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1 Flat Surface

Maxwell’s equations in free space, ∇ ·B = 0 and ∇×B = 0, can be rearranged to give

∂yB =

 0 ∂x 0
−∂x 0 −∂z

0 ∂z 0

B,
which can be used in a Taylor expansion of the form

B(x, y, z) =
∞∑
n=0

yn

n!
∂nyB(x, 0, z)

to obtain fields for y 6= 0 in terms of the derivatives of B on the y = 0 plane. The repeated
derivatives ∂ny must be expressed as combinations of ∂x and ∂z in order for the two-dimensional
function B(x, 0, z) to hold all the relevant information for extrapolating the field. This is more
easily expressed by breaking B into By and Bx,z = (Bx, Bz) so that

∂yBy = −∇Tx,zBx,z and ∂yBx,z = ∇x,zBy
⇒ ∂2yBy = −∇Tx,z∂yBx,z = −∇Tx,z∇x,zBy = −∇2

x,zBy,

where ∇2
x,z = ∇Tx,z∇x,z = ∂2x + ∂2z . Continuing to use the fact that all partial derivatives

commute, this may be repeated to get

∂2ny By = (−∇2
x,z)

nBy

∂2n+1
y By = −(−∇2

x,z)
n∇Tx,zBx,z

∂2n+1
y Bx,z = ∇x,z(−∇2

x,z)
nBy

∂2n+2
y Bx,z = −∇x,z(−∇2

x,z)
n∇Tx,zBx,z

for n ≥ 0. Reassembling into matrix form gives

∂2n+1
y B = (−∇2

x,z)
n

 0 ∂x 0
−∂x 0 −∂z

0 ∂z 0

B and

∂2n+2
y B = (−∇2

x,z)
n

 −∂2x 0 −∂x∂z
0 −∇2

x,z 0

−∂x∂z 0 −∂2z

B.
More explicit formulae can be obtained by using the binomial expansion of (∂2x + ∂2z )n:

(−∇2
x,z)

n = (−1)n
n∑
i=0

(
n

i

)
∂2ix ∂

2(n−i)
z .
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2 Curved Surface with Y Displacement Function

Instead of tackling fields specified on a fully-general curved surface, this section considers the
case where the surface can be represented as the graph of a two-argument function y = Y (x, z).
It will help to define a transformed field function

C(x, y, z) = B(x, y + Y (x, z), z) ⇔ B(x, y, z) = C(x, y − Y (x, z), z)

so that the initial conditions are the two-dimensional function C(x, 0, z) = B(x, Y (x, z), z). The
strategy will be to evaluate fields via Taylor expansion as before:

B(x, y, z) = C(x, y − Y (x, z), z) =
∞∑
n=0

(y − Y (x, z))n

n!
∂nyC(x, 0, z),

where now the y derivatives of C need to be related to the x and z derivatives of C(x, 0, z) via
Maxwell’s equations, which are normally stated in terms of B.

2.1 Transformation of Partial Derivative Operators

The chain rule gives the derivative rules below, which can be applied to any component of B
and C as well as the full vectors:

∂xB(x, y, z) = ∂x(C(x, y − Y (x, z), z)) = ∂xC−
∂Y

∂x
∂yC =

(
∂x −

∂Y

∂x
∂y

)
C;

∂yB = ∂yC;

∂zB =

(
∂z −

∂Y

∂z
∂y

)
C.

Henceforth B and C are evaluated at their respective transformed locations unless otherwise
specified. Note that the formula for C in terms of B is identical to the formula going the other
way except for having +Y instead of −Y , so the reverse transformations are simply

∂xC(x, y, z) =

((
∂x +

∂Y

∂x
∂y

)
B

)
(x, y + Y (x, z), z);

∂yC = ∂yB;

∂zC =

(
∂z +

∂Y

∂z
∂y

)
B.

2.2 Maxwell’s Equations in Transformed Field

The purpose of this section is to substitute the above rules to express the free-space Maxwell’s
equations in terms of derivatives of C’s components and then rearrange to get ∂yC in terms of
C’s x and z derivatives. For compactness, the notation Yx = ∂Y

∂x and Yz = ∂Y
∂z will be used.

