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In the RHIC Polarized Atomic Hydrogen Gas Jet Target (HJET) measurements of the proton-
proton analyzing power AN(t), absorptive corrections to the electromagnetic form factor were not
considered in the data analysis. Recently, these corrections were evaluated theoretically. However,
the results were presented in form of integral expressions which were calculated numerically. In
this note, the expressions are simplified to make them more suitable for the HJET data analysis.
Possible effect of the absorptive corrections in the AN(t) measurement is discussed.

I. INTRODUCTION

For RHIC spin program, theoretical analysis of the
high energy forward elastic proton-proton analyzing
power AN(t), developed in [1, 2], was systematized in
Ref. [3]. The expression for

AN(t) =

√
−t
mp
×

[κp(1−δCρ)−2(I5−δCR5)] tct −2(R5+ ρI5)(
tc
t

)2 − 2 (ρ+ δC) tct + 1 + ρ2
, (1)

became a commonly used standard which was referred to
in the development of the RHIC proton beam polarime-
try [4] and in the experimental studies of AN(t) [5, 6].
In Eq. (1), κp = µp−1 = 1.793 is anomalous magnetic
of a proton, ρ = −0.079 is forward real/imaginary ra-
tio, δC ∼ 0.02 is Coulomb phase, and tc = −8πα/σtot =
−1.86×10−3 GeV2 is expressed via total pp cross section.
The numerical estimates are given for an ELab = 100 GeV
proton beam.

Experimental precision achieved at the HJET [4, 6] re-
quired a consideration of some small corrections [7] to
Eq. (1) which were neglected in Ref. [3].

Since absorptive corrections for non-flip and spin-flip
electromagnetic form factors of a proton were unknown,
the HJET measurements of r5 = R5 + iI5 may need to
be adjusted and, consequently, results of the Regge fit
should be revisited.

Recently, theoretical evaluation of the absorptive cor-
rection was done [8]. However, the results were presented
as integrals, which were calculated numerically. Thus, it
is not so easy to adapt these calculations for analysis of
an experimental data.

Here, expressions for absorptive correction given in
Ref. [8] will be reviewed with the goal to interpret them
to a form convenient for the HJET data analysis. Sim-
ilar study has already been done for Coulomb phase in
the spin-flip amplitude [9]. Several typos was found in
expressions given in Ref. [8].

II. ABSORPTIVE CORRECTION FOR THE
NON-FLIP pp AMPLITUDE

Omitting terms of about O(α2), Eqs. (17,19,24,25) in
Ref. [8] can be presented in the following “standard”, i.e.
normalized by factor 1/2π, Fourier integrals for electro-
magnetic (C)

φem+ (qT ) =
i

2π

∫
d2b ei~qT

~b
[
1− eiχ

nf
C(b)

]
≈ 1

2π

∫
d2b ei~qT

~b
[
χnf
C + iχnf

C χ
nf
C /2

]
(2)

χnf
C (b) =

−α
2π

∫
d2qT

F 2
1 (q2T )

q2T + λ2
e−i~qT

~b

→ 1

2π

∫
d2qT e

−i~qT~bfC(qT ) (3)

and for hadronic, (N)+(NC),

φh+(qT ) =
i

2π

∫
d2b ei~qT

~bγnfN (b)eiχ
nf
C(b)

≈ 1

2π

∫
d2b ei~qT

~b
[
(iγnfN ) + i(iγnfN )χnf

C

]
(4)

iγnfN (b) = i× i

2π

∫
d2qTF

nf
h (q2T )e−i~qT

~b (5)

=
1

2π

∫
d2qT e

−i~qT~b fN (qT )] (6)

amplitudes. Blue color was used for expressions given
exactly as in [8].

