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1 Assumptions

The wire segment in question travels in a straight line from position a to b and carries current
I in the direction towards b. The magnetic field of this segment alone will not be Maxwellian
because the current does not satisfy the continuity equation. However, the field sum of a loop
of such wires will be. The integration will be performed along the entire z axis (−∞ to ∞).

2 Derivation

The Biot-Savart law is

B(x) =
µ0
4π

∫
I× r

|r|3
ds,

where r is the vector to x from the relevant point on the conductor. The parametrisation

r = x− (a + λ(b− a)), ds = |b− a| dλ, I =
I(b− a)

|b− a|
,

for λ ∈ [0, 1], is used for the wire segment. I is constant with s so the cross product can be
taken outside the integral. Integrating along the z axis gives∫ ∞

−∞
B(x) dz =

µ0
4π

I×
∫ ∫ ∞

−∞

r

|r|3
dz ds,

where z is the third component of x or of r, equivalently, because those two vectors are related
by a translation and the whole z axis is integrated over in both cases.∫ ∞

−∞

r

|r|3
dz = f(rx, ry) where f(x, y) =

∫ ∞
−∞

(x, y, z)

(x2 + y2 + z2)3/2
dz.

Since
∫∞
−∞

1
(k2+z2)3/2

dz = 2
k2

and
∫∞
−∞

z
(k2+z2)3/2

dz = 0,

f(x, y) =
2(x, y, 0)

x2 + y2

and thus ∫ ∞
−∞

B(x) dz =
µ0
4π

I×
∫

2(rx, ry, 0)

r2x + r2y
ds
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=
µ0 |b− a|

2π
I×

∫ 1

0

(rx, ry, 0)

r2x + r2y
dλ

=
µ0I

2π
(b− a)×

∫ 1

0

(rx, ry, 0)

r2x + r2y
dλ

=
µ0I

2π
(b− a)× (ix, iy, 0),

where ix =
∫ 1
0

rx
r2x+r2y

dλ and iy is similar with x and y swapped. Letting ` = b−a and X = x−a

so that r = X− λ` gives

ix =

∫ 1

0

X − λlx
(X − λlx)2 + (Y − λly)2

dλ.

This integral is of the form ∫ 1

0

px+ q

(px+ q)2 + (rx+ s)2
dx

=

p ln((px+ q)2 + (rx+ s)2) + 2r arctan x(p2+r2)+pq+rs
qr−ps

2(p2 + r2)

x=1

0

=
1

2(p2 + r2)

(
p ln((p+ q)2 + (r + s)2) + 2r arctan

p2 + r2 + pq + rs

qr − ps
− p ln(q2 + s2)

−2r arctan
pq + rs

qr − ps

)
,

with the substitutions p = −lx = ax−bx, q = X = x−ax, r = −ly = ay−by and s = Y = y−ay.
For iy, swap p with r and q with s. Finally, evaluate∫ ∞

−∞
B(x) dz =

µ0I

2π
`× (ix, iy, 0) =

µ0I

2π
(−lziy, lzix, lxiy − lyix).

2.1 Special case: wire in Z direction

The final formula for ix in the last section divides by zero if lx = ly = 0 (p = r = 0). In this
case, the original expression for ix becomes simply

ix =

∫ 1

0

X

X2 + Y 2
dλ =

X

X2 + Y 2
,

so that ix = X
X2+Y 2 and iy = Y

X2+Y 2 . The integrated field formula simplifies to∫ ∞
−∞

B(x) dz =
µ0I

2π
(−lziy, lzix, lxiy − lyix) =

µ0Ilz
2π(X2 + Y 2)

(−Y,X, 0).
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