First, the substitution:

0 = ∇ ·B = ∂xBx + ∂yBy + ∂zBz = (∂x − Yx∂y)Cx + ∂yCy + (∂z − Yz∂y)Cz

⇒ ∂y (−YxCx + Cy − YzCz) = −∂xCx − ∂zCz.

The equation ∇×B = 0 has three components:

∂yBx = ∂xBy ⇒ ∂yCx = (∂x − Yx∂y)Cy ⇒ ∂y (Cx + YxCy) = ∂xCy;
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∂yBz = ∂zBy ⇒ ∂yCz = (∂z − Yz∂y)Cy ⇒ ∂y (Cz + YzCy) = ∂zCy.

The third equation component enforces a consistency condition within the initial conditions:

∂xBz = ∂zBx ⇒ (∂x − Yx∂y)Cz = (∂z − Yz∂y)Cx
⇒ ∂y (YzCx − YxCz) = ∂zCx − ∂xCz,

or at least it would do in the case Y = 0; here the coordinate change has mixed the equations.
The four equations can be written in matrix form:

∂y


−Yx 1 −Yz

1 Yx 0
0 Yz 1
Yz 0 −Yx

C =


−∂x 0 −∂z

0 ∂x 0
0 ∂z 0
∂z 0 −∂x

C.
Taking −Yz times the second row, Yx times the third row and adding the fourth row gives the
true consistency condition

0 = ∂zCx − Yz∂xCy + Yx∂zCy − ∂xCz,

which involves only ∂x and ∂z of C. This condition must be checked on C(x, 0, z) before
extrapolating otherwise the field cannot be Maxwellian.

Deleting the fourth row and swapping the first and second gives a familiar-looking relation 1 Yx 0
−Yx 1 −Yz

0 Yz 1

 ∂yC =

 0 ∂x 0
−∂x 0 −∂z

0 ∂z 0

C,
the only complicating factor being the matrix premultiplied on the left-hand side. It does have
an inverse, so

∂yC =
1

1 + Y 2
x + Y 2

z

 1 + Y 2
z −Yx −YxYz

Yx 1 Yz
−YxYz −Yz 1 + Y 2

x


 0 ∂x 0
−∂x 0 −∂z

0 ∂z 0

C
but this is about as much as formal algebra can do.

2.3 Computation of Repeated Derivatives of C

The equation in the last section can be written

∂yC = M(A∂x +B∂z)C

for a 3 × 3 variable matrix M(x, z) and two constant matrices A =

[
0 1 0
−1 0 0
0 0 0

]
, B =

[
0 0 0
0 0 −1
0 1 0

]
.

Repeated application of this rule produces a combinatorial explosion of terms that is best handled
by a computer. The inputs for the algebraic part of the computation are the repeated derivatives
of C and M ; let

Cni = ∂nx∂
i
zC and Mni = ∂nx∂

i
zM.

These will be calculated in a problem-specific way depending on the form of the initial condition
and surface. Note that Mni are many matrices, not elements of a single matrix.
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The starting point for the computation is

∂0yC = C = C00.

The first step gives

∂1yC = MAC10 +MBC01 = M00AC10 +M00BC01,

where subscripts are used on M00 since it will soon be subject to differentiation. The next step
is

∂2yC = (M00A∂x +M00B∂z) ∂
1
yC

= M00AM10AC10 +M00AM00AC20 +M00AM10BC01 +M00AM00BC11

+ M00BM01AC10 +M00BM00AC11 +M00BM01BC01 +M00BM00BC02.

It becomes clear that the normal form of a term in ∂nyC is n repeats of Mni{A,B} followed by
a Cni. If there is no collection of terms, the expression has 2n branches depending on whether
M00A∂x or M00B∂z is applied at each step. However, each branch has n! terms since each term
in ∂n−1y C has n targets for the derivative operator of a product to act on (n − 1 M ’s and one
C). This gives a total of 2nn! terms, which equals 1, 2, 8, 48, 384, 3840 for n = 0 to 5. The
action of the derivative operator ∂x is simply to add one to the first index of each M or C in
the term in turn, summing the results. ∂z adds one to the second index of each.

