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Abstract

We revisit Free-Electron Laser (FEL) equations in the presence of a planar undulator to inves-

tigate effects on longitudinal FEL dynamics upon seeding by a harmonic for both low-gain and

high-gain cases. Then, we extend the FEL equations in 3D to include electron beam emittance

and radiation diffraction effects.

I. INTRODUCTION

W. B. Colson derived the FEL pendulum equations by solving for longitudinal electron

motion in the presence of radiation and undulator fields [1]. He extended this treatment to

apply for the generation of harmonics [2]. Later, K.-J. Kim applied this formulation along

with the microscopic description of electron beams by Klimontovich distribution function to

formulate three-dimensional models for self-amplified spontaneous emission (SASE) in high-

gain FELs [3] and brightness functions based gain formula for low-gain FELs [4]. Recently,

L. H. Yu extended the low-gain formula with no focusing approximation to achieve harmonic

lasing in transverse gradient undulator based FEL [5, 6]. The conventional treatment used

by Colson, Kim and Yu for deriving Free-Electron Laser (FEL) pendulum equations and

gain assumes that the pondermotive potential is provided by the fundamental radiation.

While such treatment is valid for FELs during startup from noise, it is feasible to seed the

FEL with a harmonic radiation (h > 1) via cavity configurations or outcoupling schemes.

When the field amplitude of this harmonic is higher than that of the fundamental from

spontaneous emission, FEL dynamics is governed by the harmonic seed.

In this report, we derive equations governing longitudinal dynamics for a FEL in the

presence of harmonic seeding and a planar undulator. Then, we include transverse beam

dynamics to arrive at three-dimensional FEL model. We note that calculation techniques

explored here have been previously applied and most expressions throughly derived and

investigated previously for fundamental radiation seeding (please see Refs. [7, 8] and refer-

ences within). We tried our best to minimize repetitions of derivations and keep only the

pertinent ones necessary for our study here.

The rest of this article is organized as follows: in section II, we obtain relevant electron

parameters such as velocities and arrival times for an individual electron and an average

electron. Section III applies Lorentz force equation and slowly changing approximation to
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obtain pendulum equations governing longitudinal dynamics for single electrons using ex-

pressions from section II. In section IV, we apply slowly varying envelope approximation to

paraxial Maxwell equation in one-dimension to obtain evolution equation for emitted har-

monic field amplitude. Then, we introduce Klimontovich distribution function for electron

beam to formulate coupled equations governing longitudinal FEL dynamics in section V; we

solve these equations to obtain expressions for power gain for low-gain and high-gain FELs

in sections VI and VII using different techniques. In section VIII, we relax the 1D limit

restriction to include radiation diffraction and electron beam emittance effects to formulate

3D version of FEL equations. We wrap up this report with our findings in section IX.

II. SINGLE ELECTRON MOTION

For convenience, we solve for electron motion along the z−axis (at x = 0 and y = 0). For

the undulator period λu, the magnetic field of a planar undulator along z−axis is

By = B0sin(kuz), (1)

where ku = 2π/λu is the undulator wavenumber, B0 is the peak magnetic field and the field

component is along vertical direction. For a relativistic electron with relativistic Lorentz

factor γ, velocity v, the Lorentz force equation becomes

d

dt
(γmv) = −eE − e [x̂(vyBz − vzBy)− ŷ(vxBz − vzBx) + ẑ(vxBy − vyBx)] , (2)

where v = (vx, vy, vz) and vi is the electron’s velocity along ith direction, m is electron mass

and e is electron charge. The electric field E contribution comes from the seed radiation

and by using Lorentz force equation we have effectively ignored the recoil effects of emitted

radiation on electron motion. Since |E| ∝ sin(kz − ωt + ϕ) for a radiation with frequency

ω and phase ϕ, the effect of this electric field amplitude on electron velocity is proportional

to ℏ/γ ≪ 1 for a relativistic electron (γ ≫ 1), where ℏ = h/2π with h being the Planck’s

constant. Thus, we ignore the electric field contribution in equation (2) and take the only

contribution for the magnetic field from equation (1). This results in wiggle motion in

x−direction as well as reduction in the longitudinal velocity. Assuming electron energy loss

is negligible along the undulator (generally true for low-gain FELs), it is easy to show that

vx = −Kc
γ

cos(kuz), (3a)
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vz =
√
v2 − v2x − v2y

= c

√(
1− 1

γ2

)
−
(vx
c

)2

≈ v̄z −
K2c

4γ2
cos(2kuz). (3b)

Here c is the speed of light and we introduced K = eB0

mcku
= 0.9343λu[cm]B0[T] as the

undulator deflection parameter. The average longitudinal electron velocity is given by v̄z =

c
[
1− 1+K2/2

2γ2

]
. Likewise, the time t it takes an electron to arrive at location z can be

obtained from vz as follows

t(z) = t(0) +

∫
dz

vz
= t̄(z) +

K2

8kuγ2c
sin(2kuz), (4)

where t̄(z) = t(0) + z
c

(
1 + 1+K2/2

2γ2

)
represents average particle time.

