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Noise driven emittance growth with coherent forces

M. Blaskiewicz

BNL 911B, Upton, NY 11973, USA

Noise driven emittance growth is modified by the presence of coherent forces. Closed form asymp-
toic growth rates are given for two frequency distributions. The analytic results are compared with
tracking, showing good agreement. Purely numerical results for a parabolic frequncy distribution
are also presented. If a small antidamping force is present then additional, real frequency shifts
increase growth rates.

INTRODUCTION

Crab cavities are needed to compensate the crossing angle in the LHC and the EIC. Noise on these cavities will lead 
to emittance growth [1]. The required noise limits on the cavities are at, or slightly exceed, the state of the art. Any 
additional complications are a serious concern. Recent work has called into question the importance of coherent forces 
on this emittance growth [2–4]. The simplest model of this is to consider a resonator impedance with wavelength long 
compared to the bunch and it’s coupled bunch modes. For a given mode, the kick from the resonator on a bunch has 
components proportional to the average offset of the bunch, and the average angle of the bunch. In a time domain 
model this corresponds to terms proportional to the offset and the velocity. We go on to consider a simple model of 
tune spread which yields a simple closed form answer. In the second part a more realistic model is considered. A 
rather complicated formula results but it agrees well with simulations. The final section presents purely numerical 
results for parabolic tune spread

A SIMPLE MODEL

A simple model that captures the physics can be obtained analytically. Consider a collection of one dimensional 
oscillators with coordinates x1, x2, . . . xN . The equation of motion for particle j is

ẍj + ω2
jxj = n(t)− 2ω̄Ωx̄(t) + 2α ˙̄x(t), (1)

where the oscillator has frequency ωj and n(t) is random noise. In the absence of frequency spread Ω is the coherent
tune shift and α is the growth rate. The central frequency is ω̄ and

x̄ =
1

N

N∑
k=1

xk. (2)

Take xj = aj(t) exp(−iω̄t) [5] and ωj = ω̄ + δωj . Differentiating one finds

ẋj = −iω̄aj exp(−iω̄t) + ȧj exp(−iω̄t), (3)

ẍj = −ω̄2aj exp(−iω̄t)− 2iω̄ȧj exp(−iω̄t) + äj exp(−iω̄t). (4)

Make the single sideband approximation and neglect the last terms on the right in (3) and (4). Cancelling the fast
term, equation (1) becomes

ȧj + iδωjaj ≈
in(t) exp(iω̄t)

2ω̄
+ (α− iΩ)ā ≈ ñ(t) + (α− iΩ)ā, (5)

where ñ is the noise in the sideband. These approximations are very good for any frequency shifts and spreads
obtainable in a synchrotron. Multiply by the integrating factor exp(iδωjt), making the left side a perfect differential,
and integrate. This results in

aj(t)− aj(0)e− iδωjt =

t∫
0

dt1e
iδωj(t1 − t) [ñ(t1) + (α− iΩ)ā(t1)] . (6)



2

Next average the equation over j

ā(t)− 1

N

N∑
j=1

aj(0)e− iδωjt =

t∫
0

dt1 [ñ(t1) + (α− iΩ)ā(t1)]
1

N

N∑
j=1

eiδωj(t1 − t). (7)

Approximate the finite average on the right with an expectation value over a continuous distribution. Consider long
term behavior so the second term on the left is negligible. Assume a Lorentzian frequency distribution

1

N

N∑
j=1

eiδωjτ ≈ exp(−β|τ |). (8)

Inserting this one finds

ā(t) =

t∫
0

dt1e
β(t1 − t) [ñ(t1) + (α− iΩ)ā(t1)] . (9)

Differentiating (9) with respect to time

˙̄a = ñ+ (α− iΩ)ā− β
t∫

0

dt1e
β(t1 − t) [ñ(t1) + (α− iΩ)ā(t1)] = ñ+ (α− iΩ)ā− βā, (10)

where the last equality follows from substituting (9). Using similar techniques

ā(t) = ā(0)e(α− β − iΩ)t +

t∫
0

dt1e
+ (α− β − iΩ)(t− t1)ñ(t1). (11)

This expression for ā(t) can now be used in equation (6). Terms that do not affect leading order behavior are dropped.
To calculate emittance growth consider the expectation value

〈|aj(t)|2〉 =

〈 t∫
0

dt1e
iδωj(t1 − t) [ñ(t1) + (α− iΩ)ā(t1)]

t∫
0

dt2e
− iδωj(t2 − t) [ñ∗(t2) + (α+ iΩ)ā∗(t2)]

