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Instabilities driven by the fundamental crabbing mode

M. Blaskiewicz

BNL 911B, Upton, NY 11973, USA

Instabilities driven by the fundamental mode of a crabbing cavity are discussed. For nominal pa-
rameters in the EIC it is necessary to provide strong RF feedback to reduce the apparent impedance
of this mode.

INTRODUCTION

The Electron Ion Collider (EIC) requires crab cavities to correct for crossing angle effects [1]. These cavities produce
a time varying horizontal kick that makes the collision head on in the center of mass frame of the bunches. This
results in a luminosity that is very close to the the luminosity obtained without a crossing angle. Producing the kick
requires a transverse RF field. This field requires a superconducting resonator and reasonable power levels require
loaded quality factors of order a million. This results is a very large transverse impedance for the crabbing mode.
The horizontal beta function is large and this, coupled with the large transverse impedance of the resonator can lead
to strong instabilities.

In the first section of the paper a simple model is used to describe the situation without feedback. There are large
ranges of tune leading to strong instabilities in both the electron and hadron storage rings of the EIC. These estimates
are confirmed with simulations.

In the second section, RF feedback is used to reduce the apparent impedance of the crabbing mode. Simulating
the actual feedback would require both a significant rewrite of the tracking code and a significant reduction in
computational speed. Instead, the apparent impedance is fitted using one pole filters, which allows use of the existing
simulation code.

In the third section a transverse damping system is outlined.

A SIMPLE MODEL

A simple model that captures the physics for strong instabilites can be obtained analytically. We take the transverse
wake potential of all the crab cavities to be

Wx(t) = W0 sin(ωrt) exp(−αt), (1)

where W0 = (Rx/Q)ωr > 0, α = ωr/2Q and we do not distinguish between ωr and ω̃ [2]. The variable t is the delay
between the driving and kicked particle. It is positive by causality. We use the coordinate θ to denote azimuth and
time as the evolution variable. The dipole moment of the beam is D(θ, t) = I(θ, t)x(θ, t) with I the instantaneous
current and x the instantaneous offset of the beam. We use the smooth approximation for the wake so that the
transverse force per unit charge is

(E + v ×B)x(θ, t) ≡ Ẽ(θ, t) =

∞∫
0

dτ

2πR
Wx(τ)D(θ, t− τ), (2)

where 2πR is the circumference of the accelerator. The bunches are modeled as two macroparticles separated by a
fixed delay τb. There are M bunches that fill the ring symmetrically. The situation is shown in Figure 1.

The dipole moment is

D(θ, t) = qω0(Nb/2)

M−1∑
k=0

x1,k(t)δp(θ − 2πk/M − ω0t) + x2,k(t)δp(θ − 2πk/M − ω0(t− τb)), (3)

where Nb is the number of particles per bunch, q is the ion charge, ω0 = 2πf0 is the angular revolution frequency,
and δp is the periodic delta function,

δp(x) =

∞∑
k=−∞

δ(x− 2πk) =
1

2π

∞∑
k=−∞

exp(ikx).
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FIG. 1: For the simplest model the bunches are given by two macroparticles spaced in time by τb. The ring is filled symmetrically
with M bunches and the revolution frequency is f0. The bunch spacing is tb.Each macroparticle executes betatron oscillations,
drives the wake field, and is kicked by the resulting Ẽ.

Assume a single coupled bunch mode with x1,k(t) = x̂0 exp(−2πiks/M − iΩt) with coherent frequency Ω and
coupled bunch mode s. Make the ansantz x2,k(t) = rx1,k(t) with r constant. Then

D(θ, t) = qf0(Nb/2)x̂0

∞∑
p=−∞

M−1∑
k=0

(
1 + re− ipω0τb

)
e− ip(θ − 2πk/M − ω0t)− i2πks/M − iΩt (4)

The coupled bunch mode number limits the values of p to p = nM + s with integer n.

D(θ, t) = Mqf0x̂0(Nb/2)

∞∑
n=−∞

(
1 + re− i(nM + s)ω0τb

)
e− i(nM + s)(θ − ω0t)− iΩt. (5)

The dipole moment creates a transverse wake

Ẽ(θ, t) =
Ī x̂0
4πR

∞∑
n=−∞

(
1 + re− i(nM + s)ω0τb

)
e− i(nM + s)(θ − ω0t)− iΩtW̃ (Ω− (nM + s)ω0), (6)

where Ī = qf0MNb is the DC beam current and

W̃ (ω) =

∞∫
0

eiωtWx(t)dt =
Rx
Q

ω2
r

ω2
r − ω2 − iωωr/Q

= iZx(ω), (7)

where Zx is the transverse impedance. At the macroparticles x1,k we have Ẽ1
k = Ẽ(2πk/M + ω0t, t). Similarly

