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1. Introduction  

In this study the effects of magnet vibrations (quadrupole displacements and dipole rolls) on the 

electron beam orbit stability at the interaction points (IPs) of the EIC [1] have been quantified. 

Maintaining positional orbit offsets at the IP within a small fraction of the respective beam size in both 

planes is important for achieving the design luminosity due to beam-beam effects.  Specifying exact 

tolerances for the residual orbit jitter at the IP requires detailed beam-beam simulations not available 

to-date. To get some preliminary estimates here we use a simplified and easily scalable criterion that the 

integrated beam motion must be restricted to 10% of the rms beam size at the IP. The motivation for 

this comes from experience at RHIC. RHIC beams have a horizontal jitter amplitude of approximately 

10% of the rms beam size at a frequency of around 10 Hz, which is driven by vibrations of the IR triplet 

quads induced by helium flow [2]. The 10 Hz IR-orbit feedback system, which corrects both position and 

angle, showed no discernible effect on emittance growth [3]. We therefore make the assumption that a 

10% rms jitter of the electron beam should cause a tolerable effect on the hadron beam. 

 

The orbit motion frequencies we consider are from a fraction of a Hz to roughly 100 Hz. Large-amplitude 

magnet vibrations at higher frequencies are not expected. Slower motions (long term drifts) and their 

implications will be addressed in separate studies 

For simulations reported in this note we used the 18 GeV ESR 2-IP lattice version 5.3. While the lattice is 

constantly evolving, the changes are not expected to affect the findings of this note, as they primarily 

rely on the linear lattice properties. 

The rest of this note is organized as follows. In Section 2 we describe the amplification factors relating 

quadrupole displacements to orbit offsets at the IP. In Section 3 we present the floor vibration model we 

adopted by approximating earlier measurements performed by others at RHIC and elsewhere. Section 4 

contains estimates of the orbit motion at the IP due to vibrating quadrupoles, ignoring possible resonant 

amplification due to girders. Section 5 contains estimates of orbit jitter due to vibrating dipole rolls. In 

Section 6 we consider resonant amplification of magnet motion due to girders and describe the range of 

acceptable girder resonance frequencies. Finally, in Section 7, we summarize the results and outline 

some future work.  

 

2. Amplification factors for displaced quadrupoles 

We define the quadrupole-to-IP closed-orbit amplification factors as follows. For the horizontal plane, 

assume a random uncorrelated displacement, 𝛿𝑥, of each magnet within a quadrupole family or multiple 

families, which follows a Gaussian distribution. The expected rms resulting closed orbit deviation Δ𝑋 at 

the IP location (𝑠 = 𝑠𝐼𝑃), normalized to the rms quadrupole displacement, 〈𝛿𝑥〉rms, gives the 

amplification factor,  

𝐴𝐹𝑥,𝑥 = 〈Δ𝑋(𝑠𝐼𝑃)〉rms/〈𝛿𝑥〉rms.                                                                      (2.1) 
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In general, four amplification factors must be considered: from horizontal quadrupole displacements to 

the horizontal orbit at the IP, given by Eq. (2.1), a similar quantity for the vertical, 𝐴𝐹𝑦,𝑦, and the cross-

terms, 𝐴𝐹𝑥,𝑦 and 𝐴𝐹𝑦,𝑥. For some quadrupoles located in the coupled sections within the solenoid spin 

rotators, the cross-terms could be significant.  

Summing the contributions from 𝑁 individual magnets, 𝑖 = 1,2, … , 𝑁,  the amplification factors could be 

estimated from the closed-orbit formula due to the dipole kick 𝜃 by the offset quadrupole, 

〈𝑋(𝑠𝐼𝑃)〉rms, = √𝛽𝑥
𝐼𝑃 √𝑁〈𝛽𝑥(𝑠𝑖)〉

2√2 sin (𝜋𝑄𝑥)
〈𝜃𝑥,𝑖〉rms,                                                    (2.2) 

𝜃𝑥,𝑖 = (𝐾𝑙)𝑖𝛿𝑥,𝑖,                                                                      (2.3) 

where 1/(𝐾𝑙)𝑖  and 𝑠𝑖  are the focal lengths and longitudinal positions of the magnets respectively and 

the worst phase advance is assumed for simplicity. Similar expressions apply in the vertical plane.  