〉
(12)

=

t∫
0

dt1

t∫
0

dt2
[
〈ñ(t1)ñ∗(t2)〉+ (α2 + Ω2)〈ā(t1)ā∗(t2)〉+ 2Re〈(α− iΩ)ā(t1)ñ∗(t2)〉

]
e− β|t1 − t2| (13)

Now assume white noise so that

〈ñ(t1)ñ∗(t2)〉 = σ2δ(t1 − t2). (14)

Then

〈ā(t1)ā∗(t2)〉 =

t1∫
0

dt′1e
(α− β − iΩ)(t1 − t′1)

t2∫
0

dt′2e
(α− β + iΩ)(t2 − t′2)σ2δ(t′1 − t′2) (15)

=

min(t1,t2)∫
0

dt′1e
(α− β − iΩ)(t1 − t′1)e(α− β + iΩ)(t2 − t′1)σ2 (16)

=
σ2

2(β − α)
exp[(α− β)|t1 − t2| − iΩ(t1 − t2)], (17)

where we assumed (β − α) min(t1, t2) >> 1 so that the terms at t′1 = 0 can be neglected.
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Finally

〈ā(t1)ñ∗(t2)〉 = σ2

t1∫
0

dt′1e
(α− 2β − iΩ)(t1 − t′1)δ(t2 − t′1) (18)

= σ2H(t1 − t2) exp[(α− β − iΩ)(t1 − t2)] (19)

where H(t) is the Heaviside function. Inserting (14), (17) and (19) in (13) results in an integral of the form

t∫
0

dt1

t∫
0

dt2f(t1 − t2) =

t∫
−t

(t− |τ |)f(τ)dτ ≈ t
∞∫
−∞

f(τ).

Using the expression on the right and doing some algebra one finds

〈|aj(t)|2〉 = σ2t
β

β − α
. (20)

The beam goes unstable as α approaches β and the growth rate diverges as the threshold is approached. Direct
simulations have been performed which confirm this result.

A BETTER MODEL

The lack of dependence on Ω in equation (20) is due to the long tails of the Lorentzian tune distribution. This can
be partially remedied by going back to equation (7) and taking

1

N

N∑
j=1

eiδωjτ ≈W1 exp(−β1|τ |)−W2 exp(−β2|τ |), (21)

with W1 −W2 = 1 and W1β1 = W2β2. This corresponds to a frequency distribution of

p(δω) =
β1β2(β1 + β2)

π(β2
1 + δω2)(β2

2 + δω2)
. (22)

This distribution has a finite standard deviation and should be more physical. Again the focus will be on long term
behavior so we will set all initial amplitudes to zero. Equation (9) becomes

ā(t) =

t∫
0

dt1

(
W1e

β1(t1 − t) −W2e
β2(t1 − t)

)
[ñ(t1) + (α− iΩ)ā(t1)] . (23)

Differentiating with respect to t

˙̄a(t) = (W1 −W2) [ñ(t) + (α− iΩ)ā(t)]− β1W1

t∫
0

dt1

(
eβ1(t1 − t) − eβ2(t1 − t)

)
[ñ(t1) + (α− iΩ)ā(t1)] . (24)

Where we have used β1W1 = β2W2. Differentiate again

¨̄a(t) = (W1 −W2)
[

˙̃n(t) + (α− iΩ) ˙̄a(t)
]

+ β1W1

t∫
0

dt1

(
β1e

β1(t1 − t) − β2eβ2(t1 − t)
)

[ñ(t1) + (α− iΩ)ā(t1)] . (25)

Use combinations of ¨̄a+ β1 ˙̄a and ¨̄a+ β2 ˙̄a to eliminate the instances of ā within the integrals to obtain

¨̄a+ (β2 + β1 − α+ iΩ) ˙̄a+ [β1β2 − (α− iΩ)(β1 + β2)] ā = (β1 + β2)ñ+ ˙̃n (26)
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While time derivatives of the noise may look singular, remember we are working within a single betatron sideband so
everything is smooth. The white noise correlation in equation (14) was an approximation.

