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rates in non-magnetized electron cooling
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Abstract

In this paper we derive explicit formulas for the friction force and
the cooling rates in non-magnetized electron coolers in the presence
of redistribution of cooling decrements.

1 Introduction

Electron Cooling (EC) [1, 2] is a technique that allows increasing a 6-D phase
space density of stored hadron beams.

In EC a beam of “cold” electrons co-propagate with a hadron beam with
the same average velocity in a straight section of the storage ring, called a
cooling section (CS). A hadron interacts with electrons in a CS via Coulomb
force, which introduces dynamical friction [3] acting on each hadron. After
every passage through the CS the electrons are either dumped or returned
to the electron gun for charge recovery, thus, on each turn the ions interact
with fresh electrons. Over many revolutions in the accelerator the average
friction reduces both the transverse and the longitudinal momentum spread
of the ion bunch.

The friction force (in the beam frame) acting on an ion co-traveling with
an electron bunch is given by [4, 5]:

~F = −4πe4Z2

me

∫
LC

~vi − ~ve
|~vi − ~ve|3

f(re, ve)d
3ve (1)

Here, e is the electron charge, Z · e is the ion charge, me is the mass of
electron, ~vi and ~ve are ion and electron velocities in the beam frame, LC

*seletskiy@bnl.gov

1



is the Coulomb logarithm, which has a weak dependence on ve and can be
moved from under the integral, and f(re, ve) is a six-dimensional distribution
function of the electrons.

The cooling rate (λx,y,z) in the laboratory frame can be obtained from:

λx,y,z =
Fx,y,zη

γmivi(x,y,z)
(2)

where the duty factor η = LCS/(2πR), R is the storage ring radius, LCS is
the length of the cooling section, mi = Aimp, mp is the proton mass, Ai is the
ion mass number, and indexes x, y, z correspond to the horizontal, vertical
and longitudinal components of F , v and λ.

Similarly to Eq. (2), the change in the ion’s velocity on a single pass
through the CS is given by:

∆vi(x,y,z) =
Fx,y,z
mi

LCS
γβc

(3)

It is well known [5] that the cooling rates can be “redistributed” between
the longitudinal and transverse directions.

The goal of this paper is to derive the explicit expressions for the cooling
rates with a x− z redistribution.

2 Basic remarks about redistribution mech-

anism

The redistribution requires two conditions. The first one is a coupling be-
tween the longitudinal and transverse (we will consider the horizontal one)
motion of an ion. This is created by the ions’ dispersion in the CS. The second
condition is dependence of the longitudinal friction force on the horizontal
position of an ion in the cooling section, i.e. the longitudinal component of
the cooling force must have the transverse gradient. A robust way to create
the required gradient is to introduce the electron beam dispersion in the CS.

The cooling force can be well approximated by a linear function of the
ion velocity (vi) if vi is less than the rms velocity spread of the electrons.

We will assume:

Fx = −Cxvix
Fz = −Cz(viz −K · xi)

(4)

where K is the horizontal gradient of the longitudinal cooling force.
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Substituting Eq. (4) into Eq. (3) and noticing that an ion’s relative
momentum δi = viz/(βc) and an ion’s angle x′i = vix/(γβc), we get for a
single pass through the CS:

∆x′i = −cxx′i
∆δi = −cz(δi − k · xi)

(5)

where cx = CxLCS
γβcmi

, cz = CzLCS
γβcmi

and k = K
βc

.

Let us introduce the action-angle variables (J, ϕ) for horizontal motion.
Here ϕ is a betatron phase and action J is given by:

J =
1

2

(
γxx

2
i + βxx

′2
i

)
(6)

where βx is a Twiss β-function, γx = 1/βx is the Twiss γ-function and we
assumed that the ions’ Twiss α-function in the CS is equal to zero.

We will further assume that the ions have a Gaussian distribution with the
distribution function fJ,ϕ = 1

2πε
e−J/ε. Here the horizontal beam emittance

(εx) is an average value of the action:

εx =

2π∫
0

∞∫
0

JfJ,ϕdJdϕ (7)

Finally we will assume that the cooling kick is weak enough to neglect a
change in the distribution function fJ,ϕ on a single pass through the CS and
that the cooling section is short enough to represent the horizontal transfer
matrix through the CS by:

MCS =

(
1 0
0 1− cx

)
(8)

Notice, that MCS is not symplectic, neither its determinant is equal to one,
which corresponds to a simple physical fact that the cooling force does not
conserve the beam emittance.

