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I. INTRODUCTION

The concept of microbunched electron cooling (MBEC, introduced in Ref. [1]) is currently

under investigation as a candidate for the strong hadron cooling (SHC) component of EIC.

Most of the theoretical treatments of this scheme are based on a simplified model for the

longitudinal space charge [2–4]. In this model, the particle beams are treated as collections

of thin charged disks, with the interaction function for two such disks being calculated by

averaging the forces between constituent point charges. Although the disk model is flexible

and captures a large part of the underlying physics, it lacks the fidelity and robustness of

an analysis that explicitly treats the beams as collections of point charges. In what follows,

we explore such a model, both from a theory-based and a simulation perspective.

II. 3D SIMULATION ALGORITHM

In this section, our objective is to describe a simple algorithm for the three-dimensional

simulation of MBEC. In view of the localized nature of the space charge interaction - the key

effect behind the cooling - we can focus our attention on a relatively small longitudinal part

(or slice) of the beam. Within such a slice (the typical length of which is ∼ Σ/γ, where Σ is

the transverse beam size and γ is the relativistic factor), beam parameters such as current

and emittance may be considered as constant. Adopting a macroparticle model for both the

hadron and the electron beams, we associate to each macroparticle a phase-space coordinate

vector (x, y, z, px, py, η), all quantities being measured in the lab frame. In particular, (x, y)

are the transverse position coordinates, z = zlab − v0t is the longitudinal position with

respect to the beam centroid, (px, py) = (dx/ds, dy/ds) are the transverse momenta (with

s = v0t = cβ0t) and η = γ/γ0 − 1 is the fractional energy deviation (for future reference,

we also note that β0 = (1 − 1/γ20)1/2 ≈ 1 − 1/(2γ20)). All the phase space coordinates

are considered to be unconstrained quantities except for the internal bunch position z, for

which we assume periodic boundary conditions within a suitable interval (−L/2, L/2), i.e.

z(s+L) = z(s). Moreover, whereas all the other variables are typically drawn from normal

(that is, Gaussian) distributions, we use a uniform distribution in order to initialize z.

Next, we comment on how to efficiently calculate the longitudinal space charge force ex-

perienced by a particle within the above-mentioned slice, a key component of our simulation
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algorithm. Assuming - for the time being - that only one species of particles is present (for

instance, only the electrons), the longitudinal space charge force is

Fi ∝ e2
∑
j

Φ(xi − xj, yi − yj, zi − zj) , (1)

where e is the electron charge, (xi, yi, zi) are the electron macroparticle positions and

Φ(x, y, z) is the particle-to-particle interaction function, which is given by

Φ(x, y, z) =
γ0z

(x2 + y2 + γ20z
2)3/2

. (2)

This expression can be justified as follows: in the beam frame, any two point charges (i.e.

electrons, labeled here by i and j) are at rest. As a result, their interaction is purely through

the Coulomb force. By Lorentz-transforming the z-component of the electrostatic field back

to the lab frame, one readily arrives at the results mentioned above.

The proportionality sign in the relation for the space charge force is due to the difference

between actual particles and simulation macroparticles. Although the latter are assumed

to have the same charge and mass as their real counterparts, they are typically much fewer

in number and are only meant as a device that approximates the average quantities of

the beam. Thus, if the sum was supposed to extend over all the actual particles of the

beam, the proportionality constant would be equal to unity. However, when one deals with

macroparticles, the above-mentioned constant needs to be set equal to Ne/Ne,m, where Ne is

the total number of electrons in the slice and Ne,m is the number of electron macroparticles.

Calculating this force through direct summation of interaction pairs can be prohibitively

time-consuming, as the computation time scales like the square of the number of macropar-

ticles. Instead, we employ the following procedure: Introducing the volume density

n(x, y, z) =
∑
j

δ(x− xj)δ(y − yj)δ(z − zj), (3)

we can express the force on the individual macroparticles as Fi = F (xi, yi, zi), where

F (x, y, z) ∝ e2
∫
dx′dy′dz′Φ(x− x′, y − y′, z − z′)n(x′, y′, z′) . (4)

As a result of this manipulation we deduce that the function F is proportional to the three-

dimensional convolution of the electron density with the space charge interaction function.