Although the number of algebraic terms explodes, the number of inputs is more well-behaved.
For n ≥ 1, ∂nyC requires Mij for 0 ≤ i+ j ≤ n− 1 and Cij for 1 ≤ i+ j ≤ n, which increase in
number only quadratically.

2.4 Mni Matrices in Terms of Derivatives of Y

The Mni matrices are not directly the input to the algorithm, instead they are made of repeated
derivatives of Y (x, z). Adopting the notation

Yni = ∂nx∂
i
zY ⇒ Yx = Y10, Yz = Y01,

the first matrix is:

M00 =
1

1 + Y 2
10 + Y 2

01

 1 + Y 2
01 −Y10 −Y10Y01

Y10 1 Y01
−Y10Y01 −Y01 1 + Y 2

10

 .
Further partial derivatives can be done component-wise in the matrix and term-wise in any sum,
so the problem reduces to evaluating derivatives of the general term

T =

∏
i Yaibi(

1 + Y 2
10 + Y 2

01

)n .
Using the chain and product rules,

∂T

∂x
=

−n(
1 + Y 2

10 + Y 2
01

)n+1 (2Y10Y20 + 2Y01Y11)
∏
i

Yaibi +

∑
i Yai+1,bi

∏
j 6=i Yajbj(

1 + Y 2
10 + Y 2

01

)n
=
−2n (Y10Y20 + Y01Y11)

∏
i Yaibi +

(
1 + Y 2

10 + Y 2
01

)∑
i Yai+1,bi

∏
j 6=i Yajbj(

1 + Y 2
10 + Y 2

01

)n+1

and similarly

∂T

∂z
=
−2n (Y10Y11 + Y01Y02)

∏
i Yaibi +

(
1 + Y 2

10 + Y 2
01

)∑
i Yai,bi+1

∏
j 6=i Yajbj(

1 + Y 2
10 + Y 2

01

)n+1 .
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2.5 Evaluation Strategy

If a magnetic field is specified by initial conditions B(x, Y (x, z), z) = C(x, z) on some surface
y = Y (x, z), then subject to series convergence,

B(x, y, z) =
∞∑
n=0

(y − Y (x, z))n

n!
∂nyC(x, 0, z).

This section considers a situation where the infinite sum is truncated at order N , so the expres-
sion below is evaluated:

BN (x, y, z) =
N∑
n=0

(y − Y (x, z))n

n!
∂nyC(x, 0, z),

assuming the derivatives Yij ,Cij for i+ j ≤ N can be calculated at (x, z) using a subroutine.

2.5.1 Once-Only Calculations

• The algebraic form of the 6 distinct elements of Mij (it is symmetric) for i + j ≤ N − 1,
in terms of the derivatives of Y .

• The algebraic form of ∂nyC in terms of the M matrices and the derivatives of C (and the
constant matrices A,B), for n ≤ N .

2.5.2 Per-Point Calculations

• Yij ,Cij for i+ j ≤ N at (x, z).

• Mij for i+ j ≤ N − 1 using the precalculated algebraic form with Yij .

• ∂nyC using the precalculated algebraic form with Mij ,Cij .

• BN (x, y, z) using the finite Taylor sum formula with ∂nyC at this point.

2.5.3 Additional Condition

For B to be Maxwellian, the input function C(x, z) must satisfy

∂zCx − ∂xCz = Yz∂xCy − Yx∂zCy.

3 Examples and Applications

This section presents some useful specific cases with formulae for generating their Yij and Cij

derivatives.
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3.1 Purely Vertical Field at Surface

The extrapolation from fields on a flat surface is much simplified if only the By component is
present on the mid-plane. In this case, the field is symmetrical about the y = 0 plane and the
Maxwell consistency condition ∂xBz − ∂zBx = 0 is always satisfied since those components of B
are zero within the plane.

For a curved surface, setting Cx = Cz = 0 in the consistency condition gives

0 = Yz∂xCy − Yx∂zCy = ∇x,zY ·
[
−∂zCy
∂xCy

]
= ∇x,zY ·R90◦∇x,zCy.