Now, we shall notice that on a single pass through the CS the Twiss
parameters are getting changed as [6]:

βx1 = βx0/(1− cx)
γx1 = γx0(1− cx)

(9)

Therefore, on a single pass through the cooling section the action becomes:
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J1 = 1
2

(
(1−cx)(xi0+∆xi)

2

βx0
+

βx0(x′i0+∆x′i)
2

1−cx

)
≈ J0 + xi0∆xi

βx0
− cxx2i0

2βx0
+

βx0x′i0(2∆x′i+cxx
′
i0)

2

= J0 + xi0∆xi
βx0
− cxx2i0

2βx0
− βx0cxx′2i0

2
= J0 − cxJ0 + xi0∆xi

βx0

(10)

In the cooling section, which incorporates ion dispersion xi = xi0 +Diδi0.
After ion passes the CS and the dispersion is zeroed, we get for the resulting
horizontal coordinate of an ion: xi1 = xi0 + Diδi0 − Diδi1 = xi0 − Di∆δi.
Substituting these relations into Eqs. (5) and (10) we get:

∆J = xi0Dicz(δi0−kxi0−kDiδi0)
βT

− cxJ0

∆δi = −cz(δi0 − kxi0 − kDiδi0)
(11)

Noticing that xi0 =
√

2J0βT cos(ϕ), substituting Eq. (11) into Eqs. (7)
we find:

∆εx = −εx(cx + czkDi) (12)

Similar to above considerations, we introduce a longitudinal action Jz:

Jz =
1

2

(
z2
i

βz
+ βzδ

2
i

)
(13)

where βz = σzi/σδi.
Then, for a single pass through the CS we get:

Jz1 = 1
2

(
(1−cz)z2i0

βz0
+ βz0(δi0+∆δi0)2

1−cz

)
=

= 1
2

(
(1−cz)z2i0

βz0
+ βz0(δi0(1−cz)+czk(Diδi0+xi0))2

1−cz

)
≈

≈ Jz0(1− cz) + czkβz0δi0(Diδi0 + xi0)

(14)

Next, we notice that δ =
√

2Jz/βz sin(φ), where φ is the synchrotron
phase.

Finally, to find a single pass change to the longitudinal emittance εz =
σzi · σδi, we convolve ∆Jz = Jz1 − Jz0 and fJz ,φ = 1

2πεz
e−Jz/εz :

∆εz = −εz(cz − czkDi) (15)

We can get respective cooling rates from Eqs. (12) and (15) by dividing
each expression by a revolution period Trev = 2πR

βc
:

λx(r) = −
(
cx

βc
2πR

+ kDi · cz βc
2πR

)
λz(r) = −cz βc

2πR
· (1− kDi)

(16)
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Here index (r) denotes the redistributed rate.
Finally, recalling the relations between cx, cz and Cx, Cz and comparing

Eq. (16) to Eq. (2) we get the general expression for the cooling rates
redistribution:

λx(r) = λx + kDiλz
λz(r) = λz − kDiλz

(17)

The rates on the right hand side of the equations are the rates at Di = 0

3 Cooling in presence of electron dispersion

We consider an electron bunch with Gaussian 6-D distribution in the presence
of e-beam dispersion (De) in the cooling section. To simplify the resulting
formulas we will assume electron αT = 0 in the cooling section, which is a
reasonable approximation for an electron cooler (a treatment of αT 6= 0 case
can be found in [7]). Then the electron bunch distribution is:

f(re, ve) = Ne
γ(2π)3∆x∆y∆zσxσyσz

fxfyfz

fx = exp
[
− (x−Deδe)2

2σ2
x
− v2ex

2∆2
x

]
fy = exp

(
− y2

2σ2
y
− v2ey

2∆2
y

)
fy = exp

(
− z2

2σ2
z
− v2ez

2∆2
z

)
= exp

(
− z2

2σ2
z
− δ2e

2σ2
δe

) (18)

Here ∆x,y,z are the electrons’ rms velocity spreads and σx,y,z are the e-bunch
rms sizes along horizontal, vertical and longitudinal directions respectively.

