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1 Potential Term

In cylindrical polar coordinates (r, θ, z), consider the magnetic scalar potential

φ = sin(nθ + ψ)rkf(z)

for some integers n, k, angle ψ and function f . The associated magnetic field is

B = ∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez =

 sin(nθ + ψ)krk−1f(z)
n cos(nθ + ψ)rk−1f(z)

sin(nθ + ψ)rkf ′(z)


rθz

,

which automatically satisfies ∇×B = ∇×∇φ = 0. The only remaining condition on φ is

0 = ∇ ·B = ∇ · ∇φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+
∂2φ

∂z2

= sin(nθ + ψ)
(
k(k − 1)rk−2f(z) + krk−2f(z)− n2rk−2f(z) + rkf ′′(z)

)
= sin(nθ + ψ)rk−2

(
(k2 − n2)f(z) + r2f ′′(z)

)
.

1.1 Long Multipole

If there is no z behaviour (f = 1, say), then for this to hold for all r, θ requires k2 = n2. Since
k ≤ 0 cases have a singularity at the origin, put k = n ≥ 1. This gives the field for an infinitely
long multipole:

φ = sin(nθ + ψ)rn, B =

 n sin(nθ + ψ)rn−1

n cos(nθ + ψ)rn−1

0


rθz

= nrn−1

 sin((n− 1)θ + ψ)
cos((n− 1)θ + ψ)

0

 .
n = 1 corresponds to a dipole, n = 2 to a quadrupole, etc. Also ψ = 0 gives these in their
normal orientation and ψ = π

2 in their skew orientation.

1.2 Normalisation

Although the rest of the paper will evaluate fields for the potential containing rn above, this
produces fields with magnitude |B| = nrn−1. If multipole strengths are defined as the values of
polynomial coefficients of the field function, then |B| = knr

n may be obtained from the potential
φ = sin(nθ + ψ) kn

n+1r
n+1. If strengths are defined as repeated derivatives of the field function,

then |dnB/dxn| = dn (i.e. |B| = dn
n! r

n) may be obtained from φ = sin(nθ + ψ) dn
(n+1)!r

n+1.
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2 Series Solution

If f ′′ is nonzero, the ∇·∇φ = 0 equation cannot be satisfied by a single term for all r. However,
consider a sum of such terms with the same n but different k:

φ = sin(nθ + ψ)
∞∑
k=n

rkfk(z).

Note the lowest term with k = n, which dominates the sum near the r = 0 axis, corresponds to
a long 2n-pole modulated by fn(z). The potential must satisfy

0 = ∇ · ∇φ = sin(nθ + ψ)
∞∑
k=n

rk−2
(
(k2 − n2)fk(z) + r2f ′′k (z)

)
for all θ, so the RHS sum must be zero (for all r, z). Equating coefficients of rk gives

((k + 2)2 − n2)fk+2(z) + f ′′k (z) = 0

for k ≥ n and the remaining coefficients of rn−2 and rn−1 are 0 and ((n + 1)2 − n2)fn+1(z)
respectively, so fn+1(z) = 0. The above relation gives fk+2 as a scaled second derivative of fk,
so fn+2j+1(z) = 0 for all j ≥ 0 and

fn+2j(z) =

 j∏
i=1

−1

(n+ 2i)2 − n2

 f (2j)n (z).

The coefficients will be written as

Cnj =
j∏
i=1

−1

(n+ 2i)2 − n2
=

j∏
i=1

−1

4(n+ i)i
=

(−1
4)jn!

(n+ j)!j!
.

Setting fn = f , the full potential satisfying Maxwell’s equations in free space is:

φ = sin(nθ + ψ)
∞∑
j=0

rn+2jfn+2j(z) = sin(nθ + ψ)
∞∑
j=0

Cnjr
n+2jf (2j)(z).