Here, amplitude φ+ =φ1+φ3 is defined as sum of two
non-flip helicity amplitudes [3]. Therefore [10], the elec-
tromagnetic amplitude in Born approximation is

fC(qT ) =
−2α

q2T + λ2
e−B̃q

2
T /2, B̃ =

2

3
r2E = 12.1 GeV2,

(7)
where rE=0.841 fm [11] is rms charge radius of a proton.
Using the same normalization,

fN (qT ) =
2α

q2c
(i+ ρ)e−Bq

2
T /2 (8)

= −(i+ ρ)fC(qT )
q2T
q2c
e(B̃−B)q2T /2 (9)
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where [3]

q2c = −tc = 8πα/σtot. (10)

For 100 GeV proton beam, B = 11.2 GeV−2[12]. Eq. (8)
leads to

iγnfN (b) = (i+ ρ)
σtot
4πB

e−b
2/2B . (11)

Born amplitude fC(qT ), implicitly defined in Eq. (19)
of [8], is factor 2 smaller than given in Ref. [10]. It should
be considered as typo.

For the pp scattering, the absorptive corrections can
be approximated [13, 14] by factor

S(b) = 1− σtot
4πB

e−b
2/2B = 1− γN (b, ρ=0) (12)

in the impact space. For used here definition of γN (b)
[Eq. (11)], Eq. (30) in [8] can be written as

φ̃em+ (qT ) = IC(qT )+ICC(qT )+ICN(qT )+ICCN(qT ), (13)

where, using results of Ref. [10] and assuming ρ ==0

IC(qT ) =
1

2π

∫
d2b ei~qT

~bχnf
C = fC(qT ), (14)

ICC(qT ) =
i

4π

∫
d2b ei~qT

~b χnf
C χ

nf
C

= ifC(qT )ΦC(qT ), (15)

ΦC(qT ) = α

[
ln
λ2

q2T
+O(B̃q2T )

]
, (16)

ICN(qT ) =
i

2π

∫
d2b ei~qT

~bχnf
C iγ

nf
N (17)

= ifN (qT )
−α
π

∫
d2q1

q21 + λ2

× exp
[
−(B + B̃)q21/2 +B~q1 ~qT

]
(18)

= ifN (qT )ΦNC(qT ), (19)

ΦNC(qT ) =α

[
ln
λ2

q2T
+ln

(B+B̃)q2T
2

+γ+O(Bq2T )

]
, (20)

γ = 0.5772... (Euler’s constant), (21)

ICCN(qT ) =
−1

4π

∫
d2b ei~qT

~bχnf
C χ

nf
C iγ

nf
N (22)

Using only the first three terms in sum (13) and sub-
stituting fN (t)≈−ifC(t) t/tc (9), one readily finds

φ̃em+ (t) = fC(t)× [1 + iΦC(t) + ΦNC(t) t/tc] (23)

In this approach, an absorptive correction a to the elec-
tromagnetic form factor,

exp (B̃t/2)→ exp (B̃t/2 + a t/tc), (24)

can be evaluated as

anf = ΦNC = α

[
ln
λ2

|tc|
+ ln

(B + B̃)|tc|
2

+γ+O(Bt)

]
.

(25)
The result logarithmically depends on photon mass λ,
but there is no dependence on t (if one neglects terms
O(αBt) in ΦNC ). In such an approximation, using

Eqs. (17,19), one finds χnf
C (b)γnfN = a2nfγ

nf
N (b) and, con-

sequently,

ICCN(qT ) = ifC(qT ) a2nf t/2tC . (26)

ICCN(qT ), which depends on the photon mass as (lnλ)2,
contributes only to phase of fC(qT ).

To summarize, we cannot conclude that photon mass
λ disappears from the expression used to calculate the
absorptive correction anf to the non-flip amplitude.

Following QED prescriptions, one can expect that con-
sideration of soft photon emission will eliminate the de-
pendence on λ in (25). If so, the dominant term in the
Coulomb-nuclear interference part of the cross-section
can be approximated as

dσCN
el (q2T ) → dσCN

el (q2T )×
[
1 +A

q2T
q2c

ln
q2max

q2min

]
(27)

Since q2min ∼ λ2 and q2max ∼ 2/(B+B̃), such an elimina-
tion of the photon mass term will result in absorptive
correction of

anf = αγ ≈ 0.004 (28)

Obviously, Eq. (27) is oversimplified. Therefore, at mini-
mum, we should use less strict estimate for anf, e.g.

|anf| . O(α). (29)

In terms of the correction to the electromagnetic slope,

B̃ → B̃+∆B̃, this estimate can be written as

|∆B̃nf| =
∣∣∣∣2anftc

∣∣∣∣ . O (σtot4π

)
≈ O

(
7 GeV−2

)
(30)