With simple algebraic manipulations the distribution can be split in a
density and a velocity distribution parts:

f(re, ve) = nefve

ne = Ne
γ(2π)3/2σx1σyσz

exp
[
− x2

2σx1
− y2

σ2
y
− z2

σ2
z

]
fve = 1

(2π)3/2∆x∆y∆z1
exp

[
− v2ex

2∆2
x
− v2ey

∆2
y
− (vez−µz)2

∆2
z1

]
σx1 =

√
σ2
x +D2

eσ
2
δe

∆z1 = ∆z
σx√

σ2
x+D2

eσ
2
δe

µz = x∆z
Deσδe

σ2
x+D2

eσ
2
δe

(19)

Substituting Eq. (19) into Eq. (1) we get the expression for the friction
force of the form:

~F = −C0

∫
~vi − ~ve
|~vi − ~ve|3

fved
3ve (20)
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Here, C0 = 4πnee4Z2LC
me

.
Equation (20) with distribution fve of the form (19) can be reduced to 1-D

integrals for each component of the friction force (so called Binney’s formulas
[8]) by noticing that the friction force in v-space looks like a point-charge
Coulomb force in the physical space. Then we can introduce an effective
potential in a velocity-space:

U = C0

∫
fve

|~vi − ~ve|
d3ve (21)

such that
Fx,y,z = ∂U/∂vi(x,y,z) (22)

The detailed step-by-step derivation of the Binney’s formulas for the consid-
ered case is given in [9]. Here we simply give the final result for ∆x = ∆y.
Considerations of unequal v-distributions in all three directions can be found
in [10].

For the case of ∆x = ∆y ≡ ∆t the friction force is:


Fx,y = −C1vi(x,y)

∫∞
0
gt(q)dq

Fz = −C1(viz − µz)
∫∞

0
gz(q)dq

gt(q) = 1

∆2
t (1+q)2

√
∆2
t q+∆2

z1

exp
[
− v2ix+v2iy

2∆2
t (1+q)

− (viz−µz)2

2(∆2
t q+∆2

z1)

]
gz(q) = 1

(1+q)(∆2
t q+∆2

z1)3/2
exp

[
− v2ix+v2iy

2∆2
t (1+q)

− (viz−µz)2

2(∆2
t q+∆2

z1)

] (23)

where C1 = 2
√

2πner
2
emec

4Z2LC .
The integrals 23 can be taken analytically in the approximation of “small

amplitudes”:

Fx,y = −vi(x,y)
C1

∆2
⊥∆z1

Φ(∆z1/∆⊥)

Fz = −(viz − µz) 2C1

∆2
⊥∆z1

(1− Φ(∆z1/∆⊥))

Φ(d) =


d

1−d2

(
arccos(d)√

1−d2 − d
)
, d < 1

2/3, d = 1
d

d2−1

(
log(d−

√
d2−1)√

d2−1
+ d
)
, d > 1

(24)

where d = ∆z1/∆⊥.
It is useful to rewrite Eq. (24) for the peak cooling force (at x, y, z = 0)

explicitly showing the dependence of ne (via σx1), µz and ∆z1 on De:
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Fx,y = −vi(x,y)
C

∆2
⊥∆z

Φ

(
∆z

∆⊥

σx√
σ2
x+D2

eσ
2
δe

)
Fz = −

(
viz −∆z

Deσδe
σ2
x+D2

eσ
2
δe
· xi
)

2C
∆2

⊥∆z

[
1− Φ

(
∆z

∆⊥

σx√
σ2
x+D2

eσ
2
δe

)]
C = Ner2emec

4Z2LC
πγσxσyσz

Φ(d) =


d

1−d2

(
arccos(d)√

1−d2 − d
)
, d < 1

2/3, d = 1
d

d2−1

(
log(d−

√
d2−1)√

d2−1
+ d
)
, d > 1

(25)

4 Explicit formulas for x− z redistribution of

nonmagnetized cooling

We notice that Eq. (25) can be presented in form (4):

Fx = −Cxvix
Fz = −Cz(viz −K · xi)

Cx = Ner2emecZ
2LC

πγ3β3σxσyσzσ2
θeσδe

Φ

(
σδe
γσθe

σx√
σ2
x+D2

eσ
2
δe

)
Cz = 2Ner2emecZ

2LC
πγ3β3σxσyσzσ2

θeσδe

[
1− Φ

(
σδe
γσθe

σx√
σ2
x+D2

eσ
2
δe

)]
K = βc

Deσ2
δe

σ2
x+D2

eσ
2
δe

(26)

Here we used ∆z = βcσδ, and ∆⊥ = γβcσθ, where σθ ≡ σθx = σθy.
Now we can write the explicit redistribution formulas, using equations

derived in section 2.