III. FEL PENDULUM EQUATIONS

We proceed to derive the FEL pendulum equations for electrons. As we already discussed

in section II, the electron is under the unfluence of both undulator and radiation fields. The

magnetic field itself does no work to the electron so energy exchange occurs only between

electrons and radiation fields. Assuming the seed radiation spectrum consists of all harmon-

ics, we can model the radiation fields as a collection of discrete electromagnetic waves given

by

E(z; t) = x̂
∑
h

Eh
0 cos(khz − ωht+ ϕh), (5)

where the waves are polarized in x−direction and co-propagating with the electron beam.

Eh
0 is the field amplitude and ϕh is the phase of a harmonic h with wavenumber kh and

frequency ωh. The rate of energy transfer from the radiation spectrum of equation (5) to

an electron is given by the incremental work W = F .v = −eE.v. Substituting the electron

velocity from equation (3a) and field amplitude from equation (5), we obtain

W = −eE.v =
eKc

γ
cos(kuz)

∑
h

Eh
0 cos(khz − ωht+ ϕh). (6)
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Since the rate of energy change for an electron is d(γmc2)/dt, we obtain

dγ

dt
=

eK

γmc

∑
h

Eh
0 cos(kuz)cos(khz − ωht+ ϕh)

=
eK

2γmc

∑
h

Eh
0 (cos [(ku + kh)z − ωht+ ϕh] + cos [(ku − kh)z + ωht− ϕh]) . (7)

The argument in the first cosine term give rise to particle’s slowly varying pondermotive

phase in the presence of combined radiation and undulator fields whereas the second cosine

term give rise to fast oscillations which tend to average to zero. We note that there is a

slowly varying pondermotive phase (θh) associated with each harmonic h and the overall

pondermotive phase of an electron is the result of contribution from all harmonics i. e.

θ =
∑

h θ
h. Since the particle arrival time t is fastly varying component as defined in (4),

we assign the average particle time t̄ to define a slowly varying phase ψh given by

ψh = (kh + ku)z − ωht̄. (8)

Then, we differentiate on both sides with respect to t̄ to get

d

dt̄
ψh =

dψh

dz
v̄z = (kh + ku)v̄z − ωh;

since ωh = ckh and v̄z = c
[
1− 1+K2/2

2γ2

]
, after rearranging and expanding for γ ≫ 1, we get

dψh

dz
= ku + kh −

ckh
v̄z

= ku + kh − kh

[
1 +

1 +K2/2

2γ2

]
= ku

[
1− kh

ku

1 +K2/2

2γ2

]
. (9)

The resonant condition for a harmonic radiation emission in planar undulator is given by

kh
ku

=
2hγ2r

1 +K2/2
, (10)

where γr is the resonant Lorentz factor associated with the resonant energy. Assuming the

electron’s energy differs from the reference (resonant) energy by η = (γ − γr)/γr, we can

rewrite equation (9) as

dψh

dz
= ku

[
1− h(1 + ηh)−2

]
dψh

dz
≈ ku(1− h) + 2hkuη

h

dθh

dz
≈ 2hkuη

h. (11)
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Here we have introduced the reduced phase notation θh = ψh + (h − 1)kuz to track slowly

changing dependence on particle’s energy offset from the FEL resonance condition. Equation

(11) is one of the equations that describes pendulum like behavior of the longitudinal electron

motion in FEL.

Now we derive second equation relevant to the pendulum behavior. Using the definition

of energy deviation η = (γ − γr)/γr, we can rewrite equation (7) as

dη

dt
=

eK

γrγmc

∑
h

Eh
0 cos(kuz)cos(khz − ωht+ ϕh)

=
eK

2γrγmc

∑
h

Eh
0 (e

ikuz + e−ikuz)cos(khz − ωht+ ϕh). (12)

From the definition of pondermotive phase and average particle time expression of equation

(4), we have

khz − ωht = θh − hkuz −
kh
ku

K2

8γ2
sin(2kuz).

Upon substituting the above expression and expanding cosine in terms of complex exponen-

tial, equation (12) becomes

dηh

dt
=

eKEh
0

4γrγmc
(eikuz + e−ikuz)

(
eiθ

h−ihkuz+iϕhexp

[
−ikh
ku

K2

8γ2
sin(2kuz)

]
+ c.c.

)
.

Using Jacobi-Anger identity eixsinφ =
∑∞

n=−∞ Jn(x)e
inφ, we get

=
eKEh

0

4γrγmc
ei(θ

h+ϕh)

∞∑
n=−∞

Jn

(
kh
ku

K2

8γ2

)[
ei(1−h−2n)kuz + e−i(1+h+2n)kuz

]
+ c.c

=
eKEh

0

4γrγmc
ei(θ

h+ϕh)

[
J−(h−1

2 )

(
kh
ku

K2

8γ2

)
+ J−(h+1

2 )

(
kh
ku

K2

8γ2

)]
+ c.c.