Let the homogeneous solutions of equation (26) be exp(λ1t) and exp(λ2t). The Green’s function is then

G(t) = H(t)
exp(λ1t)− exp(λ2t)

λ1 − λ2
. (27)

And

ā(t) =

t∫
0

G(t− t1)
[
(β1 + β2)ñ(t1) + ˙̃n(t1)

]
dt1

=

t∫
0

ñ(t1)
[
(β1 + β2)G(t− t1) + Ġ(t− t1)

]
dt1 + ñ(0)G(t). (28)

The surface term ñ(0)G(t) will not influence long term behavior and is dropped. Equation (12) becomes

〈|aj(t)|2〉 =

t∫
0

dt1

t∫
0

dt2
[
〈ñ(t1)ñ∗(t2)〉+ (α2 + Ω2)〈ā(t1)ā∗(t2)〉+ 2Re〈(α− iΩ)ā(t1)ñ∗(t2)〉

]
(
W1e

− β1|t1 − t2| −W2e
− β2|t1 − t2|

)

=

t∫
0

dt1

t∫
0

dt2 [Inn(t1, t2) + Iaa(t1, t2) + Ina(t1, t2)]

(
W1e

− β1|t1 − t2| −W2e
− β2|t1 − t2|

)
= 〈|aj(t)|2〉nn + 〈|aj(t)|2〉aa + 〈|aj(t)|2〉na (29)

As before we take

Inn(t1, t2) = σ2δ(t1 − t2). (30)

So 〈|aj(t)|2〉nn = σ2t.
Proceeding one finds

Iaa(t1, t2) = (α2 + Ω2) < ā(t1)ā∗(t2) >

≈ (α2 + Ω2)σ2

∞∫
−∞

dsĠ(t1 − t2 + s)Ġ∗(s) + (β1 + β2)2G(t1 − t2 + s)G∗(s) (31)

where the approximation is Re(λ(t1 + t2)� 1, which always holds asymptotically. The integrals are elementary but
tedious. The final result is

〈|aj(t)|2〉aa
(α2 + Ω2)σ2t

=
|λ1|2 + (β1 + β2)2

|λ1 − λ2|2

[
W1

β1 − λ1
+

W1

β1 − λ∗1
− W2

β2 − λ1
− W2

β2 − λ∗1

]
−λ
∗
1λ2 + (β1 + β2)2

|λ1 − λ2|2

[
W1

β1 − λ2
+

W1

β1 − λ∗1
− W2

β2 − λ2
− W2

β2 − λ∗1

]
−λ1λ

∗
2 + (β1 + β2)2

|λ1 − λ2|2

[
W1

β1 − λ∗2
+

W1

β1 − λ1
− W2

β2 − λ∗2
− W2

β2 − λ1

]
+
|λ2|2 + (β1 + β2)2

|λ1 − λ2|2

[
W1

β1 − λ2
+

W1

β1 − λ∗2
− W2

β2 − λ2
− W2

β2 − λ∗2

]
. (32)

The last term is 〈|aj(t)|2〉na = U + U∗ with

U =
(α− iΩ)σ2t

λ1 − λ2

[
W1(β1 + β2 + λ1)

β1 − λ1
− W1(β1 + β2 + λ2)

β1 − λ2
− W2(β1 + β2 + λ1)

β2 − λ1
+
W2(β1 + β2 + λ2)

β2 − λ2

]
. (33)
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FIG. 1: Relative emittance growth rate versus resistive part of the coherent tune shift for β2 = 2β1 and various values of Ω.
The solid lines are from equation 29 normalized to the single particle growth rate. The dots are direct simulations for the same
parameters.

PARABOLIC DISTRIBUTION

Consider the parabolic frequency distribution

p(δω) =
3(β2 − δω2)

4β3
H(β − |δω|). (34)

Equation (1) has been simulated using this distribution and results are shown in Table 1. The statistical errors in the
table are estimated at a few percent. Consider column 1, with α/β = −0.25. For this case increasing Ω reduces the
growth rate. This also holds for column 2. For column 3, with α/β = +0.1, increasing Ω causes the growth rate to
increase.

TABLE I: Values of < |aj(t)|2 > /σ2t for various collective coeffcients.

α/β → -0.25 -0.1 0.1 0.25

Ω/β ↓
0.0 0.607 0.950 1.35 2.52

0.5 0.465 0.720 3.44 ∞
1.0 0.193 0.295 ∞ ∞
1.5 0.109 0.112 ∞ ∞

CONCLUSIONS

The effect of coherent forces on noise driven emittance growth has been considered for 3 cases. For the Lorentzian
tune distribution Ω had no effect. For the dual Lorentizian distribution Ω was destabilizing for positive α. When
α < 0 the analytic formula shows some reduction in growth rate with Ω. For a parabolic distribution with α < 0,
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increasing Ω reduced growth rates. When α > 0 the growth rate increased with Ω. In summary, an adequate damper
leads to growth rate reduction. The impact of Ω is somewhat weaker but can be beneficial when α < 0.
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