To exploit this observation, we define a rectangular grid (xG, yG, zG) that encompasses the
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entire beam and calculate both Φ and n at the grid points (the latter requires a routine

to count particles in a subdivided space, very much like a 3D histogram). Having thus

discretized Φ and n in the form of three-dimensional arrays, we can use existing, FFT-

based routines in order to calculate their convolution and determine F at the cartesian grid

points. Finally, knowing F as a 3D array, we can readily obtain the original force components

Fi through interpolation at the macroparticle locations. This technique yields sufficiently

accurate results and scales much more favorably with the number of particles (indeed, the

computation time is roughly proportional to the total number of bins into which the slice is

subdivided).

Given the above, it is straightforward to write down the equations of motion for a single

electron under the influence of the space charge force of the e-beam alone (as is the case in

the amplification sections of the MBEC lattice). For the longitudinal portion of the motion,

we start from the definition of z to obtain

dz

dt
= c(βz − β0) ≈

c

2
(

1

γ20
− 1

γ2
− β2

x − β2
y) , (5)

where we have used the approximation βz ≈ 1− (1/2)(1/γ2 +β2
x+β2

y) for the scaled velocity

component along the z-direction. Taking into account that γ = γ0(1 + η) and βx,y ≈ px,y,

we have
dz

ds
≈ η

γ20
− 1

2
(p2x + p2y) , (6)

with the term ∝ 1/γ20 representing the R56 of the drift, while the quadratic term gives the

contribution of the transverse velocity components.

At this point, it is useful to divert somewhat so as to discuss the transverse motion

of the electrons. Our basic assumption is that the transverse dynamics is predominantly

determined by the focusing lattice, with the transverse space charge forces being small in

comparison. We can further simplify our analysis by adopting the so-called smooth focusing

approximation, in which the electrons execute harmonic betatron oscillations according to

d2x/ds2 + k2βx = 0 and d2y/ds2 + k2βy = 0, where kβ is the focusing strength (assumed the

same in both x and y). This approximation is valid so long as the lattice beta function

does not vary greatly over the length of a focusing cell (alternatively, one may require

that the betatron phase advance per cell be much smaller than unity). Moreover, the

focusing strength is given by kβ = 1/βav, where βav is the average lattice beta function. A

beam matched to this smooth focusing channel has an rms size Σp =
√
εβav and divergence
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Σ′p =
√
ε/βav, where ε is the transverse emittance. Summarizing, we conclude that the

transverse motion of the i-th electron is governed by

dxi
ds

= px,i ,
dpx,i
ds

= −k2βxi , (7)

dyi
dt

= py,i ,
dpy,i
ds

= −k2βyi . (8)

In the context of the smooth focusing approximation introduced above, it can be shown that

the z-equation of motion becomes

dzi
ds
≈ ηi
γ20
− 1

2
(p2x,i + p2y,i + k2β(x2i + y2i )) . (9)

Lastly, the remaining part of the longitudinal equations of motion governs the electron

energy change due to the space charge interaction. Starting from mec
2dγi/ds ≈ Fi, we

readily obtain

dηi
ds

=
Fi

γ0mec2
=

e2

γ0mec2
Ne

Ne,m

∑
j

Φ(xi − xj, yi − yj, zi − zj) , (10)

where the sum on the RHS is to be calculated via the 3D convolution technique discussed

earlier in the text. In doing so, a very important caveat is that the density quantity to be

convolved with the interaction function Φ is actually the perturbed volume density δn =

n − nback, which is obtained after subtracting the background component nback from the

calculated total density n. This manipulation is required in order to remove the DC electric

field component of the slice and focus on the portion that drives the plasma oscillations.

Eqs. (7)-(10) define the model we rely on for three-dimensional simulations of the electron

beam, as it propagates through the drift spaces in the amplification sections. As for going

through a chicane, we use a simple linear transfer map of the form z2 = z1 +R56η1, all other

phase space variables being considered unchanged by the passage. This is an approximation

that can justified for a relatively short chicane; a more realistic linear transfer matrix can

also be used if needed. Such a symplectic, potentially 6D map is - in general - necessary in

order to accurately model the hadron transfer line between modulator and kicker, taking

full account of the lattice dynamics (including dispersion and phase advance).

