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1 Single Wire

The magnetic field produced by an infinite (in the z direction) wire carrying current I is

B(x, y) =
µ0I

2π

1

x2 + y2

[
−y
x

]
,

which has magnitude µ0I
2πr , where r =

√
x2 + y2.

2 Infinite Regular Array of Wires

Suppose the wires are spaced by distance a and repeat at points (na, 0) for all integer n. The
magnetic field is then

B(x, y) =
µ0I

2π

[ ∑∞
n=−∞

−y
(x−na)2+y2∑∞

n=−∞
x−na

(x−na)2+y2

]
.

The infinite sums look troublesome but there is a well-known formula from analysis that can
help:

∞∑
n=−∞

1

n+ z
= π cot(πz).

2.1 x Component

The summand can be re-expressed using partial fractions in the form

−y
(x− na)2 + y2

=
b

n+ c
+

d

n+ e

for some constants b, c, d, e:

−y
x2 − 2axn+ a2n2 + y2

=
bn+ be+ dn+ cd

(n+ c)(n+ e)
−y
a2

n2 − 2x
a n+ x2+y2

a2

=
(b+ d)n+ (be+ cd)

n2 + (c+ e)n+ ce
.

Set c = −x
a − f and e = −x

a + f for some constant f . We then have

ce =

(
−x
a
− f

)(
−x
a

+ f

)
=
x2

a2
− f2 =

x2 + y2

a2

1



therefore −f2 = y2

a2
and f = ±iya are solutions. Thus c = −x

a − iya and e = −x
a + iya .

On the numerator, note that b+d = 0, so be+ cd = b(e− c) = b(2iya) = −y
a2

. Cancelling gives

b = i
2a . Using all the above values yields

−y
(x− na)2 + y2

=
i
2a

n+ −x−iy
a

+
− i

2a

n+ −x+iy
a

.

Using the analytic formula for the infinite sum (twice) turns this into

∞∑
n=−∞
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(x− na)2 + y2
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i

2a
π cot

(
π
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a

)
− i

2a
π cot

(
π
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)
.

The right-hand side is not obviously a real number, although it should be. The formula for a
complex cotangent is

cot(x+ iy) =
sin(2x) − i sinh(2y)

cosh(2y) − cos(2x)
,

which can expand the formula as follows:

∞∑
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=
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π
− sin(2πax) + i sinh(2πay) + sin(2πax) + i sinh(2πay)

cosh(2πay) − cos(2πax)

=
i

2a
π

2i sinh(2πay)

cosh(2πay) − cos(2πax)

=
π

a

sinh(2πay)

cos(2πax) − cosh(2πay)
.

2.2 y Component

The summand can be re-expressed using partial fractions in the form

x− na

(x− na)2 + y2
=

b

n+ c
+

d

n+ e

for some constants b, c, d, e:

x− na
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.

As before, the denominator gives c = −x
a − iya and e = −x

a + iya .

Equating coefficients on the numerator gives − 1
a = b+ d and

x
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therefore b = d = − 1
2a . Using all the above values yields

x− na

(x− na)2 + y2
=

− 1
2a

n+ −x−iy
a

+
− 1

2a

n+ −x+iy
a

.

The calculation continues as before with the i,−i numerators replaced by −1,−1 until

∞∑
n=−∞

x− na

(x− na)2 + y2
=

1

2a
π

sin(2πax) − i sinh(2πay) + sin(2πax) + i sinh(2πay)
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=
1
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π
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π

a
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.

2.3 Conclusion

Combining the two results in the previous sections gives

B(x, y) =
µ0I

2π

π

a

1

cos(2πax) − cosh(2πay)

[
sinh(2πay)
sin(2πax)

]

=
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[
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.

3 Infinite Regular Array of Current Sheets

The following integrals from Mathematica online∫
sinx

cosx− k
dx = − log(cosx− k) + constant∫

1

cosx− cosh k
dx =

−2 tan−1(tan(x/2)/ tanh(k/2))

sinh k
+ constant∫

sinhx

k − coshx
dx = − log(k − coshx) + constant∫

1

cos k − coshx
dx =

2 tan−1(tan(k/2)/ tanh(x/2))

sin k
+ constant,

which can be checked by differentiating the right-hand side, show the way to extend the magnetic
formula to current sheets.
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