This says the gradient of Y in the mid-plane is perpendicular to the gradient of Cy rotated by
90 degrees; in other words, the gradients of Y and Cy are parallel (or anti-parallel). This may be
achieved in simple cases such as when the gradients both point towards or away from the origin:
that is, when Y and Cy are both functions of radius. It also happens whenever the functions
share the same contours, for example when Cy = f(Y ) for some function f .

3.2 Functions of Radius

It may be that Y or C or some of its elements are only functions of radius r =
√
x2 + z2 from

the y axis. If the scalar involved can be expressed as f(r2), then the first partial derivative is
∂xf(r2) = 2xf ′(r2), suggesting the general form

∂nxf(r2) =
∑
i

pni(x)f (i)(r2)

for some polynomials pni. The general term differentiates as

∂x
(
pni(x)f (i)(r2)

)
= p′ni(x)f (i)(r2) + 2xpni(x)f (i+1)(r2),

so the recurrence relation for these polynomials is:

pn+1,i(x) = p′ni(x) + 2xpn,i−1(x)

with the initial conditions p00 = 1, p0i = 0 for i > 0 and trivial boundary condition pni = 0 for
i < 0.

It turns out the polynomials are all actually monomials of the form pni(x) = anix
2i−n. This

is made clear by substitution into the recurrence relation:

an+1,ix
2i−n−1 = (2i− n)anix

2i−n−1 + 2xan,i−1x
2i−n−2

⇒ an+1,i = (2i− n)ani + 2an,i−1.

The array of coefficients ani is now easy to compute and taking account of the areas where they
are zero,

∂nxf(r2) =
n∑

i=dn/2e
anix

2i−nf (i)(r2).

Since ∂zr
2 = 2z analogously to ∂xr

2 = 2x, a similar formula holds for z derivatives of an
arbitrary function of r2:

∂nz f(r2) =
n∑

i=dn/2e
aniz

2i−nf (i)(r2).
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Using both of these formulae enables arbitrary mixed derivatives of f(r2) to be calculated:

fnm ≡ ∂nx∂mz f(r2) = ∂mz

n∑
i=dn/2e

anix
2i−nf (i)(r2)

=
n∑

i=dn/2e
anix

2i−n∂mz f
(i)(r2)

=
n∑

i=dn/2e
anix

2i−n
m∑

j=dm/2e
amjz

2j−mf (i+j)(r2).

3.3 Functions with Azimuthal Flutter

Often a function of the form f(r2) is not complex enough but the field model is still motivated
by polar coordinates. Simple models of cyclotrons with sectors may be obtained using fields of
the form Cy = f(r2)g(θ). The first step in evaluating the repeated derivatives of this is binomial
expansion of the product rule

φnm ≡ ∂nx∂mz
(
f(r2)g(θ)

)
= ∂mz

n∑
i=0

(
n

i

)
∂ixf(r2)∂n−ix g(θ)

=
n∑
i=0

(
n

i

)
∂mz

(
∂ixf(r2)∂n−ix g(θ)

)
=

n∑
i=0

(
n

i

)
m∑
j=0

(
m

j

)
∂ix∂

j
zf(r2)∂n−ix ∂m−jz g(θ)

=
n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
fij∂

n−i
x ∂m−jz g(θ),

where fij is the result from the previous section. The next step is to find what partial derivatives
of g(θ) look like:

∂xg(θ) = g′(θ)
∂θ

∂x
=

z

r2
g′(θ), ∂zg(θ) = g′(θ)

∂θ

∂z
=
−x
r2
g′(θ).

This suggests a general term T = xazb(r2)−cg(d)(θ), which differentiates as

∂T

∂x
= axa−1zb(r2)−cg(d)(θ) + xazb(−c)(r2)−c−1(2x)g(d)(θ) + xazb(r2)−c

z

r2
g(d+1)(θ)

= axa−1zb(r2)−cg(d)(θ)− 2cxa+1zb(r2)−c−1g(d)(θ) + xazb+1(r2)−c−1g(d+1)(θ),

∂T

∂z
= bxazb−1(r2)−cg(d)(θ)− 2cxazb+1(r2)−c−1g(d)(θ)− xa+1zb(r2)−c−1g(d+1)(θ).