λx(r) = λx +
DiDeσ

2
δe

σ2
x+D2

eσ
2
δe
λz

λz(r) = λz −
DiDeσ

2
δe

σ2
x+D2

eσ
2
δe
λz

λx = Ner2emecZ
2LCη

πγ4β3Aimpσxσyσzσ2
θeσδe

Φ

(
σδe
γσθe

σx√
σ2
x+D2

eσ
2
δe

)
λz = 2Ner2emecZ

2LCη

πγ4β3Aimpσxσyσzσ2
θeσδe

[
1− Φ

(
σδe
γσθe

σx√
σ2
x+D2

eσ
2
δe

)] (27)

It is important to notice that the rates λx and λz are the rates at Di = 0,
they depend on De and are not equal to the “undisturbed” cooling rates
(λx0 ≡ λx(De = 0) and λz0 ≡ λz(De = 0)). Function Φ is strongly nonlinear,
as Fig. 1 demonstrates. Therefore, in general case, the redistributed rates
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λx(r) and λz(r) can not be represented as linear combination of the cooling
rates (λx0 and λz0) in the absence of both the electron and the ion dispersions.

Figure 1: Function Φ(d).

We shall also notice that in the absence of Di but with a nonzero De we
have some cooling redistribution but it is a redistribution from a horizontal
to a vertical direction.

Finally let us consider the two limiting cases.
For the case of the spherically symmetric electron’s v-distribution (in the

absence of De) Φ(1) = 2/3 and:

λx0 = λz0 =
2Ner

2
emecZ

2LCη

3πγ4β3Aimpσxσyσzσ2
θeσδe

(28)

Yet, the moment we introduce the electron dispersion the argument of
function Φ becomes non-unitary and one must use Eq. (27) to calculate
rates, since dependence of Φ(d) is quite strong near d = 1, as Fig. 1 shows.

For the case of “flat” v-distribution (∆z � ∆⊥) we have Φ(d → 0) →
d ·π/2. Introduction of electron dispersion makes the argument of function Φ
even smaller. Therefore, for the case of flat v-distribution the redistributed
rates can be presented as linear combinations of undisturbed cooling rates,
and we get:
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λx(r) = λx0 +
DiDeσ

2
δe

σ2
x+D2

eσ
2
δe
λz0

λz(r) = λz0 −
DiDeσ

2
δe

σ2
x+D2

eσ
2
δe
λz0

λx0 = Ner2emecZ
2LCη

2γ5β3Aimpσxσyσzσ3
θe

λz0 = 2Ner2emecZ
2LCη

πγ4β3Aimpσxσyσzσ2
θeσδe

(29)

5 Conclusion

We derived the explicit formulas (Eq. 27 ) for the cooling rates’ redistribution
in a non-magnetized electron cooler.

The redistributed rates are the linear combinations of the cooling rates,
which, in turn, are strongly nonlinear functions of the electron dispersion in
the CS.

References

[1] G. I. Budker, An effective method of damping particle oscillations in
proton and antiproton storage rings, At. Energ. 22, 346 (1967) [Sov. At.
Energy 22, 438 (1967)].

[2] G. I. Budker et al., Experimental study of electron cooling, Part. Accel.
7, 197 (1976).

[3] S. Chandrasekhar, Brownian motion, dynamical friction and stellar dy-
namics, Rev. Mod. Phys. 21, 3 (1949).

[4] S. Chandrasekhar, Principles of Stellar Dynamics (Chicago: University
of Chicago Press), 1942.

[5] Ya. S. Derbenev and A. N. Skrinsky, The effect of an accompanying
magnetic field on electron cooling, Part. Acc. 8 235 (1978).

[6] S. Seletskiy, D. Kayran, Conversion of Twiss parameters in cooling pro-
cess, BNL-223410-2022-TECH (2022).

[7] M. Blaskiewicz, Dispersion and electron cooling, BNL-210932-2019-
TECH, (2019).

[8] J. Binney, Dinamical friction in aspherical clusters, Mon. Not. R. astr.
Soc. 181, 735-746 (1977).

9



[9] S. Seletskiy, A. Fedotov, Effects of coherent offset of velocity distribution
in electron coolers on ion dynamics, BNL-220641-2020-TECH (2020).

[10] S. Seletskiy, A. Fedotov, Useful formulas for non-magnetized elec-
tron cooling, BNL-222963-2022-TECH (2022). https://arxiv.org/

pdf/2205.00051v3.pdf

10

https://arxiv.org/pdf/2205.00051v3.pdf
https://arxiv.org/pdf/2205.00051v3.pdf

