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Abstract 

 The Electron-Ion Collider (EIC) is planned to be built 
upon the Relativistic Heavy Ion Collider (RHIC), which 

vacuum chamber will need to be upgraded to host the EIC 
hadron beams. For the beam pipe section running through 
the RHIC superconducting (SC) magnets, the baseline is to 
insert a screen that will get cooled by thermal contact to the 
4.55 K beam pipe of RHIC. Knowing the material proper-
ties of the cold mass is thus crucial to understand which is 

the final temperature that the screen and the superconduct-
ing coils in the magnets will reach during the passage of 
the EIC beams. The thermal conductivities of two insula-
tion materials in the RHIC superconducting magnets and a 
reference material were measured at cryogenic tempera-
tures at the Magnet Science and Technology division of the 

National High Magnetic Field Laboratory (NHMFL). The 
measurements were performed in a Quantum Design phys-
ical property measurement system. This report explains the 
motivation behind this work and summarizes the measure-
ment method and results.  

MOTIVATION 

 The Electron-Ion Collider (EIC) will be built upon the 

Relativistic Heavy Ion Collider (RHIC) of Brookhaven 
National Laboratory (BNL) [1]. The vacuum chamber of 
RHIC was not designed to host the EIC hadron beams and 
will need to be updated to show a lower resistive-wall im-
pedance and suppress electron cloud. For the cold bore or 
beam pipe running through the RHIC superconducting 

magnets, the baseline solution is to insert a screen that will 
be passively cooled by thermal contact to the 4.55 K beam 
pipe [2].  

 
Knowing the cryogenic thermal properties of the electri-

cal insulators in the RHIC superconducting magnets is cru-

cial to understand the operational temperature of the screen 
– which determines the resistive-wall heating and the vac-
uum level attained in the vacuum chamber – and the ex-
pected temperature reached at the superconducting coils to 
identify if cooling is sufficient to prevent magnet quench 
[3]. The electrical insulators are ULTEM® 6200 and RX® 

630.  Figure 1 shows the cross section of the RHIC arc di-
pole (superconducting) magnet and the location of these 
two electrical insulators.  

 
 

 

 

Figure 1: Cross section of RHIC arc dipole magnet. 

TEST METHOD 

 The measurements were performed in a physical prop-
erty measurement system (PPMS) (Fig. 1(a)) which is 
equipped with the thermal transport option. See reference 
[4] for the detailed description of the measurement method. 
The ULTEM-6200 and RX-630 materials were received 
from BNL; the cast Nylon-6 material were purchased from 

McMaster Carr. They were machined to a size of approxi-
mately 2 x 4 x 10 mm3. The exact size of each sample was 
measured by a digital calliper. ECCOBOND 286 thermally 
conductive epoxy (Henkel Loctite) was used to attach the 
leads to the samples in a four-leads configuration. (Fig. 
1(b)). The distance between two thermometer leads was 

measured by the Nikon NEXIV measuring microscope. 
 
The thermal conductivity κ was measured at different 

temperatures in the steady-state mode (single mode). In 
this mode, after a propriate level of heating power was 
turned on, the system waited for the sample to reach steady 

state defined as stability dT/T < 0.1%. Once the steady state 
was reached, the temperature difference between the hot 
and the cold thermometer was measured and used to calcu-
late κ.  

 

_____________________________________  
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Fig.1 (a) The Quantum Design PPMS system. (b) The ther-
mal conductivity measurement puck with a RX-630 sam-

ple. Two temperature sensors and a heater can be seen at-
tached to the leads that were glued to the sample by EC-

CONBOND 286 thermally conductive epoxy. 

TEST RESULTS 

The thermal conductivity results are tabulated in Table I 
and plotted in Fig. 1 and Fig. 2. As shown in Fig. 1, the 
measured κ values of two Nylon-6 samples are consistent 

with one another, but slightly higher than those in Martelli 
paper [5]. This is likely due to the variations in the Nylon 
material.  

 
The systematic error estimation in a thermal conductiv-

ity measurement is rather complex. The random measure-

ment error comes mainly from the uncertainty in the meas-
urement of the distance between two thermometers, as well 
as the uncertainty in the radiation heat losses. Although the 
microscope allows us to measure distance more accurately 
than a calliper, the relatively large size of the thermal leads 
(width~0.6 mm) and the epoxy used to attach the leads in-

evitably introduces significant uncertainty. It is advised 
that the data presented in the report are used with caution 
within an uncertainty of 10%. 

 
 

 

Fig. 1. Nylon-6 data, in comparison with those in Martelli 

paper [5]. 

 

Fig. 2. κ vs. T of ULTEM-6200 and RX-630. Nylon-6 data 

are also presented for comparison. 
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Table 1: Thermal conductivity of Nylon-6, ULTEM-6200 

and RX-630 samples 

Nylon-6 

Sample 1  Sample 2 

T (K)  κ (W/K-m) T (K)  κ (W/K-m) 

4.187 0.0147 4.350 0.0154 

6.099 0.0228 6.206 0.0228 

8.058  0.0327  8.172  0.0321  

10.031  0.0433  10.129  0.0424  

12.055  0.0557  12.103  0.0537  

14.042  0.0676  14.082  0.0652  

16.037  0.0800  16.072  0.0764  

18.029  0.0923  18.060  0.0883  

20.031  0.103  20.056  0.0995  

RX-630  

Sample 1  Sample 2  

T (K)  κ (W/K-m) T (K)  κ (W/K-m) 

3.617  0.0427  3.629  0.0430  

4.101  0.0491  4.109  0.0493  

4.580  0.0551  4.589  0.0551  

5.079  0.0608  5.086  0.0609  

5.568  0.0659  5.575  0.0660  

6.058  0.0720  6.066  0.0713  

ULTEM-6200  

Sample 1  Sample 2  

T (K)  κ (W/K-m) T (K)  κ (W/K-m) 

4.085  0.0272  4.155  0.0273  

6.058  0.0328  6.116  0.0326  

8.076  0.0390  8.126  0.0384  

10.064  0.0449  10.107  0.0443  

12.056  0.0510  12.094  0.0506  

14.046  0.0563  14.079  0.0564  

16.042  0.0611  16.067  0.0621  

18.022  0.0667  18.065  0.0658  
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