As far as the modulator and kicker sections are concerned, we assume that the plasma

oscillations in the electron beam can be disregarded, which is reasonable as long as the

electron quarter plasma period is comfortably larger than the modulator/kicker lengths Lm,k.
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For the hadrons, plasma effects are always negligible due to the much larger mass. Short

M/K sections also allow us to neglect the size variations of the unfocused, co-propagating

hadron and electron beams (in effect, neglecting the impact of the angular spread). As

a result, we may focus exclusively on the energy change imparted by the hadrons to the

electrons and vice versa. These are expressed by

∆ηi = −Ze
2Lm

γ0mec2
Nh

Nh,m

∑
j

Φ(xi − x(h)j , yi − y(h)j , zi − z(h)j ) , (11)

and

∆η
(h)
i = − Ze2Lk

γ0mhc2
Ne

Ne,m

∑
j

Φ(x
(h)
i − xj, y

(h)
i − yj, z

(h)
i − zj) , (12)

respectively. Here, Ze, mh and Nh are the charge, mass and total number of the hadrons,

while Nh,m is the number of hadron macroparticles.

One final point needs to be clarified regarding the transition stages between M/K and

the amplification sections. These two parts of the MBEC lattice are characterized by con-

siderably different electron beam transverse sizes. This “squeezing” of the electrons in the

amplifiers is, of course, necessary in order to augment the bunching and ensure efficient

cooling. The actual beam line sections that accomplish the squeeze are approximated by

a map of the form (x, y)2 = rp(x, y)1, (px, py)2 = (1/rp)(px, py)1 - with rp being the size

squeeze factor - while the longitudinal coordinates (z, η) are unaltered. This simplified map

preserves the transverse emittance of the electron beam and accounts for the different beam

sizes.

The computational techniques we have just finished outlining contain most of the basic

physics of MBEC in the full, three-dimensional regime. As such, they form a versatile toolkit

that can be used for calculating both the cooler wakefields and the cooling times.

III. THEORETICAL ANALYSIS

The simulation algorithm described in the previous section can be benchmarked and

complemented through comparison with theory. To start with, we consider the problem of

3D plasma oscillations in a “parallel” electron beam of finite transverse size, neglecting the

impact of angular spread and focusing. While not very useful for practical purposes, this

limiting case offers an instructive, idealized model that can be treated quasi-analytically
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in a relatively straightforward manner. Recalling our earlier discussion of single particle

dynamics, the equations of motion for an electron in a parallel beam may be written as

dz

ds
=

η

γ20
, (13)

dη

ds
=

e2

γ0mec2

∫
dx′dy′dz′δn(x′, y′, z′; s)Φ(x− x′, y − y′, z − z′) , (14)

where δn is the perturbation of the electron beam volume density. As we have noted before,

these equations incorporate the energy modulation due to the space charge interaction, as

well as the natural chicane strength of the drift. The distribution function F for the electron

beam can be decomposed as

F (x, y, z, η; s) = n0F0(x, y, η) + δF (x, y, z, η; s) , (15)

where n0 is the background line density of the beam,

F0 =
1

(2π)3/2Σ2
pσe

exp(−x
2 + y2

2Σ2
p

) exp(− η2

2σ2
e

) , (16)

(where Σp is the rms size of the round beam and σe is the rms energy spread) and δF is a

small perturbation, which can be liked to δn via

δn(x, y, z; s) =

∫
dηδF (x, y, z, η; s) . (17)

The self-consistent evolution of the electron beam distribution function is governed by

the Vlasov equation, i.e.
∂F

∂s
+
dz

ds

∂F

∂z
+
dη

ds

∂F

∂η
= 0 , (18)

the first-order (linearized) component of which can be written as

∂(δF )

ds
+

η

γ20

∂(δF )

dz
+ n0

e2E(x, y, z; s)

γ0mec2
∂F0

dη
= 0 , (19)

where

E(x, y, z; s) =

∫
dx′dy′dz′δn(x′, y′, z′; s)Φ(x− x′, y − y′, z − z′) . (20)

Introducing the Fourier quantities δF̂z and Êz via the definitions

δF (x, y, z, η; s) =
1

2π

∫
dkzδF̂z(x, y, kz, η; s) exp(ikzz) , (21)

