

BNL-222261-2021-TECH

Booster Technical Note No. 190 (Addendum)

Booster dipole production

R. Thern,

April 1994

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

BOOSTER DIPOLE PRODUCTION MEASUREMENTS

R. Thern May 20, 1994

The note describing the Booster dipole measurements was published in 1991 without a data sheet. This addendum is being published to add the data sheet.

In addition, the table of systematic and random errors in the original note was wrong. The error data were originally in centimeters and were converted to meters in an attempt to use a standard set of units. Unfortunately, the conversion went the wrong direction and the error was not noticed because of the unfamiliar units - the errors given are appropriate for an accelerator with a good field aperture of several hundred meters instead of several centimeters! (The systematic b₃ and a₃ tolerance values had an additional factor-of-10 typographical error.) The corrected table is included here, using both units.

	Systema	atic Errors (m	eters)	Random Errors (meters)			
	Tolerance	Meas 2600 A	ured 5000 A	Tolerance	Meas 2600 A		
B_0				1.5E-04	1.5E-04	3.0E-04	
b_1				2.0E-03	9.1E-04	8.6E-04	
b_2	1.0E+00	-2.4E-01	-6.4E-01	5.0E-02	8.9E-03	8.3E-03	
b ₃	1.5E+01	2.1E-01	5.3E-01	7.0E+00	1.4E-01	1.3E-01	
b_4	1.0E+02	-9.8E+00	-8.7E+01	1.0E+02	1.1E+00	1.1E+00	
b ₅	3.0E+03	5.5E+01	1.2E+02	1.0E+03	5.9E+01	5.4E+01	
b ₆	1.0E+04	-2.4E+01	-9.1E+03	5.0E+04	5.6E+02	4.9E+02	
a_0				1.5E-04	4.9E-05	5.4E-05	
a ₁	1.0E-03	2.4E-04	6.0E-04	2.0E-03	4.0E-04	4.8E-04	
a_2	1.0E+00	-7.5E-04	-1.4E-04	5.0E-02	4.2E-03	5.6E-03	
a_3	1.5E+01	1.1E-01	1.5E-01	7.0E+00	7.9E-02	9.4E-02	
a ₄	1.0E+02	1.4E-01	4.7E-01	1.0E+02	8.8E-01	7.8E-01	
a ₅	3.0E+03	-2.2E+01	-5.3E+00	1.0E+03	2.1E+01	1.9E+01	
a ₆	1.0E+04	8.7E+01	-6.1E+01	5.0E+04	3.2E+02	3.2E+02	

Table 2a. Systematic and random errors (rms), in units of m^{-n} . The *systematic error* is the average over all the magnets, and the *random error* is the standard deviation of the same set. The errors for B_0 have been estimated as described in the text.

	Systematic Errors (cm)			Random Errors (cm)			
	Tolerance	Meas 2600 A	ured 5000 A	Tolerance	Meas 2600 A		
B_0				1.5E-04	1.5E-04	3.0E-04	
b ₁				2.0E-05	9.1E-06	8.6E-06	
b_2	1.0E-04	-2.4E-05	-6.4E-05	5.0E-06	8.9E-07	8.3E-07	
b_3	1.5E-05	2.1E-07	5.3E-07	7.0E-06	1.4E-07	1.3E-07	
b_4	1.0E-06	-9.8E-08	-8.7E-07	1.0E-06	1.1E-08	1.1E-08	
b ₅	3.0E-07	5.5E-09	1.2E-08	1.0E-07	5.9E-09	5.4E-09	
b ₆	1.0E-08	-2.4E-11	-9.1E-09	5.0E-08	5.6E-10	4.9E-10	
a ₀				1.5E-04	4.9E-05	5.4E-05	
a ₁	1.0E-05	2.4E-06	6.0E-06	2.0E-05	4.0E-06	4.8E-06	
a_2	1.0E-04	-7.5E-08	-1.4E-08	5.0E-06	4.2E-07	5.6E-07	
a ₃	1.5E-05	1.1E-07	1.5E-07	7.0E-06	7.9E-08	9.4E-08	
a ₄	1.0E-06	1.4E-09	4.7E-09	1.0E-06	8.8E-09	7.8E-09	
a ₅	3.0E-07	-2.2E-09	-5.3E-10	1.0E-07	2.1E-09	1.9E-09	
a ₆	1.0E-08	8.7E-11	-6.1E-11	5.0E-08	3.2E-10	3.2E-10	

Table 2b. Systematic and random errors (rms), in units of cm $^{-n}$. The *systematic error* is the average over all the magnets, and the *random error* is the standard deviation of the same set. The errors for B_0 have been estimated as described in the text.

