
\begin{equation*}
q_{p}=k_{p} L=\frac{1}{f_{p}} \tag{7}
\end{equation*}
$$

where k_{p} is the geometric strength of the quad, L is its length, and f_{p} is its focal length. It can be shown [6] that to first order a set of jump quads powered at the same strength q_{p} delivers

$$
\begin{equation*}
\Delta \gamma_{T}=q_{p} \cdot \frac{\gamma_{T 0}^{3}}{2 C} \sum_{p \text { quads }} \eta^{2} \tag{8}
\end{equation*}
$$

where C is the accelerator circumference and η is the dispersion at each quad. Similarly, power supply p shifts the horizontal tune Q_{H} according to

$$
\begin{equation*}
\Delta Q_{H}=q_{p} \cdot \frac{1}{4 \pi} \sum_{p \text { quads }} \beta_{H} \tag{9}
\end{equation*}
$$

Parameter	Units	RHIC	HSR
Layout		Yellow, 2023	EIC-HSR-220921a
Optics		$\beta^{*}=5 \mathrm{~m}$	" 275 ", 2 collisions
Circumference C	m	3833.845	3833.888
Number of jump quads		48	38
Gamma transition $\gamma_{T 0}$		23.33	22.20
Gold rigidity at transition ($B \rho$)	Tm	180.03	171.76
Maximum jump quad strength $\left\|B^{\prime} L\right\|$ $\|q\|$	$\underset{\mathrm{m}^{-1}}{\mathrm{~T}}$	0.00833	1.500 .00877
Phase advance per FODO cell, H	2π	0.229	0.219
V	2π	0.241	0.226
Tune, Q_{H}		28.238	28.228
Q_{V}		29.228	27.210
Chromaticity, C_{H}		$-2 \rightarrow+2$	
C_{V}		$-2 \rightarrow+2$	
Gold atomic number Z		79	
Gold atomic weight A		196.97	
Maximum momentum spread $\delta_{\text {max }}$		0.00432	
RF voltage	kV	200	
Acceleration ramp rate γ^{\prime}	s^{-1}	0.278	
Harmonic number h		360	315

Table 1: Transition crossing parameters in RHIC and HSR, with gold beam. There are only minor differences in the values of the two sets of parameters, and so the optical performance requirements for HSR are essentially identical to those in RHIC. The maximum absolute jump quad strength $|q|$ occurs when a current of 50 A delivers an integrated strength of $\left|B^{\prime} L\right|=1.5 \mathrm{~T}$, at the appropriate transition rigidity [5].

The two linear sensitivities of primary interest for each power supply

$$
\begin{align*}
S_{G, p} & \equiv \frac{d \gamma_{T}}{d q_{p}} \tag{10}\\
S_{Q, p} & \equiv \frac{d Q_{H}}{d q_{p}}
\end{align*}
$$

therefore have values of

$$
\begin{align*}
S_{G, p} & =\frac{\gamma_{T 0}^{3}}{2 C} \sum_{p \text { quads }} \eta^{2} \tag{11}\\
S_{Q, p} & =\frac{1}{4 \pi} \sum_{p \text { quads }} \beta_{H}
\end{align*}
$$

Both sensitivities $S_{G, p}$ and $S_{Q, p}$ have the dimension of length.
Equations 8 and 9 show that jump quads at large dispersion locations affect both $\Delta \gamma_{T}$ and ΔQ_{H}, while those at small dispersion locations with $\eta \approx 0$ mostly affect ΔQ_{H}, with little effect on $\Delta \gamma_{T}$. Hence it is natural to separate jump quads into families at high and low dispersion locations, in order to orthogonalize the control of ΔQ_{H} and $\Delta \gamma_{T}$ as far as possible. For example, in a "2-knob solution" all 6 G power supplies have strength q_{G}, and all 6 Q power supplies have strength q_{Q}.

