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1 Introduction

Fixed-field accelerators (FFAs) have closed orbits that change as a function of beam momentum.
It is sometimes useful to avoid various resonances by keeping the tunes constant as these orbits
change. A well-known example is the scaling FFA where the entire beam orbit and optics are
geometrically scaled as a function of momentum. However, this is stricter than necessary: cells
with three or more lenses can have fixed tunes even when the focussing strengths in the lenses
change [1].

Recently, Dejan Trbojevic has found a pair of nonlinear magnets that produce fixed tunes
and fixed beta functions while not being a scaling FFA [2]. This improves on a more approximate
solution in [3]. Notably a scaling FFA would require one magnet to be entirely reverse-bending,
whereas the Trbojevic solution does not do this and instead resembles an intermediate point
between the traditional scaling field profiles and the nonscaling profiles centred around a mo-
mentum with equal and positive fields.

This suggests there are at least three levels of stringency that one can apply to a fixed-tune
FFA design:

1. Fixed cell tunes (in both planes) as a function of momentum;

2. Fixed optics (beta functions) as a function of momentum;

3. Similarity of all orbits via a scaling symmetry law ⇔ traditional scaling FFA.

This note studies the interesting case #2 above (#3 being fully characterised by the orbit at
a single energy) in the simplest possible example: a cell of two thin lenses in the small angle
(paraxial) approximation.

2 Definitions of Variable Functions

The cell consists of an F magnet, a drift of length d1, a D magnet and a drift of length d2. The
beam position and angle in these magnets and drifts, as a function of momentum p, are

xF (p), x′1(p), xD(p), x′2(p),
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respectively. The bending angle in each thin lens is θe(p) for e = F,D and the normalised
integrated field is be(x), where these are related by

θe(p) =
be(xe(p))

p
.

This is a total of eight functions, which need as many constraints.

3 Constraints

There are a total of eight functional constraints: 2+4+2 as given in the subsections below.

3.1 Constant Normalised Gradient

It appears in the two-magnet-per-cell case, the normalised gradient in each magnet and the beta
functions remain constant. Thus,

b′e(xe(p)) = kep,

for e = F,D and two constants kF , kD, gives two constraints.

3.2 Paraxial Dynamics and Closure

Starting with angles, it is clear that

x′2(p) = x′1(p) + θD(p)

but going back to x′1 involves wrapping to the next cell, so the overal constant cell angle θcell
must be subtracted:

x′1(p) = x′2(p) + θF (p)− θcell.

For the positions, paraxial tracking through the drifts gives

xD(p) = xF (p) + d1x
′
1(p)

and wrapping to the start of the cell,

xF (p) = xD(p) + d2x
′
2(p)−∆xcell,

where a constant transverse displacement ∆xcell has also been allowed.

3.3 Relation of Angles to Normalised Integrated Fields

These two constraints are the ones from the previous section:

θe(p) =
be(xe(p))

p
,

for e = F,D.
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4 Elimination

With eight functions and eight functional constraints, all variable functions should be eliminated,
leaving only some constants, some in the form of boundary conditions for the differential equation
part.

4.1 Linear Part

Four of the equations are linear (in xe, θe, x
′
n) with additive constants and allow some elimina-

tion. Using the equations for x′1 and x′2,

x′1(p) = x′2(p) + θF (p)− θcell

= x′1(p) + θD(p) + θF (p)− θcell

⇒ θD(p) + θF (p) = θcell.

This is common sense so far (the lens angles added together equal the cell angle) and can be
used to eliminate θD.

Using the equations for xF and xD,

xF (p) = xD(p) + d2x
′
2(p)−∆xcell,

= xF (p) + d1x
′
1(p) + d2x

′
2(p)−∆xcell,

⇒ d1x
′
1(p) + d2x

′
2(p) = ∆xcell.

Again, this is a common sense evaluation of the transverse offset in the cell and can be used to
eliminate x′2.

