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1 Problem

We will consider an idealised magnetostatics problem where the iron of the windowframe has
µr = ∞ so produces a perfect infinite family of image currents (or equivalently the transverse
B field component is zero at the surface of the iron). Within the interior of the windowframe,
we further assume that µr = 1 i.e. µ = µ0 and there is no magnetisation, M = 0. Under these
assumptions, Maxwell’s equations for the B field become:

∇ ·B = 0

∇×B = µ0J,

where J is the current density vector.

2 2D Version

Expanding these equations into their components gives:

∂xBx + ∂yBy + ∂zBz = 0

∂yBz − ∂zBy = µ0Jx

∂zBx − ∂xBz = µ0Jy

∂xBy − ∂yBx = µ0Jz.

In a 2D problem, there is no z variation, so ∂z = 0, simplifying the equations to:

∂xBx + ∂yBy = 0

∂yBz = µ0Jx

−∂xBz = µ0Jy

∂xBy − ∂yBx = µ0Jz.

For the windowframe design, we will solve the middle two equations by assuming there is only
transverse field (Bz = 0) and longitudinal current (Jx = Jy = 0). This leaves:

∂xBx + ∂yBy = 0

∂xBy − ∂yBx = µ0Jz.
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3 Solutions with Separate x, y Dependencies

One way of satisfying ∂xBx + ∂yBy = 0 is to say Bx is only a function of y and By is only a
function of x, making both derivatives zero. That leaves the other equation

∂xBy(x)− ∂yBx(y) = B′
y(x)−B′

x(y) = µ0Jz.

If we only consider special current distributions that can be expressed in the form Jz(x, y) =
f(x) + g(y), then separating the x and y dependencies gives that

B′
y(x) = µ0f(x)

−B′
x(y) = µ0g(y)

is sufficient for a solution. Or more explicitly,

By(x) = µ0

∫ x

f(x1) dx1

Bx(y) = −µ0
∫ y

g(y1) dy1.

The condition that the field be perpendicular to the iron surfaces sets the constant of integration
to give

By(±Rx) = Bx(±Ry) = 0,

where Rx and Ry are the half-width and half-height of the iron aperture respectively.

4 Dipole Field

Assume there are coils of thickness X and longitudinal current density ±J on the left and right-
hand sides of the windowframe. Thus f(x) = J when x ∈ [−Rx,−Rx +X] and f(x) = −J when
x ∈ [Rx−X,Rx]. The perfect reflection of the iron makes the images of these currents to extend
to infinity vertically, so this representation of the current is valid with g(y) = 0. The integral
for By trivially gives

By = µ0JX

for x ∈ [−Rx +X,Rx −X], i.e. the aperture of the windowframe.

Realistically, with four rectangular coils packed into a square windowframe, the coils do not
reach all the way to the top and bottom. Instead, the coils are of half-height Rx −X, giving a
filling factor (Rx−X)/Rx. As a crude but often quite accurate approximation, this filling factor
may be multiplied to give a more realistic dipole field:

By =
µ0JX(Rx −X)

Rx
.

5 Quadrupole Gradient

We have current density of J to the left and right, so f(x) = J for |x| ≥ Rx−X but an opposite
current of −J on the top and bottom, so g(y) = −J for |y| ≥ Ry − Y . The x integral gives that
By(Rx) = By(−Rx) + 2µ0JX, which is a problem since both By(Rx) and By(−Rx) should be
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zero by the iron boundary condition. However, there is a modification to the solution that still
works:

By(x) = µ0

∫ x

f(x1) dx1 +Gx

Bx(y) = −µ0
∫ y

g(y1) dy1 +Gy.

The additional terms satisfy ∂xBx + ∂yBy = 0 trivially, since the functional dependencies are
still intact and ∂xBy − ∂yBx = 0 because G is the same in both equations. This has added the
field of a quadrupole gradient G onto the solution.

To cancel our previous problem, we need 2RxG = −2µ0JX, so G = −µ0JX/Rx. In the
vertical direction, we require

−2µ0JY = 2RyG

−2µ0JY = 2Ry(−µ0JX/Rx)

Y = Ry(X/Rx),

so the coil thicknesses must be in proportion to the aspect ratio of the iron. For a square frame
where Rx = Ry, we must have Y = X i.e. equal thickness coils.

In any case, the integral contributes zero within the bore of the windowframe, leaving a field
By = Gx, Bx = Gy, which is a quadrupole of gradient

G = −µ0JX
Rx

= −µ0JY
Ry

.

For a square frame of full bore B = 2(Rx −X), we have Rx = B/2 +X, so

G = − µ0JX

B/2 +X
= − 2µ0JX

B + 2X
= −2µ0JX

D
,

where D = 2Rx is the diameter of the iron frame. The gradient will never have magnitude
larger than µ0J , regardless of bore or coil thickness. This construction assumes rectangular coil
cross-sections with empty corners, so it may be possible to exceed this limit by filling in the
corners.
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