In routine operation RHIC uses a 4 -knob solution that groups 12 power supplies into 4 sets of 3 power supplies, for a total of 4 independent variables. Two knobs control the G sets of jump quads, and two control Q sets. 4-knob solutions are important when nonlinearities (in $\Delta \gamma_{T}$ and ΔQ_{H} versus strength q) come into play. Nonetheless, the 4 values used in RHIC operations usually differ only slightly from the values that are found in the 2-knob linear solution described here. A 2-knob scenario conveniently enables the comparison of the contemporary RHIC-48 performance with the HSR-38 performance in the EIC-HSR-220921a layout.

The linear contributions to $\Delta \gamma_{T}$ and ΔQ_{H} in a 2 -knob solution are

$$
\begin{equation*}
\binom{\Delta \gamma_{T}}{\Delta Q_{H}}=T\binom{q_{G}}{q_{Q}} \tag{12}
\end{equation*}
$$

where the 2 -knob T matrix elements in

$$
T=\left(\begin{array}{cc}
T_{G G} & T_{G Q} \tag{13}\\
T_{Q G} & T_{Q Q}
\end{array}\right)=\left(\begin{array}{cc}
\sum S_{G, p} & \sum S_{G, p} \\
\sum S_{Q, p} & \sum S_{Q, p}
\end{array}\right)
$$

are found using Equation 11. The sums are over all G supplies for T matrix elements $T_{G G}$ and $T_{Q G}$, and over all Q supplies for $T_{G Q}$ and $T_{Q Q}$. The 2-knob solution is found by inverting the matrix T

$$
\begin{equation*}
\binom{q_{G}}{q_{Q}}=T^{-1}\binom{\Delta \gamma_{T}}{\Delta Q_{H}} \tag{14}
\end{equation*}
$$

to deliver the 2 strengths q_{G} and q_{Q}.
Usually the desired ΔQ_{H} is zero, in which case

$$
\begin{equation*}
\Delta Q_{H}=0=T_{Q G} \cdot q_{G}+T_{Q G} \cdot q_{Q} \tag{15}
\end{equation*}
$$

so that

$$
\begin{equation*}
q_{Q}=-\left(\frac{T_{Q G}}{T_{Q Q}}\right) q_{G} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{G}=\frac{\Delta \gamma_{T}}{\left(T_{G G}-T_{G Q} \cdot\left(\frac{T_{Q G}}{T_{Q Q}}\right)\right)} \tag{17}
\end{equation*}
$$

Equation 16 shows that the ratio of q_{Q} to q_{G} is a constant in this linear model, when $\Delta Q_{H}=0$.

3 Optical distortions and jump quad spacing

Jump quads at horizontal phase locations ϕ_{i} cause a first order total horizontal beta wave of

$$
\begin{equation*}
\frac{\Delta \beta_{H}}{\beta_{H}}=\frac{1}{2 \sin \left(2 \pi Q_{H}\right)} \sum_{i} q_{i} \beta_{H i} \cos \left(2\left|\phi-\phi_{i}\right|-2 \pi Q_{H}\right) \tag{18}
\end{equation*}
$$

where Q_{H} is the nominal horizontal tune, and a total dispersion wave of

$$
\begin{equation*}
\frac{\Delta \eta}{\sqrt{\beta_{H}}}=\frac{1}{2 \sin \left(\pi Q_{H}\right)} \sum_{i} q_{i} \eta_{i} \sqrt{\beta_{i}} \cos \left(\left|\phi-\phi_{i}\right|-\pi Q_{H}\right) \tag{19}
\end{equation*}
$$

Hence Q family jump quads at locations with small dispersions η_{i} generate relatively small dispersion waves.
Equations 18 and 19 show that the beta wave phase propagates twice as fast as the dispersion wave phase. Therefore, if two jump quads with the same small strength q_{i} are arranged in a doublet, with identical β values and spaced by 90 degrees in phase, they generate a beta wave that is localized inside the doublet. Similarly, if 4 jump quads are spaced by 90 degrees (with identical small strengths, betas, and dispersions) then both beta and dispersion waves are localized. This motivates the arrangement of Q-family jump quads in doublets, and G-family jump quads in quadruplets, as shown in Figures 1 and 2. All jump quads are located in main arc "F" CQS cryomodules, with large values of $\beta_{H} \approx 50 \mathrm{~m}$ and small values of $\beta_{V} \approx 12 \mathrm{~m}$.