Using the elimination for x′2 in in the x′1 equation gives:

x′1(p) = x′2(p) + θF (p)− θcell

=
∆xcell − d1x

′
1(p)

d2
+ θF (p)− θcell

⇒
(
1 +

d1
d2

)
x′1(p) =

∆xcell
d2

+ θF (p)− θcell,

which can be used to eliminate x′1. This can immediately be used in the xD equation

xD(p) = xF (p) + d1x
′
1(p)

= xF (p) +
d1

1 + d1
d2

(
∆xcell
d2

+ θF (p)− θcell

)
= xF (p) +

d1d2
d1 + d2

(
θF (p) +

∆xcell
d2

− θcell

)
,

which eliminates xD by expressing it in terms of xF and θF , which are the only remaining
functional variables apart from the be which weren’t in the linear part.

4.2 Geometrisation

To eliminate the be functions and work entirely in terms of angles, note that

θe(p) =
be(xe(p))

p
⇒ pθe(p) = be(xe(p))
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and the term on the right now looks superficially similar to the b′e(xe(p)) appearing in the
‘constant normalised gradient’ equation. Taking the derivative of both sides with respect to p,

θe(p) + pθ′e(p) = b′e(xe(p))x
′
e(p)

= kepx
′
e(p).

Taking care to note that x′e is a p derivative of xe, not an angle like x′n, this has eliminated the
be variables.

Including the elimination of θD and xD, the two equations in this part are now

θF (p) + pθ′F (p) = kF px
′
F (p)

and

θcell − θF (p)− pθ′F (p) = kDpx
′
D(p)

= kDp

(
x′F (p) +

d1d2
d1 + d2

θ′F (p)

)
.

4.3 Solution for θF (p)

xF and θF are the only functions left and the above are the only two constraints left. The x′F
terms can be cancelled by taking kD times the first equation minus kF times the second one:

kD(θF (p) + pθ′F (p))− kF (θcell − θF (p)− pθ′F (p))

= kDkF px
′
F (p)− kFkDp

(
x′F (p) +

d1d2
d1 + d2

θ′F (p)

)
= −kFkDp

d1d2
d1 + d2

θ′F (p),

⇒ (kD + kF )θF (p)− kF θcell =

(
−kD − kF − kFkD

d1d2
d1 + d2

)
pθ′F (p),

which is a first order differential equation for θF (p) and just needs an initial condition θF (p0) =
θF0. It is of the form

f ′(x) =
A

x
f(x) +

B

x
,

which has general solution

f(x) = CxA − B

A
.

Here, we put

A =
kD + kF

−kD − kF − kFkD
d1d2
d1+d2

B =
−kF θcell

−kD − kF − kFkD
d1d2
d1+d2

and C such that

θF (p0) = CpA0 − B

A
= θF0 ⇒ C =

θF0 +
B
A

pA0

with solution

θF (p) = CpA − B

A
.
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4.4 Solution for xF (p)

Substituting the formula for θF above into this equation

θF (p) + pθ′F (p) = kF px
′
F (p)

gives:

CpA − B

A
+ p(ACpA−1) = (1 +A)CpA − B

A
= kF px

′
F (p)

⇒ x′F (p) =
(1 +A)C

kF
pA−1 − B

AkF

1

p
.

With an initial condition xF (p0) = xF0, this gives the orbit positions as

xF (p) =
(1 +A)C

AkF
pA − B

AkF
ln p+

(
xF0 −

(1 +A)C

AkF
pA0 +

B

AkF
ln p0

)
.

5 Magnetic Field

The magnetic field in the F magnet can be found by substituting the explicit formulae for xF (p)
and θF (p) in the previous section into

bF (xF (p)) = pθF (p),

however it is doubtful that the function xF (p) can be inverted to give bF analytically as a
function of x, so this ‘parametric’ form should suffice. A similar thing is possible for the D
magnet with more substitutions.

An exceptional case is where C = 0 and Scott Berg pointed out that θF is constant as in
the original scaling FFA. This gives a logarithmic xF (p) and an exponential bF (x): it is the
‘straight’ small-angle limit of the scaling FFA, which is already known to have an exponential
field dependence [4].

6 Note

I had a previous attempt at deriving a solution for fixed-tune FFAs in [5] but the equations
produced, while in theory solvable mechanically, were so complex I never substituted anything
in to them to check. The assumption of fixed optics (via constant normalised gradient) rather
than fixed tunes helped a lot here, so hopefully checking these equations will be easier.
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