=
eKEh

0 [JJ ]h
2γrγmc

cos(θh + ϕh). (13)

We used the fact that overall energy change is due to contribution from each harmonic

such that η =
∑

h η
h and kept only the terms associated with factors n = (1 − h)/2 and

n = −(1+h)/2 which give rise to slowly changing phase. We apply two more approximations

to obtain a simpler expression for equation (13). The first approximation is vz = dz/dt ≈ c

and the second approximation that γ = γr(1 + η) ≈ γr. This results in simplified version of

energy equation given by

dηh

dz
=
eKEh

0 [JJ ]h
2γ2rmc

2
cos(θh + ϕh) =

ϵh
2kuL2

u

cos(θh + ϕh), (14)
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where ϵh =
eEh

0K[JJ ]h
γ2
rmc2

kuL
2
u is the dimensionless field strength. While this treatment allows us

to gather cumulative effect of all present harmonics on electron longitudinal phase space, this

becomes indispensable for FEL analysis and deriving gain formula in the presence of a single

harmonic h. Now we can also express the Bessel factor of (13) in a more convenient form by

using the resonance condition (eq. (10)) and Bessel function identity J−n(x) = (−1)nJn(x)

as

[JJ ]h = J−(h−1
2 )

(
hK2

4 + 2K2

)
+ J−( 1+h

2 )

(
hK2

4 + 2K2

)
= (−1)(h−1)/2

[
J(h−1

2 )

(
hK2

4 + 2K2

)
− J( 1+h

2 )

(
hK2

4 + 2K2

)]
. (15)

(a)

(b)

FIG. 1. Ratios of (a) maximum bucket height in the presence of harmonic h with respect to that

with fundamental and (b) oscillation frequency near stable points in harmonic h potential with

respect to that in fundamental potential.
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In the presence of a constant electric field of a harmonic h (i. e. ϵh = constant), θh and

ηh become conjugate variables of the constant of motion given by

Hh = hkuη
2 +

ϵh
2kuL2

u

[
sin(θh + ϕh)− sin(ϕh)

]
. (16)

At the separatices (ηh = 0 and θh = ±π), Hh = |ϵh|
kuL2

u
sinϕh which means

ηh = ±
√
|ϵh|

kuLu

√
h

√
sin(θh + ϕh)cos(ϕh) = ±ηhmax

√
sin(θh + ϕh)cos(ϕh),

with ηhmax =
√

|ϵh|/(kuLu

√
h). The motion outside the separatices are unbounded and

unidirectional whereas the particle exhibit periodic behavior about the stable orbit inside

these separatices which corresponds to the vibrational motion of the pendulum (see Ref. [8]

for more details). The latter region is often referred to as pondermotive bucket in which

particles are trapped for a constant field. The maximum height of this bucket is ηhmax and is

directly proportional to the square root of Bessel function factor and inversly proportional to

square root of the harmonic number h. Figure 1a shows the ratio of maximum bucket height

for different harmonic with respect to that of the fundamental radiation with Eh
0 = E1

0 for

K ranging from 0 to 5. It is clear that bucket height decreases with increasing harmonic

number. For each harmonic number, the maximum bucket height keeps on increasing until

a threshold value for K is reached, beyond which the the bucket height remains fixed.

Kthres ≈ 3 for h < 10 as shown in Fig. 1a.

The oscillatory motion in the pondermotive bucket occurs at frequency that is dependent

on the energy Hh. However, the motion close to the stable fixed point are similar to that

of a simple harmonic oscillator for small phase (|θh| ≪ 1). In this case, the oscillation

wavenumber is given by

Ωs =

√
h|ϵh|
Lu

, (17)

also known as the synchrotron wavenumber. The corresponding synchrotron period of the

particle in the pondermotive bucket is

Ts ≡
2π

Ωs

=
2πLu√
h|ϵh|

. (18)

Figure 1b shows the ratio of synchrotron frequency of a particle in the bucket formed by

harmonic h to that in the bucket formed by the fundamental radiaition with same electric
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field amplitude. The frequency increases with increasing undulator strength and become

greater for potentials formed by harmonic h > 1 compared to frequencies of oscillation in a

bucket formed by fundamental radiation. There exists a threshold undulator strength after

which the frequency of oscillation remains more or less constant for a given harmonic h.

These peculiar behaviors in figure 1 may be formulated in terms of scaling laws, however is

beyond the scope of this article.

Following discussion on sections 3.3.2 and 7.1.1 of Ref. [8], we can roughly estimate the

saturated radiation power in low-gain scenarios in single pass and oscillator based FELs.

For a harmonic h, the maximum saturated power in a single pass FEL would be given

by P s
sat ≈ Pbeam/(

√
hNu), where Nu is the total undulator periods and Pbeam is the power

of the electron beam. For cavity based oscillator, the saturated power becomes P osc
sat =

P s
sat/(1 − R) ≈ Pbeam/[(1 − R)

√
hNu]. Here R is the net power reflectivity of the optical

cavity forming the oscillator. It is clear that the saturated power of a harmonic h gets reduced

by the square root of the harmonic number itself when compared to the fundamental. This

means that the saturated power of an FEL operating at harmonic h is much lower than that

for fundamental radiation, which sets the upper limit on maximum achievable radiation

power in an operating low-gain FEL.