E(x, y, z; s) =
1

2π

∫
dkzÊz(x, y, kz; s) exp(ikzz) , (22)
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the frequency-domain, linearized Vlasov equation becomes

∂(δF̂z)

ds
+

η

γ20
ikzδF̂z + n0

e2Êz
γ0mec2

∂F0

dη
= 0 . (23)

The solution of this first-order differential equation is

δF̂z(x, y, kz, η; s) = δF̂z(x, y, kz, η; 0) exp(−iηkzs/γ20)

− n0
e2

γ0mec2
∂F0

dη

∫ s

0

ds′Êz(x, y, kz; s′) exp(iηkz(s
′ − s)/γ20) . (24)

In the above equations only the longitudinal wavenumber kz is present. Next, we introduce

the full Fourier space quantities δF̂k and Êk via

δF̂k =

∫
d2x exp(−ik⊥ · x)δF̂z =

∫
d2xdz exp(−ik⊥ · x− ikzz)δF (25)

and

Êk =

∫
d2x exp(−ik⊥ · x)Êz =

∫
d2xdz exp(−ik⊥ · x− ikzz)E , (26)

where x = (x, y) is the transverse position and k⊥ = (kx, ky) is the transverse wavenumber

vector. In a similar way, the corresponding Fourier transform of the density perturbation

δn(x, z) is defined by

δn̂k =

∫
d2xdz exp(−ik⊥ · x− ikzz)δn (27)

and also satisfies the relations

δn̂k =

∫
dηδF̂k (28)

and

Êk = − 4πikzδn̂k

k2z + γ20(k2x + k2y)
. (29)

In order to derive the latter equation, one needs to recall the convolution-type definition

of E and review the Fourier transform for the Coulomb field. Using all of the above, it is

straightforward to obtain a single equation for δn̂k (after some lengthy Gaussian integration).

The end result is

δn̂k(s) =

∫
dηδF̂ k(0) exp(−iηkzs/γ20) +

e2n0k
2
z

πγ30mec2

∫ s

0

ds′(s′ − s)

× exp(−σ2
e(s
′ − s)2k2z/(2γ40))

∫
d2k′⊥

exp(−Σ2
p(k
′
x
2 + k′y

2)/2)δn̂k⊥−k′
⊥, kz

(s′)

k2z + γ20((kx − k′x)2 + (ky − k′y)2)
. (30)
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For the special case in which σe → 0 and δF̂ k(0) ∝ δ(η), we can simplify our expression by

differentiating twice over s. This eliminates the integral over s′ and leads to the following

equation governing the 3D plasma oscillations in a cold electron beam:

∂2δn̂k(s)

∂s2
= − e2n0k

2
z

πγ30mec2

∫
d2k′⊥

exp(−Σ2
p(k
′
x
2 + k′y

2)/2)δn̂k⊥−k′
⊥, kz

(s)

k2z + γ20((kx − k′x)2 + (ky − k′y)2)
, (31)

which can also be re-written as

∂δn̂k(s)

∂s
= δp̂k(s) ,

∂δp̂k(s)

∂s
= − e2n0k

2
z

πγ30mec2

∫
d2k′⊥

exp(−Σ2
p(k
′
x
2 + k′y

2)/2)δn̂k⊥−k′
⊥, kz

(s)

k2z + γ20((kx − k′x)2 + (ky − k′y)2)
. (32)

This equation can be solved numerically using any of the standard techniques along with a

routine for the calculation of the 2D convolution integral on the RHS. We note that, unlike

the longitudinal wavenumber kz (which essentially acts as a free parameter), the transverse

wavenumbers are coupled, a fact that stems from the non-uniformity of the electron beam

density in the transverse plane.