III. ABSORPTIVE CORRECTION FOR THE
SPIN-FLIP pp AMPLITUDE

Using the same approach as for the non-flip ampli-
tudes, the spin-flip ones can be presented as

φem5 (qT ) =
1

2π

∫
d2b ei~qT

~b χsf
C(b) eiχ

nf
C(b)

≈ 1

2π

∫
d2b ei~qT

~b
[
χsf
C + χsf

C iχ
nf
C

]
, (31)

χsf
C(b) =

−ακp
4πmp

∫
d2qT

F1(q2T )F2(q2T )

q2T + λ2
~qT~b

b
e−i~qT

~b

→ 1

2π

∫
d2qT e

−i~qT~bf sfC (~qT ), (32)

f sfC (~qT ) =
κp
2

(~qT~n)

mp
fC(qT , B̃

sf ) (33)
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φh5 (qT ) =
i

2π

∫
d2b ei~qT

~bγsfN (b)eiχ
nf
C(b)

≈ 1

2π

∫
d2b ei~qT

~b
[
(iγsfN ) + i(iγsfN )χnf

C

]
, (34)

iγsfN (b) = i
i

2π

∫
d2qTF

sf
h (q2T )e−i~qT

~b

=
1

2π

∫
d2qT e

−i~qT~bf sfN (~qT ), (35)

f sfN (~qT ) =
r5
i+ ρ

(~qT~n)

mp
fN (qT , B

sf ) (36)

Unit vector ~n used is perpendicular to the beam proton
momentum and spin [9]. Generally, the spin-flip slopes

B̃sf and Bsf, substituted to amplitudes (7,8), are not the

same as the non-flip ones, e.g. B̃sf =(r2E + r2M )/3, where
rM = 0.851±0.026 fm [15] is rms magnetic radius of a
proton.

Spin-flip electromagnetic amplitude φ̃em5 (qT ) intro-
duced in Eq. (31) of Ref. [8] to evaluate the absorptive
correction can be re-written as

φ̃em5 (qT ) = IsfC (qT )+IsfCC(qT )+IsfCN(qT )+IsfCCN(qT ), (37)

where, using calculations above and results of Ref. [9],

IsfC (qT ) =
1

2π

∫
d2b ei~qT

~bχsf
C = f sfC (qT ), (38)

IsfCC(qT ) =
i

2π

∫
d2b ei~qT

~b χnf
C χ

sf
C

= if sfC (qT )ΦC(qT ), (39)

IsfCN(qT ) =
i

2π

∫
d2b ei~qT

~bχsf
C iγ

nf
N (40)

≈ if sfN (qT )× αB
(
B + B̃sf

)
, (41)

IsfCCN(qT ) =
−1

2π

∫
d2b ei~qT

~bχnf
C χ

sf
C iγ

nf
N (42)

Comparing Eqs. (35) and (41), one finds χsf
C(b)γnfN (b)×

αB/
(
B+B̃sf

)
. Thus,

φ̃em5 (qT ) = fC(qT ) [1 + iΦC(qT )]

×
[
1 +

αB

B + B̃sf

t

tc

]
. (43)

Consequently, the spin-flip absorptive correction is

asf =
αB

B + B̃sf
≈ 0.003 (44)

and

∆B̃sf = 2asf/tc ≈ 3 GeV−2. (45)

IV. DISCUSSION

Absorptive corrections to the electromagnetic spin-flip
amplitude effectively change [7] real part of r5 in Eq. (1)

R5 → R5 − asf κp/2 (46)

in Eq. (1). This correction of about 3×10−3 is signifi-
cant compared to the experimental accuracy (±0.5stat ±
0.8sf)×10−3, achieved at HJET [6]. Thus, the absorptive
corrections should be applied to the already published
values of r5 as well as the Regge fit of r5(s) should be
revisited.

Absorptive correction to the non-flip amplitude does
not alter r5 in (1) [7]. However, it may bias a measured
value of ρmeas = ρ+anf. Estimate of anf, given in Eq. (29,
does not exclude that the combined fit of ρ(s) and σtot(s)
should be revisited (after precise determination of anf).
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