This calculation is easy for a single quad family, especially when all magnets have the same betatron 

functions and betatron phases. However, it becomes tedious (more terms) or less precise (with some 

approximate averaging) if the magnets have a significant spread in lattice function values. Therefore, we 

opted to calculate the amplification factors with Elegant [4] and MAD-X [5]. We also checked that the 

results agree with equations above for some tractable subsets of cases.  

Calculations were performed as follows. Quadrupoles within a family (or a set of families) were 

randomly displaced with 1 m rms in x or y, and then the resulting closed orbit was calculated for both 

planes, see the examples in Fig. 1 for the vertical. This was repeated 300 times to get enough statistics. 

The rms of these closed orbit values at each of the IPs were calculated separately, then averaged 

together, and, finally, normalized to the original 1 m rms quadrupole displacement. The resulting 

amplification factors for selected groups of quadrupoles are listed in Table 1.   
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Figure 1: Three hundred super-imposed vertical closed orbits due to random 
vertical displacements of all quads with 〈𝛿𝑦〉𝑟𝑚𝑠= 1 m. IPs are located at 𝑠=0 

and 𝑠=641 m.   
 

 

 

 

Table 1: Amplification factors for selected groups of quadrupoles from Elegant 
calculations.  

 

 

Very close values for the amplification factors were independently obtained in MAD-X calculations.  

3. Ground vibration amplitude and coherence 

 

To calculate the orbit jitter at the IP due to vibrating quadrupoles or other accelerator components we 

need to know the amplitude of the vibrations. Disregarding other possible sources which may cause 

magnet vibration, e. g. cooling water or helium flow, here we only consider the ground (floor) vibrations.  

 

In 2006 H. Ehrlichmann et al. took measurements of ground vibration in the RHIC tunnel at two 

locations: building 1005 and Phenix (IP8). The results are available from DESY’s database of ground 

motion measurements at accelerator facilities worldwide [6]. We have access to all these data, both raw 

and Power Spectral Density (PSD) in 15-minute intervals. For the purposes of this note we simply 

averaged the IP8 vertical measurements over all these intervals to obtain the mean PSD, denoted  𝑃0
̅̅ ̅ 

below, which is plotted in Fig. 2. (The horizontal PSD is somewhat smaller, and, due to flat beams, less 

critical. Here we will simply assume that the same vibrational spectrum applies in both planes. This 

could be revisited later). This PSD drops sharply with frequency and, especially at lower frequencies, 

agrees well with ~1/f4 scaling, expected from theory [7]. At higher frequencies there is also a significant 

amount of cultural noise, including some sharp peaks, e.g. in the vicinity of 5, 8, 15, 30 and 60 Hz.  

                                        

                       

                         

                                     

                 s                    
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Figure 2: Average PSD for floor vibrations in RHIC tunnel from 2006 
measurements and ~1/f4 scaling  

 

We also compared the RHIC measurements with those from the NSLS-II experimental floor [8] and found 

reasonable agreement. NSLS-II floor measurements exhibit a clear day-night variation cycle and typically 

measure from 15 to 60 nm rms in the horizontal and 20 to 100 nm rms in the vertical in the bandwidth 

of 2-100 Hz. The averaged data from RHIC we are using (Fig. 2) results in 70 nm rms in the same 

bandwidth.  