2.1 Magnetic Field

Using the formula for the gradient of a single term (sin(nθ+ψ)rkf(z)) given at the start of this
note, the magnetic field associated with the series solution is

B = ∇φ =
∞∑
j=0

Cnj

 sin(nθ + ψ)(n+ 2j)rn+2j−1f (2j)(z)

n cos(nθ + ψ)rn+2j−1f (2j)(z)

sin(nθ + ψ)rn+2jf (2j+1)(z)


rθz

=
∞∑
j=0

Cnjr
n+2j−1

 (n+ 2j) sin(nθ + ψ)f (2j)(z)

n cos(nθ + ψ)f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)


rθz

=
∞∑
j=0

Cnjr
n+2j−1


 n sin(nθ + ψ)f (2j)(z)

n cos(nθ + ψ)f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)


rθz

+

 2j sin(nθ + ψ)f (2j)(z)
0
0


rθz


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=
∞∑
j=0

Cnjr
n+2j−1


 n sin((n− 1)θ + ψ)f (2j)(z)

n cos((n− 1)θ + ψ)f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)

+

 2j sin(nθ + ψ)f (2j)(z) cos θ

2j sin(nθ + ψ)f (2j)(z) sin θ
0




=
∞∑
j=0

Cnjr
n+2j−1

 (n sin((n− 1)θ + ψ) + 2j sin(nθ + ψ) cos θ)f (2j)(z)

(n cos((n− 1)θ + ψ) + 2j sin(nθ + ψ) sin θ)f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)

 .

2.2 Computation Without Trigonometric Formulae

The product formulae for sin and cos give

sin(nθ + ψ) cos θ = 1
2 sin((n− 1)θ + ψ) + 1

2 sin((n+ 1)θ + ψ)

sin(nθ + ψ) sin θ = 1
2 cos((n− 1)θ + ψ)− 1

2 cos((n+ 1)θ + ψ),

which enables the Cartesian field formula to be written as

B =
∞∑
j=0

Cnjr
n+2j−1

 ((n+ j) sin((n− 1)θ + ψ) + j sin((n+ 1)θ + ψ))f (2j)(z)

((n+ j) cos((n− 1)θ + ψ)− j cos((n+ 1)θ + ψ))f (2j)(z)

r sin(nθ + ψ)f (2j+1)(z)

 .
Note that every instance of cos or sin(nθ+ψ) is multiplied by a large power of r usually including
rn. This can be used to convert fully to Cartesian coordinates using the complex formulae

reiθ = r(cos θ + i sin θ) = x+ iy

⇒ (reiθ)n = rneinθ = rn(cosnθ + i sinnθ) = (x+ iy)n,

whence setting cn = Re (x+ iy)n and sn = Im (x+ iy)n gives

rn cosnθ = cn and rn sinnθ = sn.

These values can be calculated without trigonometry from the recurrence relation

c0 = 1; s0 = 0; cn+1 = xcn − ysn; sn+1 = ycn + xsn,

which comes from the definition of complex multiplication (x + iy)n+1 = (x + iy)(x + iy)n in
terms of components. The formula requires a slightly more general form

ĉn = rn cos(nθ + ψ) = Re rneinθeiψ, ŝn = rn sin(nθ + ψ) = Im rneinθeiψ.

These satisfy a similar recurrence because the repeated multiplication by reiθ = x + iy starts
with eiψ rather than 1:

ĉ0 = cosψ; ŝ0 = sinψ; ĉn+1 = xĉn − yŝn; ŝn+1 = yĉn + xŝn.

The evaluations of cosψ and sinψ are not a problem because they can be precalculated for each
multipole, unlike ĉn and ŝn that depend on x, y. The field formula can now be rewritten as

B =
∞∑
j=0

Cnjr
2j

 ((n+ j)ŝn−1 + j 1
r2
ŝn+1)f

(2j)(z)

((n+ j)ĉn−1 − j 1
r2
ĉn+1)f

(2j)(z)

ŝnf
(2j+1)(z)



=
∞∑
j=0

Cnj

 ((n+ j)(r2)j ŝn−1 + j(r2)j−1ŝn+1)f
(2j)(z)

((n+ j)(r2)j ĉn−1 − j(r2)j−1ĉn+1)f
(2j)(z)

(r2)j ŝnf
(2j+1)(z)

 ,
where powers of r2 = x2 + y2 have been emphasised as they can be calculated without a square
root. Note that negative powers never arise from (r2)j−1 when j = 0 because it is multiplied by
j, so disappears.
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2.3 Computation Using a 2D Field Map

The only parts of the above formula that depend on θ are the various ĉn and ŝn, which are rela-
tively quick (and unavoidable) to calculate for each evaluation point. Calculating the repeated
derivatives of f and waiting for the infinite sum to converge are, on the other hand, quite slow
but may be precalculated as three functions of just r and z in the following way:

B =

 ŝn−1F (r, z) + ŝn+1G(r, z)
ĉn−1F (r, z)− ĉn+1G(r, z)

ŝnH(r, z)

 ,
where

F (r, z) =
∞∑
j=0

Cnj(n+ j)(r2)jf (2j)(z); G(r, z) =
∞∑
j=1

Cnjj(r
2)j−1f (2j)(z);

H(r, z) =
∞∑
j=0

Cnj(r
2)jf (2j+1)(z).