IV. MAXWELL EQUATION

Now we switch our attention to the emitted radiation as a result of wiggle motion of

electrons in the undulator. The electric field amplitude of the emitted radiation due to the

motion of an electron beam current in the undulator can be obtained by solving Maxwell

equation. The slowly varying envelope approximation to paraxial wave equation results in

the angular field representation given by (equation (3.59) of Ref.[8])[
∂

∂z
+
ik

2
ϕ2

]
Ẽω(ϕ; z) =

Ne∑
j=1

e(vxj/c− ϕx)

4πϵ0cλ2
eik[ctj(z)−z]

∫
dxe−ikϕ.xδ(x− xj), (19)

where ϵ0 is the free-space permittivity and λ is the radiation wavelength. In one-dimension,

we can use the approximation δ(x−xj) → A−1
tr withAtr being the transverse area. From now

on, we will be using shorthand notation ϕ⊥ = ϕ for all vectors since z is an independent

variable; in other words ϕ = (ϕx, ϕy). Also,
∫
dxe−ikϕ.xδ(x − xj) → A−1

tr

∫
dxe−ikϕ.x =

λ2δ(ϕ)/Atr. We complete the 1D limit by defining the one dimensional angular electric field
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Ẽω(ϕ; z) = Ẽω(z)δ(ϕ) = Ẽν(z)δ(ϕ). Upon substituting the velocity from equation (3a) and

integrating over angles, equation (19) becomes

∂

∂z
Ẽν(z) = −eKcos(kuz)

4πϵ0cAtr

Ne∑
j=1

eik[ctj(z)−z]

γj
. (20)

The slowly varying radiation field envelope requires finding slowly varying current which we

can do by substituting t(z) with the average particle time from equation (4). For simplicity,

we will assume that only harmonic h is the dominating field providing the pondermotive

potential in conjuction with the undulator field so that θ ≡ θh. This means

k[ctj(z)− z] = k

[
ct̄j(z) +

K2

8kuγ2
sin(2kuz)

]
− kz

=
ν

h
(ωht̄j(z)− khz) +

kν
ku

K2

8γ2
sin(2kuz)

= −ν
h
(θhj − hkuz) +

kν
ku

K2

8γ2
sin(2kuz)

= −ν
h
θhj + pkuz +∆νkuz +

kν
ku

K2

8γ2
sin(2kuz), (21)

where we have substituted ν = k/k1 = ω/ω1 and ∆ν = ν − p as a factor of deviation

from harmonic p, where p is not necessarily equal to h. In fact, p ̸= h would allow us to

explore the potential of achieving harmonic lasing via non-overlapping harmonic seeding.

Now equation (20) reduces to

∂

∂z
Ẽν(z) = −

eKcos(kuz)e
ipkuzexp

[
i kν
ku

K2

8γ2 sin(2kuz)
]

4πϵ0cAtr

Ne∑
j=1

e−iνθhj /hei∆νkuz

γj
. (22)

Again applying the Jacobi-Anger identity and keeping only the terms that give rise to

pondermotive phase, we can write

cos(kuz)e
ipkuzexp

[
i
kν
ku

K2

8γ2
sin(2kuz)

]
=

1

2

∞∑
n=−∞

Jn

(
kν
ku

K2

8γ2

)[
ei(1+p+2n)kuz + e−i(1−p−2n)kuz

]
=

1

2

[
J−( 1+p

2 )

(
kν
ku

K2

8γ2

)
+ J−( p−1

2 )

(
kν
ku

K2

8γ2

)]
=

1

2
[JJ ]p.

In order to obtain the last expression, we used ν ≈ p for ∆ν ≪ 1. and γ ≈ γr for η ≪ 1. Since

we want to connect physical field to the spectral field, we define Eν(z) = ω1e
−i∆νkuzẼν(z).
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Finally, equation (22) takes the form[
∂

∂z
+ i∆νku

]
Eν(z) = −

ek1K[JJ ]p
8πϵ0γrAtr

Ne∑
j=1

e−i ν
h
θhj = −κpne

Nλ1

Ne∑
j=1

e−i ν
h
θhj . (23)

Here κp =
eK[JJ ]p
4ϵ0γr

, Nλ1 = λ1dNe/dz = λ1I/ec, and ne = dNe/dz
Atr

. We can obtain the time

domain wave equation from equation (23) by applying Fourier transform i. e. E(θ; z) =∫
dνei∆νθ/hEν(z) to obtain[

∂

∂z
+ hku

∂

∂θ

]
E(θ; z) = −2πκpne

Nλh

Ne∑
j=1

e−ipθ/hδ(θ − θhj ), (24)

where Nλh = Nλ1/h = λhdNe/dz is the number of electrons contained within harmonic

wavelength λh.