Ground motion divergence at low frequency does not present a serious stability problem for an 

accelerator, because, as the frequency gets lower, the wavelength of ground vibrations increases, and 

larger and larger fractions of the entire accelerator essentially move together. This is usually described 

by introducing the concept of ground-motion coherence, which defines the spectral content of 

correlated motion between two different locations. Mathematically it is defined as the ratio of the 

cross-spectral density (Fourier transform pair of the cross-correlation function), 𝑃𝑧1, 𝑧2
(𝜔), between the 

motions at two locations normalized to their individual PSDs,  

𝐶𝑧1𝑧2
(𝜔) =

|𝑃𝑧1, 𝑧2
(𝜔)|

2

𝑃𝑆𝐷𝑧1
(𝜔)𝑃𝑆𝐷𝑧2

(𝜔)
.                                                             (3.1) 

Ground motion coherence can be measured (with the mathematical quantities in (3.1) replaced with the 

measured ones which include signal windowing, averaging, and filtering in time and frequency domains), 

but it obviously requires simultaneous measurements performed at a minimum of two locations. To our 

knowledge such measurements have never been performed at RHIC. However, they have been 

performed at many other facilities, in particular, at NSLS-II [8, 9], LHC [10], and APS [11]. While the 

details vary significantly (between the labs, between locations on the same site, as well as with time at 

the same location), as is pointed out in [9-11], ground motion becomes mostly coherent at frequencies 

below 1 Hz and gradually loses coherence at higher frequencies, on the order of 10 Hz. In the spatial 

domain, these 1 Hz and 10 Hz frequencies correspond to the coherence lengths on the order of 100 m 

and below 10 m respectively (see e.g. Figs. 8, 11 in [8] and Fig. 4 in [11]).   
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Lacking ground motion coherence measurements at RHIC we adopted the following model here.  We 

assume that for the length-scales relevant to the EIC (betatron wavelength ~100 m), the ground motion 

is fully coherent below 1 Hz and fully incoherent above 10 Hz (exact value of this upper frequency is not 

critical), with some gradual ramp-down in the intermediate region. Because we only need to consider 

the effect of the incoherent motion we ignore the effect of frequencies below 1 Hz, and fully account for 

those above 10 Hz. In the intermediate region we linearly ramp-up the incoherent motion PSD fraction 

from 0 to 1. This gradual ramp-up is qualitatively consistent with a much more detailed measurement-

based model from APS [11].  

Specifically, to define the relevant floor vibration PSD with the coherence effects approximately 

included, we multiply the PSD from Fig. 2 by the function  

𝜅(𝑓) = {

0,         𝑓 < 𝑓1
𝑓−𝑓1

𝑓2−𝑓1
,  𝑓1 ≤ 𝑓 ≤ 𝑓2

1,        𝑓 > 𝑓2

 ,                                                         (3.2) 

with 𝑓2=1 Hz and 𝑓2=10 Hz.  

Together with the original PSD from Fig. 2 this scaled PSD is plotted in Fig. 3. Integrated rms totals for 

both are shown in the legend.   

 
Figure 3: Original ground vibration PSD from Fig. 2 and the one scaled to 
account for the ground motion coherence. Integrated rms totals are shown 
for the bandwidth of 1-100 Hz.   

 

4. Implications for ESR 

L  ’s  ssu            f     vibrations quantified above are directly transferred to the quadrupoles. For 

simplicity we ignore the screening effects of the vacuum chamber due to eddy currents, which makes 

our estimate more conservative. The induced rms orbit noise at the IP can now be estimated by 
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multiplying the scaled PSD from Fig. 3 by the amplification factors given in Table 1, and integrating over 

frequency. Calculating the effect from all quadrupole magnets (i.e. taking the numbers from the first 

row of the table), and assuming uncorrelated horizontal and vertical vibrations, we get for the orbit 

motion at the IP      

〈𝛿𝑥〉rms = 660 nm
〈𝛿𝑦〉rms = 420 nm

 ,                                                        (4.1) 

These make approximately 0.6% and 4% of the corresponding rms beam sizes, which is below our 

nominal 10% goal. (CDR Table 3.3 lists for the ESR at 18 GeV 𝜎𝑥
𝐼𝑃 = 119 𝜇𝑚 and 𝜎𝑦

𝐼𝑃 = 11 𝜇𝑚.) 