PARAMETER SHEET FOR BOOSTER MAIN DIPOLE

Date: 11/6/92

BMD (Booster Main Dipole)

Prototype Name Magnet Class Number of Magnets

Dipole 36 plus 3

CORE					
Lamination Length (arc)	91.238	in			
Tolerance	0.010	in			
Lamination Length (chord)	91.130	in			
Overall Length					
Aperture Shape	Rectangular				
Gap Height	3.250	in	82.55	mm	
Pole Width	10.000	in	254.00	mm	
Core Height	23.75	in	603.25	mm	
Core Width	30.00	in	762.00	mm	_
Wedge Angle of Magnet	9.656	degree			
Weight of Dipole	16765	lb			
Weight of Dipole and Base	20465	lb			
LAMINATIONS		-			
Material	M45 Si Steel, 24 C	Ta .			_
Coating	C4				+-
Coating Thickness					
Overall Thickness				ļ	
END MODULE BLOCK			<u> </u>		
Number per Magnet	2				
Laminations (approx)	176				-
Weight before wedging	858.1	lb			
Tolerance	0.5	lb			-
CENTER MODULE BLOCK	0.5	10			
					_
Number per Magnet	7				4
Laminations (approx) Weight before wedging	356	11			
Tolerance	1726.4	lb			
	0.5	lb			1
VACUUM PIPE					
Material	Iconel 625				hch
Height - Outside	2.752	in	69.9	mm	hch
Width - Outside	6.496	in	165	mm	hch
Wall Thickness	0.079	in	2	mm	hch
Folerance Specified	0.002	in	0.04	mm	hch
Folerance Measured - 95%	0.002	in	0.05	mm	hch
Half Height - Inside	1.299	in	33.0	mm	hch
Half Width - Inside	3.169	in	80.5	mm	hch
Resitivity			1.29E-06	Ohm-cm	hch
Tol. Specified			2.0E-08	Ohm-cm	hch
Fol. Measured - 80%			2.0E-08	Ohm-cm	hch

MAIN COIL				
COIL				
Turns per Pole	8	V.		
Poles per Magnet	2			
Resistance per Magnet	0.0007453	Ohm		
Inductance per Magnet - DC	0.00280	Н		
Inductance per Magnet - 1 kHz	0.00185	H		
CONDUCTOR				
Material	OFHC Copper			
Shape	Rectangular			
Width	0.965	in	24.51	mm
Height	2.000	in	50.80	mm
Cooling Hole Dia.	0.437	in	11.10	mm
Area	1.771	in ²	1143	mm ²
Length per Pole	1803	in	45796	mm
Length per Magnet	3606	in	91592	mm
INSULATION				
Material	Epoxy-Fiberglas			
Thickness, turn-turn	0.04	in	1.0	mm
Thickness, ground	0.14	in	3.6	mm
Tolerance				
Ground Test	12500	V		
Impulse Test				
COOLING				
Circuits per Magnet	2			
Flow Rate per Magnet	6.1 ?	GPM		
Input Pressure				
Temp Rise @ Ramp to Imax				
CURRENT				
I-max (PS Limit)	5700	A		
Current Density @ Imax	3218	A / in ²	4.99	A / mm ²
DC Power @ Imax	24215	W		
Stored Energy @ Imax	45486	J		

COIL				
Turns per Pole	1			
Poles per Magnet	2			-
Resistance per Magnet		Ohm		
Inductance per Magnet - DC		Н		
Inductance per Magnet - 1 kHz		Н		
CONDUCTOR				
Material	OFHC Copper			
Shape	Rectangular		-	
Width	3.000	in	76.20	mm
Height	0.094	in	2.39	mm
Cooling Hole Dia.	none	in	0.00	mm
Area	0.282	in ²	182	mm ²
Length per Pole	217.8	in	5532	mm
Length per Magnet	435.6	in	11064	mm
INSULATION				
Material	Epoxy-Fiberglas			
Thickness, turn-turn		in		mm
Thickness, ground		in		mm
Tolerance				
Ground Test		V		
Impulse Test				
COOLING				
Circuits per Magnet	none			
Flow Rate per Magnet				
Input Pressure				
Temp Rise @ Ramp to Imax				
CURRENT				
I-max (PS Limit)		A		
Current Density @ Imax		A / in ²	0.00	A/mm ²
DC Power @ Imax		W		
Stored Energy @ Imax		J		

COIL				
Turns per Pole	1			
Poles per Magnet	2			
Resistance per Magnet		Ohm		
Inductance per Magnet - DC		Н		
Inductance per Magnet - 1 kHz		Н		
CONDUCTOR				
Material	Copper			
Shape	#12 Wire			
Width		in		mm
Height		in		mm
Cooling Hole Dia.	none	in		mm
Area		in ²		mm ²
Length per Pole	219	in	5563	mm
Length per Magnet	438	in	11125	mm
INSULATION				
Material				
Thickness, turn-turn		in		mm
Thickness, ground		in		mm
Tolerance				
Ground Test		V		
Impulse Test				
USAGE OF COILS				
Eddy Current Corr. Driver	2	Coils		
Monitor	1	Coil		
Spare	2	Coils		
CURRENT				
I-max (PS Limit)		A		
Current Density @ Imax		A / in ²		A/mm ²
DC Power @ Imax		W		
Stored Energy @ Imax		J		