V. COUPLED MAXWELL-KLIMONTOVICH EQUATIONS

Various aspects of the SASE process as well as low-gain FELs can be understood by

adopting the microscopic description of electron beam given by Klimontovich distribution

function [3, 4]. In one-dimension, this discrete distribution function is written as

F (θ, η; z) =
k1

dNe/dz

Ne∑
j=1

δ[θ − θj(z)]δ[η − ηj(z)]. (25)

Here dNe/dz = I/ec is electron line density for beam current I and Ne is the total number

of electrons in the beam. Under the assumption that FEL interaction is a perturbative

process, the Klimontovich distribution function can be expanded using a coasting beam

approximation. Similar technique of perturbative expansions are also applied in plasma

physics (see Ref. [9] for instance). In this expansion, the distribution is separated into the

smooth background part and a perturbative part, where the perturbative part contains the

shot noise and bunching like features as follows

F (θ, η; z) = F̄ (η; z) + δF (θ, η; z). (26)

Here the smooth background function representated by F̄ (η; z) is independent of phase and

satisfies
∫
dηF̄ (η; z) = 1. The continuity equation for the Klimontovich distribution function

dF (θ, η; z)/dz = 0 can be broken into two parts as follows[
∂

∂z
F̄ +

dη

dz

∂

∂z
δF

]
+

[
∂

∂z
δF +

dθ

dz

∂

∂θ
δF +

dη

dz

∂

∂η
F̄

]
= 0. (27)
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The first bracket is for the terms that vary slowly along the bunch and also attributes

nonlinear harmonic contributions whereas the second bracket groups terms with fluctuations

from FEL interaction dominated by harmonics. Since these brackets indicate processes that

occur at different time scales, each bracket should separately vanish to satisfy continuity

condition [8]. Our interest lies in obtaining an equivalent expression for the second bracket

in frequency space. In order to do so, we introduce the frequency representation of the

distribution function as

Fν(η; z) =
1

2π

∫
dθe−iνθ/hF (θ, η; z) =

1

Nλ1

Ne∑
j=1

e−iνθj/hδ(η − ηj). (28)

This implies δF (θ, η; z) = 1
h

∫
dνeiνθ/hFν(η; z). Using the alternative expression for energy

change equation of equation (11) given by

dηh

dz
= χh

∫
dνEν(z)e

iνθh/h + c.c., (29)

where χh =
eK[JJ ]h
2mc2γ2

r
, we obtain the fourier transform version of second bracket in equation

(27) to be [
∂

∂z
+ 2iνkuη

]
Fv(η; z) = −hχhEv(z)

∂F̄ (η; z)

∂η
. (30)

Here we are assuming that the fluctuations are induced by single harmonic h and η ≡ ηh.

Using the definition of Fν from equation (28) and since ν ≈ p for ∆ν ≪ 1 (i. e. κν ≡ κp),

equation (23) for field evolution of harmonic p when seeded by harmonic h becomes[
∂

∂z
+ i∆νku

]
Eν(z) = −κpne

∫
dηFν(η; z). (31)

The evolution of radiation field and and electron beam fluctuations in the FEL can be now

solved using equations (30) and (31).

VI. PERTURBATIVE SOLUTION FOR LOW-GAIN

The coupled equations (30) and (31) can be written in integral form as follows

Eν(z) = e−i∆νkuz

[
Eν(0)− κpne

∫ z

0

ds ei∆νkus

∫
dηFν(η; s)

]
, (32)

Fν(η; z) = e−i2νkuηz

[
Fν(η; 0)− hχh

∫ z

0

ds ei2νkuηsEν(s)
∂F̄ (η; s)

∂η

]
. (33)

12



The solution for electric field given by (32) can be alternatively expressed in terms of the

electric field at the undulator center as follows

Eν(z) = G
(
z − Lu

2

)
Eν

(
Lu

2

)
− κpne

∫ z

0

ds G(z − s)

∫
dηFν(η; s)

where G(z) = e−i∆νkuz is the homogenous solution. Substituting Fν from equation (33), we

get

Eν(Lu) = G
(
Lu

2

)
Eν

(
Lu

2

)
− κpne

∫ Lu

0

dz G(Lu − z)

∫
dηe−i2νkuηzFν(η; 0)

+ hχhκpne

∫ Lu

0

dz G(Lu − z)

∫
dηe−i2νkuηz

∫ z

0

dsei2νkuηsEν(s)
∂F̄ (η; s)

∂η
,

where the first term appears from the input coherent radiation, the second term corresponds

to the spontaneous undulator radiation and the third term is the result of FEL interaction

between the electron beam and radiation field. Ideally we would solve iteratively to find the

evolving radiation field in the undulator. However, appropriate approximation for Eν(s) =

G
(
s− Lu

2

)
Eν

(
Lu

2

)
can be used for weak interaction between electron beam and radiation

field. In this case, the radiation electric field can be conveniently expressed as

Eν(Lu) = G
(
Lu

2

)
Eν

(
Lu

2

)
− κpneG

(
Lu

2

)∫ Lu

0

dz

∫
dη Uν(η; z)Fν(η; 0)

+ hχhκpneG
(
Lu

2

)
Eν

(
Lu

2

)∫
dη

∫ Lu

0

dz Uν(η; z)

∫ z

0

ds U∗
ν (η; s)

∂F̄ (η;Lu/2)

∂η
.