A useful corollary of the analysis presented above is related to the propagation of δn̂k

through a chicane with strength R56 following a drift of length Ld. Specifically, a coordinate

transformation of the form z → z′ = z + R56η, η → η′ = η modifies the beam distribution

function according to

F (z, η)→ F (z −R56η, η) . (33)

This property reflects the fact that the distribution function is constant along a phase space

trajectory. As a consequence, the Fourier component δF̂k is shifted according to

δF̂k → δF̂k exp(−ikzR56η) . (34)

Combining this result with the derivation that led to Eq. (30), we ultimately find that the

value of δn̂k after the chicane is given by

δn̂+
k (Ld) =

∫
dηδF̂ k(0) exp(−iηkz(Ld/γ20 +R56))

+
e2n0k

2
z

πγ30mec2

∫ Ld

0

ds′(s′ − Ld − γ20R56) exp(−σ2
e((s

′ − Ld)/γ20 −R56)
2k2z/2)

×
∫
d2k′⊥

exp(−Σ2
p(k
′
x
2 + k′y

2)/2)δn̂k⊥−k′
⊥, kz

(s′)

k2z + γ20((kx − k′x)2 + (ky − k′y)2)
. (35)
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For a cold beam, this simplifies to

δn̂+
k (Ld) = δn̂k(0) +

e2n0k
2
z

πγ30mec2

∫ Ld

0

ds′(s′ − Ld − γ20R56)

×
∫
d2k′⊥

exp(−Σ2
p(k
′
x
2 + k′y

2)/2)δn̂k⊥−k′
⊥, kz

(s′)

k2z + γ20((kx − k′x)2 + (ky − k′y)2)

= δn̂k(Ld) + γ20R56δp̂k(Ld) . (36)

This useful relation fits naturally with the numerical solution of Eq. (32), which simultane-

ously tracks both δn̂k and its s-derivative δp̂k along the drift.

To integrate our current analysis into the framework of an actual cooling system, we need

an expression for the electron beam density perturbation coming out of the modulator. In

what follows, we obtain such an expression using a derivation by G. Stupakov. To start

with, let us denote by δn̂
(M)
k the fluctuation of the hadron volume density in the modulator.

Recalling Eqs. (20) and (29), we deduce that its electric field is given by

Êz,k = − 4πZeikz
γ20(k2x + k2y) + k2z

δn̂
(M)
k , (37)

and the corresponding electron energy modulation in Fourier representation

∆η̂
(e)
k = −eÊz,kLm

meγ0c2
=

4πZe2Lmikz
γ20(k2x + k2y) + k2z

δn̂
(M)
k

meγ0c2
. (38)

The next step is to find the perturbation of the electron beam distribution function after

the particle energy is changed in the modulator and the beam passes through the first chicane

Re = R
(e)
56 . In this calculation we neglect the change of the electron distribution function in

the modulator that is due to the betatron oscillations, and also neglect fluctuations in the

electron beam. With this in mind, we denote the equilibrium electron distribution function

in the modulator as Fe(x, y, px, py, η), normalized so that the integral over all the variables

is equal to one. The electron density perturbation induced by ∆η(e)(x, y, z) is

δn(e)(x, y, z) = n0

∫
dpx dpy dη [Fe(x, y, px, py, η −∆η(e)(x, y, z −Reη))− Fe]

≈ −n0

∫
dpx dpy dη∆η(e)(x, y, z −Reη) ∂ηFe , (39)

where we do not show the arguments of Fe if they are not shifted. Defining the quantity

Fe =
∫
dpx dpy Fe, we find that

δn(e)(x, y, z) = −n0

∫
dη∆η(e)(x, y, z −Reη) ∂ηFe(x, y, η) . (40)
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Assuming Gaussian distributions in all three variables of Fe, i.e.

Fe(x, y, η) =
1

(2π)3/2ΣxΣyσe
exp

(
− x2

2Σ2
x

)
exp

(
− y2

2Σ2
y

)
exp

(
− η2

2σ2
e

)
, (41)

the corresponding Fourier pair is

F̂e,k⊥(η) =

∫
dx dyFe(x, y, η)e−i(kxx+kyy)

=
1

(2π)1/2σe
exp

(
−k

2
xΣ

2
x

2

)
exp

(
−
k2yΣ

2
y

2

)
exp

(
− η2

2σ2
e

)
. (42)

Denoting r = (x, z) and recalling that

∆η(e) =
1

(2π)3/2

∫
d3k exp(ik · r)∆η̂(e)k ,

Fe =
1

2π

∫
d2k⊥ exp(ik⊥ · x)F̂e,k⊥ , (43)

we obtain

δn̂
(e)
k = −n0

∫
d3r e−ik·r

∫
dη∆η(e)(x, y, z −Reη) ∂ηFe(x, y, η)