Computational algebra can now express ∂n−ix ∂m−jz g(θ) as the sum of terms of the above form
with 1 ≤ d ≤ n− i+m−j (or d = 0 in the trivial no-derivative case). The algebraic forms of the
combined derivatives of g only need to be calculated and stored once. The order of evaluation
per-point is: f (n) giving fij as in the previous section, g(n) giving ∂ix∂

j
zg and then using both of

these to get φij , which is an input to the calculations in section 2.5.2.

3.3.1 Spiral Sectors

Instead of the radial lines given by θ = constant, some machines use spiralled azimuthal variation
where the constant lines of a new variable η make an ‘edge angle’ ε with the radial lines. This
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means that in a radial increment dr, the line of constant η must move a distance (tan ε)dr in the
positive θ direction: that is, an angle of tan ε

r dr. This can be achieved if ∂η
∂r = − tan ε

r , where the

partial derivative keeps θ constant, assuming η has the normal angular dependence (∂η∂θ = 1).
An explicit solution to these conditions is η = θ − (tan ε) ln r.

Defining τ = tan ε for convenience, η = θ − τ ln r. Evaluating mixed partial derivatives of
g(η) will proceed similarly to the last section except for the factors

∂η

∂x
=
∂η

∂θ

∂θ

∂x
+
∂η

∂r

∂r

∂x
=

z

r2
− τ

r

x

r
=
z − τx
r2

and
∂η

∂z
=
∂η

∂θ

∂θ

∂z
+
∂η

∂r

∂r

∂z
=
−x
r2
− τ

r

z

r
=
−x− τz

r2
.

The general term T will have the same form as before with θ replaced by η and the derivatives
will differ by −τxa+1zb(r2)−c−1g(d+1)(η) added to ∂T

∂x and −τxazb+1(r2)−c−1g(d+1)(η) added to
∂T
∂z .

3.4 General Maxwellian Consistency

If a desired Y displacement function and vertical field Cy do not satisfy the conditions of the
simple case in section 3.1, can the situation be salvaged? One way would be to add horizontal
field components Cx and Cz such that the consistency condition

∂zCx − ∂xCz = Yz∂xCy − Yx∂zCy ≡ F

holds, noting that the right-hand side is now completely known. In fact, this is easy to do
because there are two arbitrary functions Cx and Cz but only one constraint. That means fairly
trivial solutions exist, such as:

Cx = 0; Cz =

∫ x

0
F (X, z)dX.

However, it is desirable that these additional components exhibit the same symmetry or at least
follow the same general shape as the main Cy component, since the components are all produced
from the same magnet (typically the extra components are parts of the fringe field, where Cy
changes). A similar technique was used in [1].

3.4.1 Radial Integration

For the case where Cy is produced from radial sector magnets (section 3.3), the natural direction
of integration is radially outwards. As the consistency condition only involves the derivatives of
Cx and Cz, a valid and symmetrical initial condition is to set Cx = Cz = 0 at r = 0.

Changing to cylindrical polar coordinates, ∂zCx − ∂xCz = (∇×C)y = 1
rCθ + ∂rCθ − 1

r∂θCr.
If the integration is to proceed radially, it makes sense to set Cr = 0; this also removes any
transverse field that could deflect a circulating beam travelling in the θ direction. For a constant
value of θ, Cθ is now the solution of the ordinary differential equation

1

r
Cθ + ∂rCθ = F

with Cθ = 0 at r = 0. Multiplying both sides by r gives

Cθ + r∂rCθ = ∂r(rCθ) = rF

8



and therefore

rCθ =

∫ r

0
RFdR ⇒ Cθ(r, θ) =

1

r

∫ r

0
RF (R, θ)dR.

This can be converted back to Cartesian coordinates with Cx = zCθ/r and Cz = −xCθ/r.