(34)

Here we introduced 1D undulator field Uν(η; z) = exp
[
−i∆νku

(
Lu

2
− z

)
− i2νηkuz

]
and

the transformation of F̄ (η; s) → F̄ (η;Lu/2) follows naturally with the field transformation.

Since the field is complex in nature, the gain of the field amplitude is complex. Therefore,

it is more convenient to obtain power gain by computing absolute square of field amplitude

in the above expression. Absolute square of the first term gives input power whereas square

of the second term gives spontaneous undulator radiation power. The cross terms involving

the second term (spontaneous radiation) sums over all particles phases leading to zero. The

lowest order power amplification appears from the cross terms involving the first and third

term. Hence, 1D FEL power gain is given by

G =
Pout − Pin

Pin

= hχhκpne

∫
dη

∫ Lu

0

dz

∫ Lu

0

dsUν(η; z)U
∗
ν (η; s)

∂F̄ (η)

∂η
. (35)
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Further simplification comes from substituting z̄ = z−Lu/2 and s̄ = s−Lu/2. This changes

the limits of z and s integrals to −Lu/2 and Lu/2 from 0 and Lu respectively. Moreover,

the product of the undulator field takes the following form

Uν(η; z)U
∗
ν (η; s) = Uν(η; z̄)U

∗
ν (η; s̄) = exp [−i(2νη −∆ν)ku(z̄ − s̄)] .

For a gaussian electron beam with rms energy spread of ση and centered at energy η0,

F̄ (η) = e
−(η−η0)

2/2σ2
η√

2πση
and ∂F̄ (η)

∂η
= −η−η0

σ2
η
F̄ (η), the gain formula reduces to

G = hχhκpne

∫ Lu/2

−Lu/2

dz

∫ Lu/2

−Lu/2

ds Iη(z; s), (36)

where

Iη(z; s) =

∫
dη
∂F̄

∂η
Uν(η; z)U

∗
ν (η; s)

= − 1√
2πσ3

η

∫
dη(η − η0)e

−(η−η0)2/2σ2
ηe−i2(νη−∆ν/2)ku(z−s)

= 2iνku(z − s)e−i2(νη0−∆ν/2)ku(z−s)exp
[
−2(kuνση(z − s))2

]
.

We got rid of bars over z and s for convenience. Finally, the gain formula reduces to

G = 2νhkuL
3
uχhκpne

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

ds(z − s)sin [2x0(z − s)] e−2[2πNuνση(z−s)]2 , (37)

where x0 = 2πNu(νη0−∆ν/2). We now replace ν with p without breaking any assumptions

of low-gain analysis. Following Colson, we define jC,p,h = 4phkuL
3
uχhκpne = hjC,p[JJ ]p/[JJ ]h

[2] (see page 108 of Ref. [8]). Hence, 1D gain formula for low-gain FEL for harmonic p upon

seeding by harmonic h is given by

G =
jC,p,h

2

∫ 1/2

−1/2

dz

∫ 1/2

−1/2

ds(z − s)sin [2x0(z − s)] e−2[2πNupση(z−s)]2

= h
[JJ ]h
[JJ ]1

G1. (38)

The above formula suggests that the FEL gain at harmonic p increases by a factor

h[JJ ]h/[JJ ]1 when the seeding laser is switched from fundamental to harmonic h. G1

represents FEL gain for harmonic p upon seeding by fundamental radiation. We note that

this extra factor of contribution comes from the phase rate equation (11) where the harmonic

h increases phase change by a factor of h compared to that of fundamental.
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Since the ratio of gain for harmonic seeding to fundamental seeding depends simply on

the ratio of corresponding Bessel function factors, understanding the behaviors of [JJ ]h

becomes crucial for gain optimization. Figure 2a shows the Bessel function factors for

odd harmonics plotted against K for h from 3 to 13. It is clear that alternate harmonics

change signs and become negative. For instance, h = 1, 5, 9, 13 have values greater than

zero whereas h = 3, 7, 11 have values less than zero for the range of K as shown in Fig. 2a.

Since the gain formula of equation (38) contains a corresponding Bessel function factor [JJ ]p

associated with the desired harmonic p, gain amplification of harmonic p requires seeding

with harmonic h that follows h = ..., p− 4, p, p + 4, ... . Likewise, negative gain is achieved

when h = ..., p − 2, p + 2, ...; this would suppress the emission of harmonic p. Figure 2b

shows the ratio of gain upon harmonic seeding to fundamental seeding versus K from 0 to 5

for harmonic h between 3 and 13. For K < 2, harmonic seeding has amplification less than

1. However, gain amplification of greater than 1.0 is easily achieved for all h when K > 3.

The higher harmonic seems to provide the maximum amplification at higher K values. For

instance, h = 13 amplifies gain by a factor of 2 for K ≈ 5. Harmonic h = 5 amplifies gain

by factor by 1.5 starting at around K ≈ 4 and this amplification remains almost fixed with

increasing K afterwards. This indicates that an optimal value of K exists for optimal gain

amplification with harmonic seeding h. On the other hand, gain attenuation can easily be

achieved by working with K < 2 as pointed out earlier (see Fig. 2).