Unfortunately Table 1 shows that the arc FODO cells in RHIC and HSR have horizontal and vertical phase advances that are significantly smaller than 90 degrees, and so the beta and dispersion waves are not fully localized. The amount of global leakage increases with increasing deviation from 90 degrees. Further, optical distortions that are second order (and higher) in strength q_{i} become more important at the larger strengths that are necessary when there are fewer jump quads to generate useful $\Delta \gamma_{T}$ values.

Figure 2: Twelve power supplies drive 48 jump quadrupoles in the RHIC Yellow ring. Quads at high dispersion locations are denoted by the black arrows outside the ring. Sets of low dispersion quads are marked by the colored arrows inside the ring. All jump quads appear as doublets, placed next to main arc F quads that are spaced by one FODO cell.

4 RHIC performance with 48 jump quads

Figures 1 and 2 show how each of the 6 RHIC Yellow arcs contains one G and one Q power supply. Table 2 lists the jump quad Twiss functions β_{H} and η generated by an optics code like BMAD or MADX. It also lists the individual power supply sensitivities S_{Q} and S_{G} that are generated via Equation 11, and which are shown graphically in Figure 3. Finally, the power supply sensitivities are summed to produce the T-matrix elements listed at the bottom-right of Table 2.

Figure 3: Sensitivities S_{G} and S_{Q} for the RHIC Yellow jump quad power supplies, with $\beta^{*}=5 \mathrm{~m}$ at each IP. All $6 S_{G}$ values are similar, while the S_{Q} values are somewhat different in the inner and outer arcs.

The 2 -knob T matrix for RHIC in Table 2 is

$$
T=\left(\begin{array}{ll}
T_{G G} & T_{G Q} \tag{20}\\
T_{Q G} & T_{Q Q}
\end{array}\right)=\left(\begin{array}{rr}
114.689 & 12.385 \\
88.171 & 95.797
\end{array}\right)
$$

where all elements have the dimensions of meters. The elements in its inverse

$$
T^{-1}=\left(\begin{array}{rr}
0.009681 & -0.001252 \tag{21}\\
-0.008911 & 0.011591
\end{array}\right)
$$

all have the dimensions of inverse meters. If the desired ΔQ_{H} is zero, then

$$
\begin{equation*}
\binom{q_{G}}{q_{Q}}=\binom{0.009681}{-0.008911} \Delta \gamma_{T}\left[\mathrm{~m}^{-1}\right] \tag{22}
\end{equation*}
$$

and so the maximum value of $q=0.00833 \mathrm{~m}^{-1}$ recorded in Table 1 predicts a potential $\Delta \gamma_{T}$ range of

$$
\begin{equation*}
\left|\Delta \gamma_{T}\right|<\frac{0.00833}{0.009681} \approx 0.86 \tag{23}
\end{equation*}
$$

if the linear model holds. However, nonlinearities are significant. An optics code must be used to properly include nonlinear effects, and to test the accuracy of this linear prediction.

Table 2: Jump quad and power supply sensitivities in the RHIC Yellow ring with the 2023 layout. The corresponding optical parameters, listed in Table 1, have $\beta^{*}=5 \mathrm{~m}$ in both planes at every IP.

RHIC transition jump optics, 2-knob solution, 230224

Figure 4: Optical performance in a 2-knob linear jump scheme in the RHIC Yellow ring with the 2023 layout, in transition optics with $\beta^{*}=5 \mathrm{~m}$ in both planes at all IPs.

