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1 General considerations

It is convenient to consider effects on beam emittance in action-angle vari-
ables (J, ϕ), where ϕ is a betatron phase and:

J =
1

2
(γx2 + 2αxx′ + βx′2) (1)

For a Gaussian beam the distribution function fJ,ϕ is given by:

fJ,ϕ =
1

2πε
e−J/ε (2)

And the beam emittance is:

ε =

2π∫
0

∞∫
0

JfJ,ϕdJdϕ (3)

Let’s consider a linear transformation (x0, x
′
0)→ (x1, x

′
1), here we are not

making any assumptions about properties of the transfer matrix M :(
x1
x′1

)
=

(
m11 m12

m21 m22

)
·
(
x0
x′0

)
(4)

Then we get from Eq. (4):(
x0
x′0

)
=

1

detM

(
m22 −m12

−m21 m11

)
·
(
x1
x′1

)
(5)
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Substituting Eq. (5) into Eq. (1) we obtain the following expression for
the transformed action:

detM · J0 =
1

2
(γ1x

2
1 + 2α1x1x

′
1 + β1x

′2
1 ) (6)

where Twiss parameters are transformed by the following law:

 β1
α1

γ1

 =
1

detM

 m2
11 −2m11m12 m2

12

−m11m21 m11m22 +m12m21 −m12m22

m2
21 −2m21m22 m2

22

 ·
 β0

α0

γ0


(7)

It is important to notice, that for Twiss parameters, a “canonical” form of
an ellipse equation, for which an action on the left-hand side of the equation
is an ellipse area divided by 2π, sets a strict requirement to parameters:
βγ = 1 + α2. This requirement is satisfied for parameters β1, α1, γ1 defined
by Eq. (7) as long as it is satisfied for β0, α0, γ0.

For a usual symplectic transformation, detM = 1, and the action is the
invariant of motion. For a special case when the transformation does not
conserve the beam emittance Eq. (6) tells us that:

J1 = detM · J0 (8)

If this non-conservative disturbance is small enough to assume that the
same fJ,ϕ can be used after the disturbance is applied to the bunch, then we
get from Eqs. (3) and (8):

ε1 = detM · ε0 (9)

2 Case of cooling

For a special case of the “linear” cooling we have the transfer matrix MC :

MC =

(
1 0
0 (1− c)

)
(10)

where parameter c defines the cooling rate:

λ =
1

Trev

x′1 − x′0
x′0

=
c

Trev
(11)

Here Trev is the revolution frequency of the hadron storage ring.
Substituting detMC = 1− c into Eqs. (9) we get:
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ε1 = (1− c)ε0 (12)

Then for the emittance cooling rate we obtain:

λε =
1

Trev

ε1 − ε0
ε0

=
c

Trev
(13)

Next, let us consider the change in the rms beam size (σx) and the rms
angular spread (σx′) on a single pass through the cooling section. By default:

σx =

(
2π∫
0

∞∫
0

x2(J, ϕ)fJ,ϕdJdϕ

)1/2

σx′ =

(
2π∫
0

∞∫
0

x′2(J, ϕ)fJ,ϕdJdϕ

)1/2 (14)

Here, regular coordinates x, x′ can be expressed through action-angle vari-
ables as:

x =
√

2Jβ cosϕ

x′ =
√

2J
β

(sinϕ− α cosϕ)
(15)

According to Eq. (7) for transfer matrix (10) we get:

β1 = β0/(1− c)
α1 = α0

γ1 = γ0(1− c)
(16)

It follows from Eqs. (8), (15) and (16) that, since according to Eq. (10)
x1 = x0, then cos(ϕ1) = cos(ϕ0). Therefore:

ϕ1 = ϕ0 (17)

Then, substituting Eq. (8) and Eqs. (15-17) into Eq. (14) we obtain:

σx1 = σx0
σx1′ = (1− c)σx0′

(18)

Once again, let us stress that Eq. (18) gives the change in σx and σx′ for
a single pass through the cooling section. The betatron motion in the ring
couples x and x′ resulting in the following size and angular spread cooling
rates: λσx = λσx′ = λε/2 = c/(2Trev).
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