Ẽ2
k = Ẽ(2πk/M − ω0τb + ω0t, t). The equations of motion are

γm
(
ẍj,k(t) + ω2

βxj,k(t)
)

= qẼjk(t) (8)

where ωβ is the unperturbed betatron frequency, γ is the Lorentz factor, and m is the mass of the ion. Equality holds
for j = 1, 2. We have ẍj,k(t) = −Ω2xj,k(t). The forces at the particles are manipulated to make them proportional to
xj,k, resulting in two dispersion relations,

ω2
β − Ω2 =

qĪ

4πγmR

∑
n

(
1 + re− i(nM + s)ω0τb

)
W̃ (Ω− (nM + s)ω0), (9)

ω2
β − Ω2 =

qĪ

4πγmR

∑
n

(
1 +

1

r
ei(nM + s)ω0τb

)
W̃ (Ω− (nM + s)ω0), (10)

where (9) pertains to x1,k. The two sums on the right must be equal, giving an equation for r.
From equation (1)

W̃ (ω) =
W0

2i

(
1

α− iω − iωr
− 1

α− iω + iωr

)
(11)
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The line width of the resonator is small compared to the bunching frequency so the sums in equations (9) and (10)
contain only two terms. We limit discussion to the mode that has betatron sidebands close to ωr. set Ω = εωβ + ∆ω
where ε = ±1. Set ωβ = mω0 + ω1 with integer m and |ω1| < ω0/2. There is no steady state beam loading on the
cavity so the resonant frequency satisfies ωr = NMω0 with integer N . Then∑

n

(
1 + re− i(nM + s)ω0τb

)
W̃ (Ω− (nM + s)ω0

≈
(

1 + rei(NM − s)ω0τb
)

iW0/2

α− iεω1 − i∆ω

−
(

1 + re− i(NM + s)ω0τb
)

iW0/2

α− iεω1 − i∆ω

≈ r sin(ωrτb)
W0/2

α− iεω1 + ∆ω
(12)

Likewise ∑
n

(
1 +

1

r
ei(nM + s)ω0τb

)
W̃ (Ω− (nM + s)ω0) ≈ −1

r
sin(ωrτb)

W0/2

α− iεω1 − i∆ω

Hence r = ε2i with ε2 = ±1.
Finally we assume the single sideband approximation with ω2

β−Ω2 ≈ −2εωβ∆ω yielding the final dispersion relation

2εωβ∆ω = − qĪ

4πγmR

iε2W0 sin(ωrτb)

α− iεω1 − i∆ω
. (13)

This is a quadratic equation in ∆ω. Define the coherent tune shift ∆Qc = ∆ω/ω0, the fractional tune ∆Qx = εω1/ω0,
α̃ = α/ω0 and

K =
Īβc(Rx/Q) sin(ωrτb)

8π(ET /q)

ωr
ω0

(14)

where the beta function at the crab cavity is βc and ET = γmc2 is the total energy per particle. With these definitions
the coherent tune shift is given by

∆Qc = −∆Qx + iα̃

2
±

√
(∆Qx + iα̃)

2 − 4K

2
(15)

In equation (14) the original analysis has been modified to make the product of the beta function and the transverse
impedance correct in the final expression. Positive values of Im(∆Qc) lead to instability.

Figure 2 shows Im(∆Qc) for some nominal parameters. Simulations using a modified version of TRANFT [3] are
compared with the formula in Figure 3. This figure also shows the result of a simulation using two, longitudinally
fixed particles per bunch with all the impedance localized in a single thin lens. The nominal horizontal tunes are 0.2
and 0.08 for protons and electrons, respectively. The large space charge tune shifts for the protons might require tunes
below 0.125 at injection. In this case no damping system can contend with such growth. The apparent impedance of
the cavity must be reduced. This is considered in the next section.

REDUCING APPARENT IMPEDANCE USING FEEDBACK

The reduction of RF impedance using feedback is a well known and powerful technique [4, 5]. This is typically
done for accelerating cavities which have only a longitudinal voltage. Crab cavities have both longitudinal and
transverse voltage and some care will be needed to keep things straight. For a pure dipole impedance the cavity has
a transverse voltage which gives a horizontal momentum kick ∆px = qVx(t)/c. Using the Panofsky-Wenzel theorem
the longitudinal voltage and kick are c∆pz = qVz(t) = −qxV̇x/c. For structures that are short compared to c/ω, Vx
is in phase with the magnetic field of the cavity and Vz is in phase with the electric field. Therefore any coupling of
Vx will typically involve Vz too. For our resonator we have