Figure 4 shows results from a scan of the G family strength across the range

$$
\begin{equation*}
-0.01\left[\mathrm{~m}^{-1}\right]<q_{G}<0.01\left[\mathrm{~m}^{-1}\right] \tag{24}
\end{equation*}
$$

always with

$$
\begin{equation*}
q_{Q}=\frac{-0.008911}{0.009681} q_{G}=-0.921 q_{G} \tag{25}
\end{equation*}
$$

in order to deliver the 2-knob solution of Equation 22. The top plot shows that $\Delta \gamma_{T}$ is reasonably linear in q_{G} over power supply range of $\pm 50 \mathrm{~A}$ [5], with

$$
\begin{align*}
& \left|q_{G}\right| \leq 0.00833\left[\mathrm{~m}^{-1}\right] \tag{26}\\
& \left|q_{Q}\right| \leq 0.00767\left[\mathrm{~m}^{-1}\right]
\end{align*}
$$

These power supply limits lead to a more realistic range of

$$
\begin{equation*}
-1.14 \lesssim \Delta \gamma_{T} \lesssim 0.71 \tag{27}
\end{equation*}
$$

The bottom plot shows that the desire for $\Delta Q_{H}=0$ is only reasonably well met over the power supply range. Further suppression of ΔQ_{H} requires a 4 -knob solution.

Figure 5 shows the global maximum values of β_{H}, β_{V}, and dispersion η in the distorted optics, as a function of $\Delta \gamma_{T}$. The distortions are significant, but tolerable. Their 2 -knob values are reasonably consistent with those of the 4 -knob scheme that is routinely used in RHIC operations.

Figure 5: Optical distortions in a 2-knob linear jump scheme in the RHIC Yellow ring with the 2023 layout, and optics with $\beta^{*}=5 \mathrm{~m}$ in both planes at all IPs.

5 HSR performance with 38 jump quads

Figure 6 shows where the HSR lost 10 jump quads, compared to the RHIC layout in Figure 2. Six G power supplies still drive 4 quads, but now there are only 5 Q power supplies, 3 of which drive only 2 quads.

Table 3 records the HSR power supply sensitivities and shows that the net 2 -knob T matrix is

$$
T=\left(\begin{array}{cc}
T_{G G} & T_{G Q} \tag{28}\\
T_{Q G} & T_{Q Q}
\end{array}\right)=\left(\begin{array}{rr}
111.892 & 9.338 \\
87.582 & 55.280
\end{array}\right)
$$

where all matrix elements have the dimensions of meters. All elements in the inverse matrix

$$
T^{-1}=\left(\begin{array}{rr}
0.010299 & -0.001740 \tag{29}\\
-0.016317 & 0.020846
\end{array}\right)
$$

have the dimensions of inverse meters. If the desired ΔQ_{H} is zero, then

$$
\begin{equation*}
\binom{q_{G}}{q_{Q}}=\binom{0.010299}{-0.016317} \Delta \gamma_{T}\left[\mathrm{~m}^{-1}\right] \tag{30}
\end{equation*}
$$

and so the maximum value of q recorded in Table 1 predicts a potential $\Delta \gamma_{T}$ range of

$$
\begin{equation*}
\left|\Delta \gamma_{T}\right|<\frac{0.00877}{0.016317} \approx 0.54 \tag{31}
\end{equation*}
$$

insofar as the linear model holds.

Figure 6: The layout of the 11 transition jump power supplies and 38 jump quads in the preliminary HSR layout EIC-HSR-20220921a that was prepared for 275 GeV proton squeezed collisions at IP6 and IP8. Some or all of the 10 quads that have been eliminated need to be restored. Six G power supplies drive quadruplets of high dispersion quads at the locations indicated by the black arrows outside the ring. Two Q power supplies that drive 4 low dispersion jump quads are indicated by colored arrows inside the ring. The 3 Q power supplies that drive only 2 jump quads are indicated by colored ellipses.

Table 3: Jump quad and power supply sensitivities in the HSR layout EIC-HSR-20220921a, with nominal optics for two squeezed collisions of 275 GeV protons. Six G power supplies each drive 4 quads, as in RHIC. There are only 5 Q power supplies, 3 of which drive only 2 quads, for a net reduction of 10 jump quads.

HSR transition jump optics, 2-knob solution, 230222

HSR transition jump optics, 2-knob solution, 230222

Figure 7: Optical distortions in a 2-knob linear jump scheme in the HSR with layout EIC-HSR-20220921a and squeezed 2 -collision optics.

