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1 Problem

The source of the magnetic field is a flat winding sheet in the z = 0 plane with current vector
J parallel to the plane:

J(x, y, z) = δ(z)

 jx(x, y)
jy(x, y)

0

 .
The magnetic field B is governed by Maxwell’s equations with a current source but no other
materials (µ = µ0):

∇ ·B = 0, ∇×B = µ0J.

2 Current Contour Function

Conservation of current requires that ∇ · J = 0. One way of enforcing this for this problem is
to make the (2D) current flow around the contour lines of a function φ(x, y) with density equal
to the density of the contours. In other words, the current is ∇x,yφ rotated by 90 degrees:

jx = −∂yφ, jy = ∂xφ.

2.1 Units

J has units of A/m2, jx and jy have units of A/m and φ has units of Amps.

3 Field Evolution in z

Rearranging Maxwell’s equations to bring the z derivatives all on one side gives:

∂zB =

 ∂xBz + µ0Jy
∂yBz − µ0Jx
−∂xBx − ∂yBy

 ,
with the fourth equation becoming a consistency condtion within the plane ∂xBy−∂yBx = µ0Jz,
which equals zero in this problem.
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3.1 Source Discontinuity

The delta function means the 3D current density J becomes ‘infinite’ around z = 0. The
equations can be made proper by integrating over a small region around zero:

∫ 0+

0−
∂zBdz =

∫ 0+

0−

 ∂xBz + µ0Jy
∂yBz − µ0Jx
−∂xBx − ∂yBy

 dz.

Here, the left side is B(x, y, 0+) − B(x, y, 0−), the difference in magnetic field across the dis-
continuity, which shall be written ∆B(x, y) from now on. On the right side, any finite-valued
functions such as ∂xBz within the integral will integrate to zero as the region is small; the terms

including J will give finite results as
∫ 0+
0− δ(z) dz = 1. Thus,

∆B(x, y) = µ0

 jy
−jx

0

 = µ0

 ∂xφ
∂yφ
0

 .

3.2 Solution for z 6= 0

Consider a single Fourier mode of the contour function φ(x, y) = sin(ax) sin(by). Any other
function can be built from these modes by linear superposition (using different a and b) and
translation in x and y. The discontinuity is

∆B(x, y) = µ0

 a cos(ax) sin(by)
b sin(ax) cos(by)

0

 .
Without current sources, the free-space evolution in z is a differential operator:

∂FSz B =

 ∂xBz
∂yBz

−∂xBx − ∂yBy

 .
Applying this repeatedly to the two-dimensional form of our B field gives terms like:

∂FSz

 a cos(ax) sin(by)
b sin(ax) cos(by)

0

 =

 0
0

(a2 + b2) sin(ax) sin(by)


and

∂FSz

 0
0

sin(ax) sin(by)

 =

 a cos(ax) sin(by)
b sin(ax) cos(by)

0

 .
Consider a 3D magnetic field with the following form:

B(x, y, z) = f(z)

 a cos(ax) sin(by)
b sin(ax) cos(by)

0

+ g(z)

 0
0

sin(ax) sin(by)

 .
Maxwell’s equations in free space will be satsified if ∂zB = ∂FSz B,

∂FSz B = f(z)(a2 + b2)

 0
0

sin(ax) sin(by)

+ g(z)

 a cos(ax) sin(by)
b sin(ax) cos(by)

0

 ,
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so equating coefficients gives:

f ′(z) = g(z), g′(z) = (a2 + b2)f(z).

The general solution is then f(z) = Ae
√
a2+b2z +Be−

√
a2+b2z.

3.3 Whole Solution

To avoid fields that increase to infinity, parts of the general solution can be chosen either side
of the z = 0 plane as follows:

f(z < 0) = Ae
√
a2+b2z, f(z > 0) = Be−

√
a2+b2z.

At z = 0, the discontinuity also fits the same general form of B provided that:

f(0+)− f(0−) = µ0, g(0+) = g(0−).

The first equation implies that B−A = µ0. The second implies that g = f ′ is continuous, which
happens if A = −B. Therefore

f(z < 0) = −µ0
2
e
√
a2+b2z, f(z > 0) =

µ0
2
e−
√
a2+b2z;

g(z) = −µ0
2

√
a2 + b2e−

√
a2+b2|z|.

Putting this all together, the solution can be written

B(x, y, z) =
µ0
2

 sgn(z)a cos(ax) sin(by)
sgn(z)b sin(ax) cos(by)

−
√
a2 + b2 sin(ax) sin(by)

 e−√a2+b2|z|,
where sgn(z) = −1 for z < 0 and 1 for z > 0.

4 Application: Double Layer

The field of a single winding sheet may not have many applications but interesting controlled
fields can be formed between a pair of sheets. If two sheets with identical parallel currents are
stacked above each other in z, the midplane field has only a Bz component, as the sgn(z) terms
in Bx and By cancel:

Bz,parallel(x, y, 0) = −µ0
√
a2 + b2 sin(ax) sin(by)e−

√
a2+b2Z ,

where the sheets at z = ±Z have φ±Z(x, y) = sin(ax) sin(by).

If the otherwise-identical sheets are given opposing current directions, the midplane field has
Bz = 0 and

Bopposing(x, y, 0) = µ0

 −a cos(ax) sin(by)
−b sin(ax) cos(by)

0

 e−√a2+b2Z ,
where the sheet at z = Z has φZ(x, y) = sin(ax) sin(by) and φ−Z(x, y) = − sin(ax) sin(by).
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4.1 Small Separation Approximation

If the layer separation Z is much smaller than the wavelengths 2π/a, 2π/b, then the exponent√
a2 + b2Z ' 0. Going down to two dimensions (x, y), the midplane fields can be written

Bz,parallel(x, y) ' −µ0
√
a2 + b2φZ ,

Bopposing(x, y) ' µ0

[
−a cos(ax) sin(by)
−b sin(ax) cos(by)

]
= −µ0∇x,yφZ .