However, the number in the vertical plane is not entirely negligible. Considering the many 

approximations made along the way, and the fact that we are only considering one of the factors 

potentially contributing to the orbit jitter at the IP, it would be prudent to plan for a local orbit feedback 

system to stabilize the motion further.  

 

5. Dipole rolls 

Another type of magnet vibrations that could increase the orbit jitter are dipole rolls. If a dipole is 

rotated with respect to the beam axis by angle 𝜃,  the nominally vertical magnetic field �̅� = 𝐵0{0, 1} 

acquires a horizontal component, �̅� = 𝐵0{𝑠𝑖𝑛(𝜃), 𝑐𝑜𝑠(𝜃)}, which results in a vertical beam kick. For 

small 𝜃,  the change in the horizontal kick could be neglected.  

This effect was simulated in Elegant and MAD-X by setting a random roll angle to all dipoles in the lattice 

and calculating the corresponding orbit shift at the IPs. An example is shown in Fig. 4, which illustrates 

that dipole rolls with 〈𝜃〉𝑟𝑚𝑠 = 100  rad result in an IP rms orbit jitter of about 33 m. Simulations with 

a 3 urad orbit roll gave the required 1 um IP rms orbit jitter. A close value was also obtained analytically.  

 
Figure 4: Vertical orbit offsets at IPs due to 100  rad rms dipole rolls. Legend 
shows the resulting orbit rms over 300 seed samples at the IPs. 



7 
 

Achieving dipole roll jitter of 3 rad rms does not appear challenging. For instance, assume that the roll 

is mainly driven by differential floor vibrations between four anchor points holding the magnet which 

are spread apart transversely by a distance on the order of one meter. Taking the uncorrelated vertical 

rms motions of 100 nm rms (see Fig. 3), we estimate the rms magnet roll of order of 100 nrad. 

Moreover, dynamic roll specifications for dipoles on the micro-radian level have been achieved at light 

sources.    

6. Girder amplification 

So far, we have not considered the effect of magnet girders. They are known to resonantly amplify floor 

vibrations at certain frequencies corresponding to the mechanical resonances of the structure (girder 

loaded with magnets). Due to the rapid falloff of the ground vibration spectral power with frequency, it 

is desirable to design girders with higher resonance frequencies, so that the total added effect due to 

girder amplification is small.  

Typical accelerator girder structures may have many (𝑛>>1) prominent resonant modes, differing in 

spatial shape    g  “  ck  g”  “ w s   g”    c  , each with its own resonant frequency ω0,𝑛 and quality 

factor 𝑄𝑛. Typical resonant frequencies are in tens of Hz, while the damping factors, 𝜉𝑛 =
1

2𝑄𝑛
, are in the 

range of [0.01-0.04].  

Here we take a simplified approach to the problem by modelling the girder as a 1D harmonic oscillator 

with the natural frequency ω0 and the damping factor 𝜉. The oscillator is driven at frequency ω by 

moving the anchor point 𝑥𝑎, as shown in Fig. 5, and the damping force is proportional to �̇�𝑚(𝑡). 

 

Figure 5: Harmonic oscillator model of a girder driven by floor vibrations. 
Here 𝑘 and 𝐿0 denote the spring constant and its unstretched length.  
 

The equation of motion can be written as 

�̈�𝑚 + 2𝜉𝜔0�̇�𝑚 + 𝜔0
2𝑥𝑚 = 𝜔0

2(𝑥𝑎(𝑡) + 𝐿0),                                                     (6.1) 

where 𝜔0 = √𝑘/𝑚. For 𝑥𝑎(𝑡) = A sint, it is equivalent to the classical problem of a harmonically driven 

oscillator. The amplitude of the steady-state solution, 𝑥𝑚(𝑡) = 𝐵(ω) sin(ω 𝑡 + 𝜙) + 𝐿0, is given by the 

well-known resonance expression 

|𝐵(𝜔)| =
|𝐴|

√(1−(𝜔/𝜔0)2)2+4𝜉2(𝜔/𝜔0)2
,                                                                (6.2) 

which reaches its maximum 

𝑥𝑎(t) = A sin(t) 

𝑥𝑚(t) = B() sin(t+)+ 𝐿0 

𝑚 
𝑘 
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|𝐵(𝜔)|𝑚𝑎𝑥 =
|𝐴|

2𝜉√1− 𝜉2
=

2𝑄2|𝐴|

√4𝑄2−1
                                                                 (6.3) 

at the resonant frequency 

𝜔𝑟𝑒𝑠 = 𝜔0√1 − 2 𝜉2 ≈ 𝜔0.                                                                 (6.4) 

The approximate equality above assumes the practically relevant case of 𝜉 ≪ 1. 