Figure 7 tests this prediction. It shows results from a scan of the G family strength across the range

$$
\begin{equation*}
-0.01\left[\mathrm{~m}^{-1}\right]<q_{G}<0.01\left[\mathrm{~m}^{-1}\right] \tag{32}
\end{equation*}
$$

always with

$$
\begin{equation*}
q_{Q}=\frac{-0.016317}{0.010299} q_{G}=-1.584 q_{G} \tag{33}
\end{equation*}
$$

in order to deliver the 2 -knob solution of Equation 30. The top plot in Figure 7 shows that $\Delta \gamma_{T}$ is reasonably linear in q_{G}, but with a saturated response at about $q_{G} \approx 0.005$, and with unstable optics at about $q_{G} \approx 0.007$, just beyond the power supply limits of

$$
\begin{align*}
& \left|q_{G}\right| \leq 0.00554 \tag{34}\\
& \left|q_{Q}\right| \leq 0.00877 \\
& \left.\mid \mathrm{m}^{-1}\right] \\
& {\left[\mathrm{m}^{-1}\right]}
\end{align*}
$$

Nonlinear deviations from the linear model lead to a more realistic range of

$$
\begin{equation*}
-0.69 \lesssim \Delta \gamma_{T} \lesssim 0.34 \tag{35}
\end{equation*}
$$

at the extremes of jump quad capabilities. The bottom plot in Figure 7 shows that the desire for $\Delta Q_{H}=0$ is not as well met as in RHIC, and that the ΔQ_{V} behavior is much worse. It is not clear that a 4 -knob solution could remediate these problems in the HSR.

Figure 8 shows the optical distortions of β_{H}, β_{V}, and dispersion η, as a function of $\Delta \gamma_{T}$. The β-functions here are much larger in general than in Figure 5, because the HSR results use collision optics, while the RHIC results use optimized transition crossing optics.

Figure 8: Optical distortions in a 2-knob linear jump scheme in the HSR with layout EIC-HSR-20220921a and squeezed 2 -collision optics.

6 Comparing HSR-38 and RHIC-48

Table 4 summarizes how HSR performs with 38 jump quads, compared to RHIC performance with 48 jump quads, in the 2-knob scenario.

Missing \mathbf{Q} jump quads. All 10 of the jump quads that were displaced in developing HSR-38 from RHIC-48 were lost from low-dispersion locations, where Q jump quads reside. Consequently the 2-knob sensitivity $T_{Q Q}$ is approximately halved, going from 95.8 m in RHIC to 55.3 m in HSR. This makes it necessary for the Q-family strength $\left|q_{Q}\right|$ to be 1.584 times larger than the G-family strength $\left|q_{G}\right|$ in the HSR. The opposite is true in RHIC, where $\left|q_{Q}\right|=0.921\left|q_{G}\right|$.

Parameter	Units	RHIC-48	HSR-38
Number of jump quads G		24	24
Q		24	14
2-knob sensitivity $T_{G G}$	m	114.7	111.9
$T_{Q Q}$	m	95.8	55.3
2-knob strength ratio, q_{Q} / q_{G}		-0.921	-1.584
Maximum jump quad strength $\left\|q_{G}\right\|$	m^{-1}	0.00833	0.00554
$\left\|q_{Q}\right\|$	m^{-1}	0.00737	0.00877
$\Delta \gamma_{T}$ range, linear prediction, max/min		± 0.86	± 0.54
simulated, min		-1.13	-0.68
max		0.71	0.35
span		1.84	1.03
ΔQ range, linear prediction, H span		0	0
simulated, H min		0	-0.075
H max		0.102	0
H span		0.102	0.075
linear prediction, V span		-	-
simulated, V min		-0.003	-0.023
V max		0.002	0.015
V span		0.005	0.038
Optical distortions, $\beta_{\max }$, H min	m	269	1297
H nominal	m	273	1300
$\mathrm{H} \max$	m	884	1939
V min	m	266	1005
V nominal	m	275	1213
V max	m	292	1451
$\eta_{\text {max }}, \quad \min$	m	1.81	1.87
nominal	m	1.81	1.87
max	m	2.91	9.57