The Bopposing field is approximately the (2D) gradient of φ (this is now true for any general
function φ that is a superposition of Fourier modes). Given a goal B field, such a potential φ
can always be found because the in-plane consistency condition ∂xBy−∂yBx = 0 from Maxwell’s
equations guarantees the field has no curl in this plane.

4.2 Iteration for Opposing Current Sheets

Suppose Bgoal(x, y) is known and the sheets have opposing currents. Using the small separation
approximation in the previous section, make a first guess at the required winding potential

φZ,1(x, y) =
−1

µ0

∫ y

−∞
Bgoal,y(x, ŷ) dŷ.

Work out the true field B1(x, y) from this potential without using any approximations. Then
define new winding potentials via

φZ,n+1(x, y) = φZ,n(x, y)− 1

µ0

∫ y

−∞
Bgoal,y(x, ŷ)−Bn,y(x, ŷ) dŷ.

This sort of iteration may be able to correct for other small differences to the idealised case,
such as curvature in a sector magnet.

4.3 Direct Evaluation via Fourier Transform

The field formula for sheets with parallel currents can be inverted for each Fourier mode:

Bz,parallel = −µ0
√
a2 + b2e−

√
a2+b2Zφ±Z ⇒ φ±Z =

−1

µ0

e
√
a2+b2Z

√
a2 + b2

Bz,parallel.

If a given Bz,goal can be expressed as a sum of Fourier modes, the required winding potential
can be obtained as follows:

Bz,goal =
∑

a,b,α,β

cabαβ sin(ax+ α) sin(by + β)

⇒ φ±Z =
−1

µ0

∑
a,b,α,β

cabαβ
e
√
a2+b2Z

√
a2 + b2

sin(ax+ α) sin(by + β).

For sheets with opposite currents, if the Bgoal field parallel to the midplane is achievable in
free space, there must be some ideal potential Φ (for the midplane field rather than the windings)
such that Bgoal = −µ0∇x,yΦ. Going back to a single Fourier mode φZ(x, y) = sin(ax) sin(by),

Bopposing = µ0

[
−a cos(ax) sin(by)
−b sin(ax) cos(by)

]
e−
√
a2+b2Z = −µ0∇x,yφZe−

√
a2+b2Z ,
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so that if φZ = Φe
√
a2+b2Z , then Bopposing = Bgoal for the amplitude of this particular mode.

This defines a ‘filter’ in frequency space where the winding potential φZ can be obtained by
multiplying each frequency component of the ideal midplane potential Φ by e

√
a2+b2Z ≥ 1.

In theory, this will give the perfect field in one step, but higher frequency components
or large separations Z will cause the amplitude multiplication factor to become exponentially
large, leading to an impractical winding configuration. In particular, discontinuities in Bgoal or
its derivatives will produce a spectrum with high frequency tails, which may not even converge
when amplified by an exponential of frequency. One way to ensure good convergence is to apply
a Gaussian blur to the required field, which will multiply frequency tails by a function like e−kf

2
.

Another way is to explicitly construct the goal field as a Fourier series only containing lower
frequencies.

4.4 Opposing Current Sheets between Infinite Parallel Iron Plates

The frequency filter that takes φZ to Φ (windings to midplane field) has an impulse response
function proportional to Z/(Z2 + d2)3/2 where d =

√
x2 + y2 is transverse distance. This means

a local change to the winding potential has an effect with a long d−3 tail in the midplane
potential, which is a d−4 tail in the field. Magnets designed using the Fourier method above
often have many weak windings at large distances from the main magnet to cancel this tail,
which is normally not a part of the desired fringe field functions.

If the current sources are placed between two parallel (perfect µ =∞) iron plates, the natural
fringe decay rate becomes exponential, which is a better fit for most designs. If the plates are at
z = ±2Z, the image currents will form a regular pattern, with parallel-current images at ±3Z,
images of the opposing-current side at ±5Z, then second images of that at ±7Z and continuing
to infinity in the pattern + +−−+ +−− including the ±Z original winding at the start. This
means the formula for getting the midplane potential from a Fourier mode of a single winding
is:

Φplates = φZ

∞∑
n=0

(−1)n
(
e−
√
a2+b2(4n+1)Z + e−

√
a2+b2(4n+3)Z

)
.

Letting u = e−
√
a2+b2Z , the sum is

∑∞
n=0(−1)n(u4n+1 + u4n+3) = (u + u3)

∑∞
n=0(−u4)n =

u+u3

1+u4
= u−1+u

u−2+u2
. Thus,

Φplates = φZ
e
√
a2+b2Z + e−

√
a2+b2Z

e2
√
a2+b2Z + e−2

√
a2+b2Z

= φZ
cosh(

√
a2 + b2Z)

cosh(2
√
a2 + b2Z)

.

4.5 Asymmetric Sheet Pairs for General Fields

If Bgoal has all three components, a superposition of parallel and opposing current sheets can
generate the field. If parallel current sheets with potentials φpZ = φp−Z generate only the Bz,goal
component and opposing current sheets with potentials φoZ and φo−Z = −φoZ generate the Bx,y,goal

components parallel to the midplane, then the superimposed winding potentials φZ = φpZ + φoZ
and φ−Z = φpZ − φoZ will generate the complete field. In general, these two windings will not be
symmetrical.
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