Alternatively, we can solve (6.1) for the amplitude 𝐶(𝜔) of the relative motion of the mass to the anchor 

point (i.e. the girder with respect to the floor). Re-writing (6.1) in terms of  𝑧𝑚(𝑡) = 𝑥𝑚(𝑡) − 𝑥𝑎(𝑡) − 𝐿0 

and assuming a steady-state solution of 𝑧𝑚(𝑡) = 𝐶(𝜔) sin(𝜔𝑡 + 𝜑) results in the amplitude 

amplification factor from 𝑥𝑎 to 𝑧𝑚  

|𝐶(𝜔)/𝐴| = √
1+4𝜉2(𝜔/𝜔0)2

(1−(𝜔/𝜔0)2)2+4𝜉2(𝜔/𝜔0)2,                                                                 (6.5) 

which is equivalent to (6.2) for the case of small 𝜉. Similar to the previous case, near the resonant 

frequency,  

𝜔𝑟𝑒𝑠 = 𝜔0

√√1+8 𝜉2−1

2𝜉
≈ 𝜔0,                                                                (6.6) 

the amplitude amplification can become quite large,  

|𝐶(𝜔)/𝐴|𝑚𝑎𝑥 ≈
1

2𝜉
= 𝑄.                                                                (6.7) 

The amplitude amplification factor is sometimes referred as transmissibility (or the absolute value of 

complex transmissibility). When squared, this factor gives the amplification factor for the power spectral 

density. For sinusoidally varying 𝑥𝑎(𝑡), as considered above, this fact is trivial. For the general excitation 

function 𝑥𝑎(𝑡) this is easily confirmed by Fourier transforming (6.1) to express �̃�𝑚(𝜔) in terms of �̃�𝑎(𝜔), 

and then making use of the power spectral density definition (e.g. [12]),  𝑃𝑆𝐷𝑢(𝑡)(𝜔) = lim
𝑇→∞

1

𝑇
|�̃�𝑇(𝜔)|2, 

where 𝑢𝑇(𝑡) = 𝑢(𝑡) for  0 < 𝑡 < 𝑇 and zero otherwise. 

Specifically, taking  𝑥𝑎(𝑡) and 𝑧𝑚(𝑡) as the input and output of the system, we can write for the spectral 

power amplification,  

𝐺(𝜔, 𝜔0, 𝜉 ) =
𝑃𝑆𝐷𝑧𝑚

(𝜔)

𝑃𝑆𝐷𝑥𝑎
(𝜔)

=
1+4 𝜉2(𝜔/𝜔0)2

(1−(𝜔/𝜔0)2)2+4 𝜉2(𝜔/𝜔0)2.                                          (6.8) 

Multiplying this by the scaled PSD 𝜅(𝜔)𝑃0
̅̅ ̅(𝜔) from Fig. 3, we can now include the effect of the girder 

resonances. This is illustrated in Fig. 6 for f𝑟𝑒𝑠 = ω0/(2𝜋)=10 Hz. (Note the change in subscript. Here 

and below f𝑟𝑒𝑠 stands for the natural (undamped) resonant frequency of the girder ω0/(2𝜋).) 
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For the two values of the damping coefficient shown in the figure, the girder resonance amplifies the 

integrated ground motion by factors of 5.6 and 4.0. Such amplification would obviously be undesirable 

for orbit stability, so girders must be designed with higher resonant frequencies.  

 

 

Figure 6: Vibration PSD including the resonant girder amplification. Resonance 

parameters are shown in the legend.  

