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To adjust the integrated dipole field of a magnet (through the longitudinal z axis), pairs of
small permanent magnets may be added at the end, symmetrically above and below the axis. If
these are sufficiently small, they may be approximated by magnetic dipole point sources. The
field of a single dipole source located at the origin is

B(x) =
µ0

4π

3x̂(x̂ ·m)−m

|x|3
=

µ0

4π

3x(x ·m)−m|x|2

|x|5
,

where x̂ = x/|x| and m is the magnetic dipole moment, defined as

m = VM = V
Br

µ0

for a permanent magnet of volume V with residual field vector Br.

Suppose the source is a distance y vertically below the axis, then setting x = (0, y, z) will
give the fields on-axis as a function of z. To get a vertical dipole field, assume the source is
magnetised in the y direction, so that m = (0, V Bry/µ0, 0). The field is now given by
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The unwanted longitudinal field component can be eliminated by adding a second identical
source a distance y above the axis, producing a combined field from the two sources of:

B±y(z) = B(0, y, z) +B(0,−y, z) =
V Bry

2π
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,

which has only a vertical component
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The maximum field is achieved at z = 0:
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although note at far distances |z| >
√
2|y|, the field actually becomes negative but with a much

smaller magnitude. The integrated field is∫ ∞
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This leads to the relation ∫ ∞

−∞
B±y

y (z) dz = B±y
y (0)|y|,

in other words, integrated field is just peak field multiplied by the vertical distance to the
magnets. This is useful empirically because it is often quicker to measure a peak field with a
Hall probe than an integrated field through an infinitely-long axis.
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