VII. LAPLACE TRANSFORM FOR ARBITRARY GAIN

A complete solution of the coupled Maxwell-Klimontovich equations (30) and (31) can

be obtained by using Laplace transform [10, 11] given by

Sν,µ =

∫ ∞

0

dz ei2µρkuzSν(z). (39)

Here S is dummy representation for E and F . This representation allows to obtain solution

for Sν(z) using inverse Laplace transform given by

Sν(z) = −ρku
π

∮
dµ e−i2µρkuzSν,µ. (40)
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(a)

(b)

FIG. 2. Plot of (a) Bessel function factor [JJ ]h and (b) gain ratio from equation (38) for harmonic

from 3 to 13 versus undulator deflection parameter K.

ρ is the FEL scaling parameter that gets introduced when we attempt to make FEL equations

unitless and is given by

ρ =

[
neκpχh

4k2u

]1/3
=

(
e2K2[JJ ]p[JJ ]hne

32ϵ0γ2rmc
2k2u

)1/3

(41)

After careful calculation steps and substituting for Fν(η, 0) from equation (28), the electric

field amplitude takes the form

Eν(z) =

∮
dµ

2πi

e−i2µρkuz

D(µ)

[
Eν(0) +

iκpne

2kuρNλ1

Ne∑
j=1

e−iνθhj /h

(
µηj
ρ

− µ)

]
, (42)

where the dispersion function D(µ) is given by

D(µ) ≡ µ− ∆ν

2ρ
− hν

∫
dη

F̄ (η)(
νη
ρ
− µ

)2 (43)
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The radiation evolution in a FEL is mainly dictated by the poles of 1/D, which can be

obtained from the roots of D(µ) = 0. In the limits of vanishing energy spread i. e. F̄ (η) →

δ(η), D(µ) = 0 becomes

µ− ∆ν

2ρ
− hν

µ2
= 0

µ2

(
µ− ∆ν

2ρ

)
= hν. (44)

For the FEL resonance condition ∆ν = 0 and µ3 = hp which has three solutions µ =

(hp)1/3
[
1, i

√
3−1
2

, 1−i
√
3

2

]
. The first solution being the real solution gives rise to oscillatory

behavior of input field. The imaginary parts of the second and third solutions result in

exponentially decaying and growing modes respectively as per equation (42). In the expo-

nentially growth regime, the radiation power grows as P ∝ e4ℑ(µ3)ρkuz along the undulator

[8, 10], where ℑ(µ3) = (hp)1/3
√
3/2. The gain length in this exponential growth region is

effectively given by

Lg =
1

(hp)1/32
√
3ρku

=
λu

(hp)1/34π
√
3ρ

=

(
ku

6
√
3hpneκpχh

)1/3

. (45)

Hence, we have extended the gain length formula for SASE like processes that involves

seeding with harmonic h for emitting harmonic p such that h = ..., p − 4, p, p + 4, ... . The

ratio of gain length for harmonic p to fundamental when seeded by harmonic h is given by

Lg,p

Lg,1

=

(
[JJ ]

p[JJ ]p

)1/3

. (46)

Figure 3 shows the ratio of gain length for various harmonics from 5 to 25 plotted against

undulator deflection parameter K upon seeding the FEL by harmonic h. For K < 3, the

gain length for harmonic p is much higher than that for the fundamental, but for K > 3 the

gain lengths for harmonic p approaches to that of the fundamental. This shows that it is

feasible to achieve similar gain lengths as fundamental for higher harmonic in SASE based

FELs with K > 3. Our model allows SASE analysis such as effects in gain due to detuning,

energy spread, temporal coherence, saturation and so on for harmonic seeding as well as

harmonic lasing. Since extensive analysis for fundamental radiation has been conducted

already in Ref. [8], extension to harmonic is pretty straightforward. We welcome interested

readers to carry out such studies and refer them to Chapter 4 of Ref. [8] and references

within.
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FIG. 3. Ratio of gain length for harmonic p to fundamental upon seeding by harmonic h such that

h = ..., p− 4, p, p+ 4, ....

VIII. 3D EXTENSION

Now we extend the FEL equations from sections II to V in 3D by adding transverse

effects such as electron beam emittance and radiation diffraction.