Table 4: Transition crossing optical performance in RHIC-48 and HSR-38. Linear predictions are calculated in the 2 -knob scenario. Minimum and maximum simulated values of $\Delta \gamma_{T}$ and ΔQ are calculated across the achievable range of jump quad strengths q. These extreme strengths occur when a current of $\pm 50 \mathrm{~A}$ delivers an integrated strength of $\left|B^{\prime} L\right|=1.5 \mathrm{~T}$ at the appropriate transition rigidity [5]. The maximum of $\left|q_{G}\right|$ and $\left|q_{Q}\right|$ differs slightly between RHIC-48 and HSR-38 (with values 0.00833 and $0.00877 \mathrm{~m}^{-1}$) because $\gamma_{T 0}$ differs slightly between RHIC and HSR, as noted in Table 1.

Range of $\Delta \gamma_{T}$. In consequence the linearly predicted range of $\Delta \gamma_{T}$ drops from ± 0.86 in RHIC to ± 0.54 in HSR, with predicted total spans of twice that: 1.72 and 1.08 in RHIC and HSR, respectively. Nonlinearities (with respect to q) are important in both RHIC and HSR. Simulations show that they change the predicted span to 1.84 in RHIC, and 1.03 in HSR. The loss in $\Delta \gamma_{T}$ span from RHIC to HSR is significant.

Asymmetric jumps. The loss in $\Delta \gamma_{T}$ span is somewhat ameliorated by the fact that the response curves - in $\Delta \gamma_{T}, \Delta Q_{H}, \Delta Q_{V}, \beta_{H, \max }, \beta_{V, \max }$, and $\eta_{\max }$ versus $\Delta \gamma_{T}$ - are asymmetric about $\Delta \gamma_{T}=0$. In consequence the fast jump in HSR could be centered around a non-zero (negative) value of $\Delta \gamma_{T}$, as it is already in RHIC operations.

Tune shifts. The horizontal and vertical tune shifts span a range of 0.102 and 0.005 in RHIC, and 0.075 and 0.038 in HSR, over the full power supply range. This is a significant concern in RHIC operations, where it is satisfactorily ameliorated by using a 4 -knob scheme, while no further attention to vertical tune shifts, which are already negligibly small in the 2 -knob scheme. By contrast, both vertical and horizontal tune shifts in HSR need further attention in the HSR, for example by implementing a 4 -knob solution, eventually.

Optical distortions. Optical distortions are a major concern. Table 4 shows that $\beta_{V, \max }$ and $\eta_{\max }$ values in RHIC are relatively well-controlled, varying only from 266 m to 292 m , and from 1.81 m to 2.91 m , over the full power supply range. Distortions of $\beta_{H, \max }$ in RHIC are large, varying from 269 m to 884 m . Optical distortions in HSR are in general larger, with $\beta_{V, \max }$ and $\eta_{\max }$ varying from 1005 m to 1451 m , and from 1.87 m to 9.57 m , respectively. Nonetheless $\beta_{H, \max }$ distortions in HSR are better than in RHIC, with values varying from 1297 m to 1939 m .

7 Summary of potential avenues for future work

This technical note analyses the loss in transition crossing performance that occurred during the early development of the HSR layout, and collision optics. Insofar as there is little "head room" in the current RHIC first order jump scheme, the question becomes: How to restore RHIC performance in the HSR? There are several potential directions for future work aimed at achieving this restoration. The following unordered and partial list describes potential avenues:

1. Updating the jump quad distribution. This necessitates moving CQS modules around, for example by reinstalling elsewhere modules with jump quads that are decommissioned from the Blue ring. Some or all of the 10 missing Q jump quads (see Table 4) could be replaced. The jump quads in the two Blue arcs (see Figure 6) could be relocated at the other end of their respective arcs, in order to maintain the RHIC layout of the G families and reestablish phase advance intervals between thems
2. Increasing the integer tunes for ions, but not for protons. Optical distortions become more severe, the further the horizontal and vertical phase advances per main arc FODO cell deviate from 90 degrees. These phase advances were further reduced from 90 degrees in the HSR optics analyzed here, in part to enable the highest possible proton collision energies (see Table 1). However, protons do not cross transition, and achieving the highest possible energy is not a concern for ions like gold. Thus, ion optics could include larger integer tunes than proton optics, with larger phases advance per FODO cell and milder optical distortions around jump time. This could restore RHIC transition crossing performance, provided that the necessary increase in Q and G strengths (with 10 missing Q jump quads) is achievable.
3. Developing transition (and injection) optics. At the time of writing only one optic has been officially released for the EIC-HSR-20220921a layout, for proton-electron collisions with two collision points. This explains the anomalously large $\beta_{\max }$ values shown in Figure 7, and listed in Table 4. In practice the HSR will cross transition in optics that are closely similar to injection optics, just as in RHIC. Transition optics may well ameliorate the optical distortions reported here for HSR-38.
4. Blue quadrupole quench diode polarity. If the main arc quadrupole quench diodes are not reversed in the Blue ring, then Blue jump quads will no longer be at F locations with large values of $\beta_{H} \approx 50 \mathrm{~m}$ and $\eta \approx 2 \mathrm{~m}$, but at D locations with small values of $\beta_{H} \approx 12 \mathrm{~m}$ and $\eta \approx 1 \mathrm{~m}$. Equation 11 shows that this would weaken both S_{G} and S_{Q} sensitivities by a factor of about 4 , for the 14 jump quads that Table 3 lists in the Blue ring. This would further impair the performance of the HSR jump scheme.
5. Alternate schemes. The first order transition jump scheme in RHIC could be abandoned for use in HSR, in favor of an alternate scheme. For example, a second order jump scheme could be invoked. Recently "A novel non-adiabatic approach to transition crossing in a circular hadron accelerator" was proposed by Giovannozzi et al, for potential use in the CERN SPS [7]. It follows some of the concepts implemented in Multi-Turn Extraction, as routinely performed in the CERN PS. Such a resonance island scheme could also be evaluated for use in HSR.
6. Beam simulations. This note explicitly "doesn't care about beam or time", in favor of focusing on static optical performance. Sooner or later fuller simulations need to be performed, including longitudinal motion, accelerating beam with realistic parameters through transition in the presence of errors.
7. Beam studies. RHIC transition crossing studies could be performed with 8 or 12 Q jump quads turned off, to better emulate HSR-38. The fundamentals of the alternative scheme proposed by Giovannozzi et al [7] could first be tested by injecting into open islands, with no additional instrumentation. If early studies are successful, and if appropriate instrumentation is in place, then later studies could include crossing transition with beam stored in resonance islands.

Not all of these avenues need to be explored. Their relative prioritization is not clear at the time of writing.

Acknowledgements

Many thanks to Massimo Giovannozzi for stimulating discussions about a potential alternative scheme for crossing transition in the HSR and in the CERN SPS, and to Chuyu Liu for discussions about RHIC capabilities in potentially performing beam tests to validate some of these ideas.

References

[1] Johnsen K. 1956. Effects of nonlinearities on the phase transition. CERN Symposium on HE Accels. and Pion Physics 1:106
[2] Takayama K. 1984. Part. Accel. 14:201
[3] Kewisch J, Tang C. 2001. RHIC optics for transition jump $C-A / A P / 53$ BNL.
[4] Bogacz SA, Peggs S. 1991. Comments on the behavior of α_{1} in Main Injector transition Jump Schemes Part. Accel. Conf. p. 1657
[5] 2006. RHIC Configuration Manual. Table 11-4, p. 25
[6] Harrison M, Peggs S, \& Roser T. 2002. The RHIC accelerator. Annu. Rev. Nucl. Part. Sci. Vol. 52, p. 425
[7] Giovannozzi et al. 2021. A novel non-adiabatic approach to transition crossing in a circular hadron accelerator. Eur. Phys. J. Plus (2021) 136:1189

[^0]: Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