EXCITATION CURVE		Unit	Ref
B * L-eff @ I=0	0.0018755	T-m	ret
B * L-eff / I @ I=200	0.0005921	T-m / A	ret
B * L-eff / I @ I=600	0.0005887	T-m / A	ret
B * L-eff / I @ I=2600	0.0005881	T-m/A	ret
B * L-eff / I @ I=5000	0.0005666	T-m/A	ret
B * L-eff / I @ I=5700		T-m/A	
Saturation, 5000/2600	3.65%		
B @ I=0	0.0007620	T	ret
B / I @ I=200	0.0002445	T/A	ret
B / I @ I=600	0.0002431	T/A	ret
B / I @ I=2600	0.0002430	T/A	ret
B / I @ I=5000	0.0002366	T/A	ret
B / I @ I=5700		T/A	
Saturation, 5000/2600	2.66%		
L-eff @ I=0	2.4613	m	ret
L-eff @ I=200	2.4214	m	ret
L-eff @ I=600	2.4216	m	ret
L-eff @ I=2600	2.4200	m	ret
L-eff @ I=5000	2.3952	m	ret

	LIMITS	MEASURED		UNITS	REF
		@ 2600A	@5000A		
Bn / B0, n = 1				cm ⁻¹	ar,re
Bn / B0, n = 2	1.0E-04	-2.4E-05	-6.4E-05	cm ⁻²	ar,re
Bn / B0, n = 3	1.5E-05	2.1E-07	5.3E-07	cm ⁻³	ar,re
Bn / B0, n = 4	1.0E-06	-9.8E-08	-8.7E-07	cm ⁻⁴	ar,re
Bn / B0, $n = 5$	3.0E-07	5.5E-09	1.2E-08	cm ⁻⁵	ar,re
Bn / B0, n = 6	1.0E-08	-2.4E-11	-9.1E-09	cm ⁻⁶	ar,re
An / B0, n = 1	1.0E-05	2.4E-06	6.0E-06	cm ⁻¹	ar,re
An / B0, n = 2	1.0E-04	-7.5E-08	-1.4E-08	cm ⁻²	ar,re
An / B0, n = 3	1.5E-05	1.1E-07	1.5E-07	cm ⁻³	ar,re
An / B0, n = 4	1.0E-06	1.4E-09	4.7E-09	cm ⁻⁴	ar,re
An / B0, n = 5	3.0E-07	-2.3E-09	-5.3E-10	cm ⁻⁵	ar,re
An / B0, n = 6	1.0E-08	8.7E-11	-6.1E-11	cm ⁻⁶	ar,re
RANDOM ERRORS					
	LIMITS	MEASURED			
		@ 2600A	@5000A		
B0	1.5E-04	1.5E-04	3.0E-04		
Bn / B0, n = 1	2.0E-05	9.1E-06	8.6E-06	cm ⁻¹	ar,re
Bn / B0, n = 2	5.0E-06	8.9E-07	8.3E-07	cm ⁻²	ar,re
Bn / B0, n = 3	7.0E-06	1.4E-07	1.3E-07	cm ⁻³	ar,re
Bn / B0, n = 4	1.0E-06	1.1E-08	1.1E-08	cm ⁻⁴	ar,re
Bn / B0, n = 5	1.0E-07	5.9E-09	5.4E-09	cm ⁻⁵	ar,re
Bn / B0, n = 6	5.0E-08	5.6E-10	4.9E-10	cm ⁻⁶	ar,re
An / B0, n = 0	1.5E-04	4.9E-05	5.4E-05		
An / B0, n = 1	2.0E-05	4.0E-06	4.8E-06	cm ⁻¹	ar,re
1 70 0	5.0E-06	4.2E-07	5.6E-07	cm ⁻²	ar,re
An / B0, n = 2		7.9E-08	9.4E-08	cm ⁻³	ar,re
	7.0E-06	7.70 00			
An / B0, n = 3	7.0E-06 1.0E-06	8.8E-09	7.8E-09	cm ⁻⁴	ar,re
An / B0, n = 2 An / B0, n = 3 An / B0, n = 4 An / B0, n = 5		+	7.8E-09 1.9E-09	cm ⁻⁴ cm ⁻⁵	ar,re

REFERENCES

hch: H. C. Hseuh ar: A. Rugierro as: A. Soukas ret: R. Thern