3.4.2 Radial Sectors with Y a Function of Radius

Further simplification can take place if the form Cy = f(r2)g(θ) from section 3.3 is combined
with a radial variation of height Y = Y (r2) as per section 3.2. These functions have various
partial derivatives Yx = 2xY ′, Yz = 2zY ′ and

∂xCy = 2xf ′g + f
z

r2
g′, ∂zCy = 2zf ′g + f

−x
r2
g′,

meaning that

F = 2zY ′
(

2xf ′g + f
z

r2
g′
)
− 2xY ′

(
2zf ′g + f

−x
r2
g′
)

= 2zY ′f
z

r2
g′ − 2xY ′f

−x
r2
g′

= 2Y ′fg′
z2 + x2

r2

= 2Y ′fg′.

Now using this in the previous section’s result gives

Cθ(r, θ) =
1

r

∫ r

0
R2Y ′(R2)f(R2)g′(θ)dR =

2g′(θ)

r

∫ r

0
RY ′(R2)f(R2)dR.

Notice that 2RY ′(R2) = dR2

dR
dY
dR2 = dY

dR so if the functions Y and f are re-expressed as functions
of r instead of r2 (just for the following one formula), then

Cθ(r, θ) =
g′(θ)

r

∫ r

0
Y ′(R)f(R)dR =

〈
Y ′f

〉
[0,r] g

′(θ).

The additional components (Cθ or Cx, Cz) will also have to be differentiated repeatedly
to find the off-surface field, so it is helpful to express Cθ = fθ(r

2)gθ(θ), where fθ(r
2) =〈

2RY ′(R2)f(R2)
〉
[0,r] and gθ = g′. The Cartesian components also preserve this form via

Cx = Cθ cos θ and Cz = −Cθ sin θ, so fx = fz = fθ, gx(θ) = g′(θ) cos θ and gz(θ) = −g′(θ) sin θ.

3.4.3 Spiral Integration

Starting with the polar form of the consistency condition 1
rCθ + ∂rCθ − 1

r∂θCr = F , consider
working in coordinates of (r, η) instead of (r, θ). The partial derivatives in the (r, η) system are
∂η, which changes η while keeping r constant and ∂r|η, which changes r while keeping η constant,

differing from ∂r that keeps θ constant. Because ∂η
∂θ = 1 and they both keep r constant, ∂η = ∂θ.

However, to keep η constant, ∂r|η = ∂r− ∂η
∂r∂η = ∂r + τ

r ∂θ. Substituting this into the consistency
condition gives:

F =
1

r
Cθ +

(
∂r|η −

τ

r
∂θ

)
Cθ −

1

r
∂θCr

=
1

r
Cθ + ∂r|ηCθ −

1

r
∂θ(Cr + τCθ).
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Now the logical choice for integration is to set Cr + τCθ = 0 by choosing Cr = −τCθ and then
solving

1

r
Cθ + ∂r|ηCθ = F

analogously to section 3.4.1, yielding

Cθ(r, η) =
1

r

∫ r

0
RF (R, η)dR.

The conversions back to Cartesian coordinates are now Cx = (zCθ +xCr)/r = (z− τx)Cθ/r and
Cz = (−xCθ + zCr)/r = (−x− τz)Cθ/r.

3.4.4 Spiral Sectors with Y a Function of Radius

Following section 3.4.2, let Cy = f(r2)g(η) and Y = Y (r2); partial derivatives of Cy differ:

∂xCy = 2xf ′g + f
z − τx
r2

g′, ∂zCy = 2zf ′g + f
−x− τz

r2
g′,

giving

F = 2zY ′
(

2xf ′g + f
z − τx
r2

g′
)
− 2xY ′

(
2zf ′g + f

−x− τz
r2

g′
)

= 2zY ′f
z − τx
r2

g′ − 2xY ′f
−x− τz

r2
g′

= 2Y ′fg′
z2 − τxz + x2 + τxz

r2

= 2Y ′fg′.

This is exactly the same as last time so all the formulae for Cθ are the same with θ dependencies
replaced by η. In particular, Cθ = fθ(r

2)gθ(η) where fθ(r
2) = 2

r

∫ r
0 RY

′(R2)f(R2)dR and gθ = g′.