V̈x + ω2
rVx + 2αV̇x =

Rx
Q
ω2
rDT (t), (16)
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FIG. 2: Imaginary part of the tune versus fractional tune for electrons at 5 GeV and protons at 275 GeV with nominal
parameters.
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FIG. 3: Imaginary part of the tune versus fractional tune for 275 GeV protons. The red line is a simulation using two,
longitudinally fixed particles per bunch with all the transverse impedance in a single thin lens. The green line uses a modified
version of TRANFT that allows for multibunch wakes. The long range impedance is in a single thin lens. The black line is
the estimate from equation (15). The blue line is the ratio of the transverse resistance to the peak value of the transverse
resistiance.

where DT is the total dipole moment driving the cavity. To include low level drive and feedback take

DT (t) = DB(t) + x0ILL(t)− x0YopVx(t− Td), (17)
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where DB is the dipole moment from the beam, x0 is the effective offset of the coupling loop, ILL is the current
generated by the low level drive that includes a variety of multiturn feedback loops, Yop is the operator generating the
input signal from the cavity onto the feedback transmission line, and Td is the loop delay of the feedback. Assume
things vary in time as F (t) = F̂ exp(−iωt). Then

V̂x

[
−iω
ωrRx

+
Q

Rx

(
1− ω2

ω2
r

)
+ x0Ỹop(ω)eiωTd

]
= D̂b + x0ÎLL. (18)

Take x0Ỹop(ω) = −iω/(ωrReff ). On resonance this puts Reff in parallel with Rx and the differentiation is automatic
with a coupling loop. This leads to a final expression for the transverse impedance

Zx(ω) =

 ω

ωr

 1

Rx
+
eiωTd

Reff

+ i
Q

Rx

(
1− ω2

ω2
r

)
−1

. (19)

For simulation purposes the transverse wake is modeled as a sum of narrow band resonators,

Wx(t) =

K∑
k=1

Wk sin(ωkt) exp(−αt) for t > 0,

where the ωk are on a uniform grid. The Wk are real numbers found using least squares. One considers the sum

χ2(W1,W2, . . .WK) =
∑
m

∣∣∣∣∣Zx(ωm)−
K∑
k=1

Wk
ωk

i(ω2
k − ω2

m) + 2αωm

∣∣∣∣∣
2

(20)

where the ωm are on a grid in the vicinity of the resonance and we have made the same approximations as in equation
(1). The absolute value squared is just the sum of the real part squared and the imaginary part squared so equation
(20) is a multivariable quadratic form with real coefficients. There will be a unique minimum. It is found by setting
∂χ2/∂Wk = 0 for k = 1, 2, . . .K. This results in a set of K equations that are solved numerically for the Wks. The
result of fitting for a 197 MHz cavity with Td = 75/fres and Reff = 300Rx/Q is shown in Figure 4.

To use this model in multiparticle tracking simulations one obtains the dipole moment DB(t) for a bunch as it
passes a fiducial location. For the wake a complex representation in used so that each term will have a simple
behavior in the gap between the bunches.Updating the wakes within the bunch is done using a difference equation
with the appropriate driving term. Between the bunches there are large gaps of length Tg without mesh. Each term
in the sum is multplied by exp(−αTg± iωkTg) to do the update exactly. The ratio of meshed to unmeshed length can
be 1000, with a comeasurate reduction in required memory and computational time.

For multi bunch modes the simulation code has two options. One can use a few, or even one, bunch and assume a
symmetric fill with a single coupled bunch mode. Another option is to use a full turn of beam, including the abort
gap. Longitudinal modes can be included so that transient beam loading on the main RF can be included in the
simulation. For this case there is no need to simulate the 1000+ bunches. Instead one can reduce the number of
bunches by a fixed factor and increase the impedance by that same factor.

TABLE I: Nominal proton parameters for one IP

ET /q 275 GV 100 GV 41 GV 25 GV

Ī 1 A 1 A 1 A 1 A

βc 1300 m 250 m 250 m 130 m

σz = cτb/2 6 cm 7 cm 7.5 cm 80 cm

σ(p)/p 6.8 × 10−4 9.7 × 10−4 10.3 × 10−4

Qs 0.01 0.01 0.01 0.001

Nsym 1260 1260 1260 315

Rx/Q 197 MHz 8 × 2400Ω/m

Rx/Q 394 MHz 4 × 1270Ω/m
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FIG. 4: Transverse impedance of one 197 MHz crab cavity with strong feedback. The red curve corresponds to equation (18).
The first 201 points are Re(Zx) and the second 201 point are Im(Zx). The blue curve is a least squares fit using 10 resonators
of the form shown in equation (1).