2.3.1 Universal Field Map

Considering just one end of the magnet, if the fringe field is related to a universal fringe field
function via f(z) = f̂(z/l), then f (n)(z) = l−nf̂ (n)(z/l) and

F (r, z) =
∞∑
j=0

Cnj(n+ j)

(
r

l

)2j

f̂ (2j)
(
z

l

)
= F̂n

(
r

l
,
z

l

)
;

G(r, z) =
1

r2

∞∑
j=1

Cnjj

(
r

l

)2j

f̂ (2j)
(
z

l

)
=

1

r2
Ĝn

(
r

l
,
z

l

)
;

H(r, z) =
1

r

∞∑
j=0

Cnj

(
r

l

)2j+1

f̂ (2j+1)
(
z

l

)
=

1

r
Ĥn

(
r

l
,
z

l

)
,

where the new functions F̂n, Ĝn, Ĥn depend only on n and the form of f̂ , not l. In terms of
these new functions,

B =

 ŝn−1F̂n(r/l, z/l) + ŝn+1
1
r2
Ĝn(r/l, z/l)

ĉn−1F̂n(r/l, z/l)− ĉn+1
1
r2
Ĝn(r/l, z/l)

ŝn
1
r Ĥn(r/l, z/l)

 .
Unfortunately use of the universal function Ĥn incurs a square root to calculate 1

r , which the
non-universal forms do not have, assuming they are stored as functions of r2 and z.

2.3.2 Field Map for Magnet Ends Only

In the interior of a long magnet, the field tends towards the expression given earlier:

B = nrn−1

 sin((n− 1)θ + ψ)
cos((n− 1)θ + ψ)

0

 =

 nŝn−1
nĉn−1

0

 .
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This corresponds to F (r, z) = n and G(r, z) = H(r, z) = 0. The lowest-order terms up to r2 in
these sums are:

F (r, z) = Cn0nf(z) + Cn1(n+ 1)r2f ′′(z) + . . . = nf(z)− 1
4r

2f ′′(z) + . . . ;

G(r, z) = Cn1f
′′(z) + Cn22r

2f ′′′′(z) + . . . =
−f ′′(z)
4(n+ 1)

+
r2f ′′′′(z)

32(n+ 1)(n+ 2)
+ . . . ;

H(r, z) = Cn0f
′(z) + Cn1r

2f ′′′(z) + . . . = f ′(z)− r2f ′′′(z)

4(n+ 1)
+ . . . ,

so when f(z) = 1 and f ′(z) = f ′′(z) = 0 to some precision, the field calculation may be replaced
by the simple multipole expression. Similarly, when f = f ′ = f ′′ = 0 to a good approximation,
the field may be given as zero. This means F , G, H only need to be calculated for the transition
region where 0 < f(z) < 1 for each magnet (or end of magnet).

2.3.3 Magnets with Symmetrical Ends

It is common to use the same fringe field for both ends of a magnet of length L, so that
f(z) = g(z) + g(L− z), where g is a sigmoid function going from −1

2 to 1
2 , representing one end

of the magnet (e.g. g(z) = 1
2 tanh(z/l)). If F , G, H are now calculated using g in place of f ,

the magnetic field is given by

B =

 ŝn−1(F (r, z) + F (r, L− z)) + ŝn+1(G(r, z) +G(r, L− z))
ĉn−1(F (r, z) + F (r, L− z))− ĉn+1(G(r, z) +G(r, L− z))

ŝn(H(r, z)−H(r, L− z))

 ,
noting the sign change for H(r, L− z) because it contains odd derivatives of g.

For the regions where g(z) is almost constant at −1
2 or 1

2 , F (r, z) = −1
2n or 1

2n may be used
respectively and G(r, z) = H(r, z) = 0. If both g(z) and g(L − z) are in a constant region and
they have opposite sign (i.e. far outside the magnet), the B field will be zero and the calculation
should be aborted before calculating ŝn−1 etc.
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