The Cartesian components can be expressed as Cx = Cθ(cos θ − τ sin θ), Cz = Cθ(− sin θ −
τ cos θ). This looks problematic because θ = η+τ ln r but the trigonometric angle-sum identities
give:

Cx = Cθ(cos η cos(τ ln r)− sin η sin(τ ln r)− τ sin η cos(τ ln r)− τ cos η sin(τ ln r))

= Cθ(cos(τ ln r)− τ sin(τ ln r)) cos η + Cθ(− sin(τ ln r)− τ cos(τ ln r)) sin η

= Cθfc(r) cos η + Cθfs(r) sin η

Cz = Cθ(− sin η cos(τ ln r)− cos η sin(τ ln r)− τ cos η cos(τ ln r) + τ sin η sin(τ ln r))

= Cθ(− sin(τ ln r)− τ cos(τ ln r)) cos η + Cθ(− cos(τ ln r) + τ sin(τ ln r)) sin η

= Cθfs(r) cos η − Cθfc(r) sin η.

This means that for example Cx = fx1(r
2)gx1(η) + fx2(r

2)gx2(η) where gx1(η) = g′(η) cos η,
fx1(r

2) = fθ(r
2)fc(r) and similarly for the other term with gx2(η) = g′(η) sin η. Differentation

is a linear operation so repeated derivatives of Cx and Cz can be found with two applications of
the algorithm in sections 3.3 and 3.3.1.

A cleaner way of deriving this result is to consider the complex function Z = Cz + iCx =
Cθ(ie

iθ − τeiθ) = Cθ(i − τ)ei(η+τ ln r) = fθ(r
2)(i − τ)eiτ ln rgθ(η)eiη. Z is a complex product so

each of its components is the sum of two real products.
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3.4.5 Evaluation Strategy for Maxwellian Spiral Sectors

The initial condition vector including fringe fields breaks down into product components as

Cx = f1(r
2)g1(η) + f2(r

2)g2(η)

Cy = f(r2)g(η)

Cz = f2(r
2)g1(η)− f1(r2)g2(η),

bearing in mind the algorithm in section 3.3 will want repeated derivatives of all the single-
parameter functions. It is assumed that repeated derivatives of f and g are provided by the user
(as well as those of Y (r2)). The new single parameter functions are

f1(r
2) = fθ(r

2)fc(r
2) g1(η) = g′(η) cos η

f2(r
2) = fθ(r

2)fs(r
2) g2(η) = g′(η) sin η

where

fθ(r
2) =

1

r

∫ r

0
2RY ′(R2)f(R2)dR

fc(r
2) = cos(0.5τ ln r2)− τ sin(0.5τ ln r2)

fs(r
2) = − sin(0.5τ ln r2)− τ cos(0.5τ ln r2).

Functions that are products can be dealt with by calculating the derivatives of the factors first
and then using the rule (fg)(n) =

∑n
i=0

(n
i

)
f (i)g(n−i).

Assuming numerical integration is not used, the user will also have to supply a function to
calculate I(r2) =

∫ r
0 2RY ′(R2)f(R2)dR, although not its derivatives since

I ′(r2) =
dr

dr2
dI

dr
=

1

2r
2rY ′(r2)f(r2) = Y ′(r2)f(r2).

The trigonometric functions of logarithms have repeated derivatives related by the formula

d

dx

(
1

xn
(a cos(k lnx) + b sin(k lnx))

)

=
−n
xn+1

(a cos(k lnx) + b sin(k lnx)) +
1

xn

(
−a sin(k lnx)

k

x
+ b cos(k lnx)

k

x

)
=

1

xn+1
((−na+ kb) cos(k lnx) + (−nb− ka) sin(k lnx)) .

Writing z = a+ ib, the ‘new’ z can be written (−na+ kb) + i(−nb− ka) = (−n− ik)z. So if

f (n)c (r2) =
1

r2n

(
Re zn cos(0.5τ ln r2) + Im zn sin(0.5τ ln r2)

)
f (n)s (r2) =

1

r2n

(
Rewn cos(0.5τ ln r2) + Imwn sin(0.5τ ln r2)

)
,

then the recurrence starts with z0 = 1 − iτ and w0 = −τ − i = −iz0, continuing with zn+1 =
(−n− 0.5iτ)zn, where by linearity wn = −izn.
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3.5 The Isochronous Field

In an isochronous machine, path length must be proportional to velocity, so the mean orbit
radius must satisfy r = βR for some R. The average field required for the orbit to close is
〈By〉 = p/qr = mβγc/(qβR) = γB0 where B0 = mc/qR. This is familiar as the field relation for
an isochronous cyclotron but it will also work for other machines whose mean field is a function
of radius.