TRANSVERSE DAMPERS

Table I shows some relevant parameters for the hadron storage ring. During store the synchrotron tune is large and
the beam-beam force from the electrons helps stabilize the protons. Simulations using a simple resonator model for
the cavities show that an effective quality factor of 300 leads to stable beams during store. However, during injection
and ramping the beam is unstable. Simulations using a single crab cavity frequency have been done with a transverse
kicker voltage of the form

Vx(t) = a(t) sin(ωcrabt) + b(t) cos(ωcrabt). (21)

In the simulations, a(t) and b(t) were constant within the bunch and allowed to vary freely from one bunch to the
next. The values of of the coefficients were calculated using knowledge of the macroparticle angles at the kicker.
These simulations resulted in stable beams but it is clearly not possible to implement this scheme in a real machine.
For the real machine one could envision stripline pickups and kickers. For the 197 MHz system an effective quality
factor of 300 is shown in Figure 4. The full range of the fit is 10 MHz, which is certainly broad enough for the
feedback bandwidth. Suppose we use the difference signal from stripline pickup for the damper. The output signal is
V (t) = Zx[D(t)−D(t− 2L/c)] where L is the length of the stripline and Zx is the transverse transfer impedance of
the stripline. In the frequency domain V̂ = ZxD̂[1 − exp(iωτ)], with τ = 2L/c. Setting f0τ = 1/2 makes the term
in square brackets 2 and maximizes the signal at f0 = 197 MHz. This gives L = 38 cm. At the edge frequencies of
197 ± 5 MHz the term in square brackets is 2.00 ± 0.080i. This is only a 0.04 radian phase error, far less than the
typical π/8 threshold. Hence, optimized stripline pickups should work very well. For the kicker consider a pair of
matched striplines run in difference mode. For a drive current Id(t) the transverse voltage is

Vx(t) =

t∫
t−2L/c

Id(t1)

Ck
dt1, (22)

where Ck is an effective capacitance. In the frequency domain V̂x = [1− exp(iωτ)]/(−iωCk). The factor of i leads to
a phase shift of π/2 that is easlily corrected for by a quarter wavelength delay. Assuming a simple, wide band system
the phase errors of the pickup and kicker will add. Setting the sum to π/8 implies π/16 for the pickup and kicker
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independently. The maximum half bandwidth satisfies

sin(∆ωτ)

1 + cos(∆ωτ)
= tan(π/16).

This gives ∆ωτ ≈ 0.4 which corresponds to a full bandwidth of nearly 50 MHz for the 197 MHz system. Figure 5
shows an implementation of this scheme employing a traversal filter to extend the output pulse from the stripline.
The output of the traversal filter is given by

Sout(t) =

4∑
k=0

Sin(t− 2kτ),

and there is a time shift of −4τ to center things. The pulse train on the left is at the center frequence and the one on
the right is 50 MHz higher in frequency. Even for this large frequency difference the phase shift looks OK although
the amplitude out of the traversal filter is reduced.
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FIG. 5: Outline of a damping system. The red traces show the beam dipole moments at the pickup. The trace on the left
is at the 197 MHz center frequency while the on on the right is 50 MHz higher. The spacing corresponds to the 24 MHz RF
frequency. The green traces are the signals out of a pair of striplines in difference mode. The blue traces are the output of a 5
stage traversal filter with a delay of 2τ . The magenta traces are the voltage at the kicker with a time shift of τ/2 and the light
black traces are copies of the dipole moment.

A 394 MHz damping system may also be needed in the HSR. Possible interference between the damping systems
will need to be carefully monitored. This is left for future work.

CONCLUSIONS

The crab cavities in the ESR and HSR can lead to very strong transverse instabilites. RF feedback can reduce the
apparent impedance. When combined with large synchrotron tunes and beam-beam tune spread the beams appear to
be stable during store. During injection and ramping in the HSR, transverse damping is required. Stripline pickups
and kickers offer adequate bandwidth.



8

ACKNOWLEDGEMENTS

Thanks to Binping Xiao and Subashini De Silva for supplying the crab cavity parameters. Thanks to Qiong Wu
for careful reading of the revised manuscript and for finding errors in the equations (4),(5) and (6).

[1] S.U. De Silva et. al. MOPAB393 IPAC2021 (2021).
[2] A. Chao ’Physics of Collective Beam Instabilites in High Energy Accelerators’ Wiley (1993).
[3] M. Blaskiewicz ’The TRANFT User’s Manual’ BNL-77074-2006-IR 2006, see also M. Blaskiewicz PAC07, THPAS090, p3690,

(2007).
[4] D. Boussard, G. Lambert, REDUCTION OF APPARENT IMPEDANCE OF WIDE BAND ACCELERATING CAVITIES

BY RF FEEDBACK, PAC83, p2239 (1983).
[5] O. Aberle et al ’High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report’ CERN-2020-010 (2020).