To investigate this further we define the girder amplification factor as 

𝐴𝐹𝑔(𝜔0, 𝜉) =
∫ 𝐺(𝜔,𝜔0,𝜉)𝜅(𝜔)𝑃0̅̅ ̅(𝜔)𝑑𝜔

∫ 𝜅(𝜔)𝑃0̅̅ ̅(𝜔)𝑑𝜔
,                                                          (6.9)  

where 𝜅(𝜔) was defined in (3.2). 

We now plot this factor as a function of the resonant frequency in Fig. 7. 

                                                             

 

Figure 7: Girder amplification factor vs. resonance frequency.  

The figure illustrates that if one requires the girder resonances to amplify the floor vibrations by no 

more than 10% then the girder resonant frequency must exceed 40 Hz, and the vibrational peaks near 

60 Hz should also be avoided. Due to rapid falloff of the amplification factor after the 30 Hz peak, this  
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minimum resonant frequency value (40 Hz) is not too sensitive to some relaxation of the maximum 

allowed amplification requirement.  Similarly, if a stronger resonant damping is achieved, the resonant 

frequency could be chosen somewhat lower, but the 𝜉-dependence in this frequency region is rather 

weak.  

 

7. Summary 

Vibrational specifications for the quadrupole displacements and dipole rolls were analyzed for their 

effect on the ESR orbit motion at the IPs. This was done by means of Elegant and MAD-X simulations and 

cross-checked with analytical calculations, wherever possible.  

The magnet motion was assumed to be driven by ground vibrations only. A ground vibration model was 

developed based on RHIC IP8 measurements performed in 2006. It was found to be in good agreement 

with the typical vibration levels on the NSLS-II experimental floor during the noisier parts of the 24-hour 

cycle. As expected, the vibration PSD diverges at low frequencies, however, vibrations at these 

frequencies play a progressively smaller role due to accelerator components moving in phase with each 

other. Lacking RHIC tunnel ground coherence measurements, we adopted an approximate model to 

describe this effect by assuming fully coherent ground motion below 1 Hz and fully incoherent motion 

above 10 Hz, with a smooth transition in between.    

Considering only the quadrupole vibrations driven by ground motion, we showed that within this model 

the expected rms orbit variation at the IPs is about 4% of 𝜎𝑦 at the IP. This number is below the nominal 

10% of 𝜎𝑦 goal, but the margin is not very large. Due to approximations made in the model as well as 

other potential contributions neglected, this suggests that a local orbit feedback to stabilize the beam 

size at the IP could be useful. Feedback design will be considered separately; however, it does not 

appear to be challenging. Of course, this assumes that other accelerator components are carefully 

designed so that they do not cause significant orbit perturbations, especially at higher frequencies.  

Due to the much larger beam size in the horizontal plane, the expected effect from the quadrupole 

vibrations is predicted to be much lower, at less than 1% of the beam size, which is not expected to 

cause any issues. In addition, the effect of dipole rolls was analyzed and shown to be manageable, as 

long as the rolls are kept sufficiently below 3 rad rms, which is considered readily achievable.  

Finally, the effect of girder resonances was analyzed using a simple damped harmonic-oscillator model. 

This preliminary analysis shows that the lowest girder resonant frequency should exceed 40 Hz and 

avoid the vicinity of 60 Hz, where several strong peaks are present in the measured floor vibration 

spectra. Further analysis should be done once the girder mechanical design is more advanced and the 

resonant modes (frequencies, damping, and the modal structure) are available.   

Future work should include simulation cross-checks for other lattices and operational energies (the 

results obtained so far are for the 2-IP lattice at 18 GeV only). We will also need to check the effects due 

to orbit or coupling bumps which are presently being studied to increase the vertical emittance to the 
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desired value. Furthermore, motions for longer time scales should be analyzed. In particular, the effects 

of the ground diffusion, commonly described by the ATL law (see e.g. [7]), will have implications for 

girder realignment frequency, required corrector strength, etc.  
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