In the notation of the previous sections, we can choose

f(r2) = γB0 =
B0√

1− β2
=

B0√
1− 1

R2 r2
,

which will be multiplied by some azimuthal variation g(θ) or g(η) to give the field Cy. The
functions in the previous sections need f ’s repeated derivatives with respect to r2. These are

f (n)(r2) = B0
(2n)!

4nn!R2n

(
1− 1

R2
r2
)− 1

2
−n
.

3.5.1 Integrals

The algorithm in section 3.4.5 requires the integral of Y ′(r2)f(r2) with respect to r2. If Y (r2)
can be approximated by a polynomial, it suffices to find integrals In such that dIn

dr2
= r2nf(r2).

Consider the derivative

d

dr2

(
r2n
√

1− 1

R2
r2

)
= nr2n−2

√
1− 1

R2
r2 + r2n

− 1
R2

2
√

1− 1
R2 r2

=
nr2n−2

(
1− 1

R2 r
2
)
− 1

2R2 r
2n√

1− 1
R2 r2

=
nr2n−2 − (n+ 1

2) 1
R2 r

2n√
1− 1

R2 r2

=

(
nr2n−2 −

(
n+

1

2

)
1

R2
r2n
)
f(r2)

B0

=
1

B0

(
n

dIn−1
dr2

−
(
n+

1

2

)
1

R2

dIn
dr2

)
⇒ r2n

√
1− 1

R2
r2 =

1

B0

(
nIn−1 −

(
n+

1

2

)
1

R2
In

)
+ const..

Setting n = 0 gives√
1− 1

R2
r2 =

1

B0

(
− 1

2R2
I0

)
+ const. ⇒ I0 = −2B0R

2

√
1− 1

R2
r2 + const.,

where the constant is set by noting the definite integral starts at r2 = 0 so requires I0(0) = 0;
thus

I0 = −2B0R
2

√
1− 1

R2
r2 + 2B0R

2.
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The cases for n > 0 form a recurrence

B0r
2n

√
1− 1

R2
r2 − nIn−1 = −

(
n+

1

2

)
1

R2
In

⇒ In =
R2

n+ 1
2

(
nIn−1 −B0r

2n

√
1− 1

R2
r2

)
,

which satisfy In(0) = 0 without the addition of a constant, by induction.

3.6 Flutter Models

A simple periodic variation with n sectors can be produced with g(θ) = 1+a sinnθ. This is easy
to differentiate repeatedly, however it is not very realistic as magnets commonly have harder
edges and do not fade out gradually like a sine wave.

Another simple function worth considering is g(θ) = 1 + (sinnθ)1/(2m+1) for integer m ≥ 0.
This has mean value 1 and increasing m makes the magnet edges sharper and the field within
the sectors flatter. It is limited to sectors and drifts of equal length and its repeated derivatives
do not have simple form, though.

It is possible to construct a function with arbitrary fringe field lengths by summing scaled
copies of the tanh function and this may be differentiated repeatedly using the method in [1]
section 5. Care must be taken that the function wraps properly from θ = 2π to 0, although for
short fringe lengths all but a few of the tanh functions may be approximated by a constant at
any given point.

3.6.1 Flutter Varying with Radius

The field form Cy = f(r2)g(θ) used in most of the preceding sections is not complex enough to
allow the proportion of field flutter to vary as a function of radius. One way of incorporating
this variation is

Cy = f(r2)(1 + h(r2)g(θ)) = f(r2) + f(r2)h(r2)g(θ),

where g(θ) now oscillates about zero rather than one and h(r2) controls the amplitude of those
oscillations. Notice that this is the sum of two terms, both of which have the form f(r2)g(θ):
namely, f.1 and fh.g. Because Maxwell’s equations are linear, the fields corresponding to each
of the two terms can be calculated using the method in section 2 and then added together.
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