A. FEL equations of motion

An average electron’s longitudinal velocity is slightly reduced due to transverse focusing

effect introduced by the average of the wiggle motion in the undulator field and betatron

dynamics due to external lattice [7, 8]. Then, the correction to the average particle velocity

can be written as

v̄z = c

[
1− 1 +K2/2

2γ2

]
− 1

2
(v2x + v2y)

= c

[
1− 1 +K2/2

2γ2

]
− cH⊥, (47)

where we introduced the transverse constant of motion H⊥ to represent the transverse be-

tatron motion such that H⊥ = [p2 + (kβ.x)
2] /2. Here x = (x, y) is the transverse position

vector, p = (px, py) is the transverse angle vector and kβ represents the betatron focusing

vector with each component having magnitude equal to the inverse of the average betatron

function in that direction (i. e. kβx,y = 1/β̄x,y). Also, the transverse degrees of freedom
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from H⊥ = constant follow

dx

dz
= px, and

dpx
dz

= −k2βxx; (48a)

dy

dz
= py, and

dpy
dz

= −k2βyx. (48b)

Following equation (9) and the definition of pondermotive phase, the additional term in

equation (47) appears in the rate of pondermotive phase change as follows

dθh

dz
= kh + ku − ωh/v̄z

= 2hkuη
h − khH⊥

= 2hkuη
h − kh

2

[
p2x + p2y + k2βxx

2 + k2βyy
2
]

(49)

Equations (29), (48), and (49) collectively govern particle’s motion in a FEL.

B. Maxwell equation

The radiation evolution in a FEL is governed by equation (19). In the 1D limit, we

ignored ϕx contribution which appears from transverse derivative of charge. The relative

magnitude of ϕx is ϕx ∼
√

∆λ1/λu, where ∆ corresponds to bandwidth and ∆ ∼ 1/Nu for

low-gain and ∆ ∼ ρ for high-gain [8]. Since vx/c ∼ K/γ, the contribution of ϕx can be

effectively ignored for on-axis radiation. Now, for a 3D spatial field given by

Eν(x; z) = ω1e
−i∆νkuz

∫
dϕ Ẽ(ϕ; z)eikϕ.x, (50)

equation (19) reduces to[
∂

∂z
+ i∆νku −

i

kν
∇2

]
Eν(x; z) = −κp

λ1

Ne∑
j=1

e−iνθhj /hδ[x− xj], (51)

which is the required expression for radiation field evolution of harmonic p close to ν = p+∆ν

for ∆ν ≪ 1 upon seeding by harmonic h. The additional ∇2 term compared to the 1D

equivalent (eq. (23)) introduces diffraction effect as anticipated.
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C. Coupled Maxwell-Klimontovich equations

The 3D version of Klimontovich distribution function is given by

F (θ, η,x,p; z) =
k1
ne

Ne∑
j=1

δ[θ − θj(z)]δ[η − ηj(z)]δ[x− xj]δ[p− pj], (52)

where ne = dNe/dV is the electron volume density as we introduced earlier in section IV.

Then, the continuity equation takes the form[
∂

∂z
+
dθ

dz

∂

∂θ
+
dη

dz

∂

∂η
+
dx

dz
.
∂

∂x
+
dp

dz
.
∂

∂p

]
F = 0. (53)

Applying coasting beam approximation (as we did in section V), we can write the distribution

function in terms of a smooth background and a perturbative term such that F = F̄ + δF .

This time, the frequency representation takes the form

Fν(η,x,p; z) =
1

2π

∫
dθ e−iνθ/hF (θ, η,x,p; z)

=
1

neλ1

Ne∑
j=1

e−iνθj/hδ[η − ηj]δ[x− xj]δ[p− pj]. (54)

This allows us to write the 3D Maxwell equation for the radiation field evolution in terms

of Fν . Equation (51) becomes[
∂

∂z
+ i∆νku −

i

kν
∇2

]
Eν(x; z) = −κpne

∫
dη

∫
dp Fν(η,x,p; z), (55)

where we have assumed that the FEL is seeded with only one harmonic h. One could solve

for the radiation field evolution near harmonic p by using the above expression with the

information regarding Fν . Likewise, the lowest order contribution to perturbation evolution

in the FEL as a result of interaction with radiation is given by[
∂

∂z
+
dθ

dz

∂

∂θ
++

dx

dz
.
∂

∂x
+
dp

dz
.
∂

∂p

]
δF = −dη

dz

∂F̄

∂η
. (56)

Upon taking the Fourier transform and making appropriate substitutions from FEL equa-

tions of motion, we obtain[
∂

∂z
+ i (2νkuη − kνH⊥) + p.

∂

∂x
− k2βxx

∂

∂px
− k2βyy

∂

∂py

]
Fv(η,x,p; z)

= −hχhEv(z)
∂F̄ (η,x,p; z)

∂η
, (57)

which is the desired evolution expression for Fν . Equations (55) and (57) are coupled

equations which contain the 3D solutions for weakly interacting radiation and electron dis-

tribution in a FEL.
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IX. CONCLUSION

To sum up, we have derived governing equations for longitudinal FEL dynamics for

harmonic lasing by harmonic seeding in the absence of transverse effects; then, we explored

scenarios of harmonic lasing with harmonic seeding for low-gain and high-gain cases. We

relaxed the 1D restriction to include transverse effects from electron motion and radiation

diffraction to formulate 3D FEL equations. This model allows us to generalize FEL solutions

and gain expressions for emission of any harmonic radiation. This model could find potential

applications in design and analysis of FEL devices operating at various range of parameters.
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