= − 1

(2π)5
n0

∫
d3r e−ik·r

∫
dη

∫
d3k′∆η̂

(e)
k′ e

i(k′xx+k
′
yy+k

′
z(z−Reη))

×
∫
dk′′x dk

′′
y ∂ηF̂e,k′′

⊥
(η)ei(k

′′
xx+k

′′
y y) . (44)

Next, we first integrate by parts over η and then over d3r, a manipulation that gives us three

delta functions:

δn̂
(e)
k = − 1

(2π)2
n0

∫
dη

∫
d3k′∆η̂

(e)
k′ e
−ikzReη (45)

×
∫
dk′′x dk

′′
y (ik′zRe)F̂e,k′′

⊥
(η)δ(kx − k′x − k′′x)δ(ky − k′y − k′′y)δ(kz − k′z) .

We then integrate over d3k′, which yields

δn̂
(e)
k = − iRe

(2π)2
n0

∫
dk′′x dk

′′
y dη∆η̂

(e)

k⊥−k′′
⊥, kz
F̂e,k′′

⊥
(η)kze

−ikzReη (46)

= − iRe

(2π)2
n0

∫
dk′′x dk

′′
y ∆η̂

(e)

k⊥−k′′
⊥, kz

kz exp

(
−k

′′2
x Σ2

x

2
−
k′′2y Σ2

y

2
− k2z(Reσe)

2

2

)
.

Finally, by substituting Eq. (38) into the expression given above, we arrive at the desired

result, namely

δn̂
(e)
k =

Re

π

n0Ze
2Lm

meγ0c2

∫
k2zdk

′′
x dk

′′
y

γ20((kx − k′′x)2 + (ky − k′′y)2) + k2z
δn̂

(M)

k⊥−k′′
⊥, kz

× exp

(
−k

′′2
x Σ2

x

2
−
k′′2y Σ2

y

2
− k2z(Reσe)

2

2

)
. (47)



12

Using Eq. (47) along with Eqs. (32) and (36), one can track the Fourier component of the

electron density perturbation along the entire MBEC lattice. For purposes of comparison

with simulation (and also to ensure that physically meaningful quantities are calculated) it

becomes necessary to translate the frequency-domain results into their real-space counter-

parts. For example, a very useful metric when tracking the bunching of the electron beam is

the density fluctuation ratio S(z) =
∫
d2x δn(x, z)/n0, which is ∼ 1 for a nonlinear amplifier.

Since the localized density fluctuation δn is related to its Fourier pair δn̂k via

δn =
1

(2π)3/2

∫
d2k⊥dkz exp(ik · x + ikzz)δn̂k⊥, kz , (48)

the ratio in question is expressed by

S(z) =

∫
dkz δn̂k⊥=0, kz exp(ikzz)

2πn0

. (49)

Useful relations similar to the one given above can also be obtained for other important

quantities such as the effective wakefield of the cooler section. However, the latter topic will

be covered in a subsequent note.

IV. NUMERICAL RESULTS

Turning to a simple numerical illustration, we now consider the case in which a single,

thin hadron disk of length Lh is immersed in the middle of an electron slice (i.e. at z = 0).

The hadron density perturbation is given by

δn(M)(x, z) =
Nh

2πΣxΣyLh
H(z) exp(− x2

2Σ2
x,h

− y2

2Σ2
y,h

) , (50)

where Nh is the number of hadrons, H(z) is a step function that is equal to unity for

−Lh/2 ≤ z ≤ Lh/2 and zero elsewhere, and we have assumed an elliptical cross section for

the disk with rms sizes Σx,h and Σy,h (as well as uniform line density). The corresponding

frequency-domain perturbation is

δn̂
(M)
k = Nhsinc(kzLh/2) exp(−Σ2

x,hk
2
x/2− Σ2

y,hk
2
y/2) , (51)

where sinc(x) = sinx/x. Using the techniques described in the two previous sections (theo-

retical and simulation-based), we can propagate the electron beam perturbation due to the

hadrons through the MBEC lattice. Here, we consider parameters that approximate the
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FIG. 1: Local density fluctuation ratio S(z) =
∫
d2x δn(x, z)/n0 after the first chicane (left) and

after the second chicane of the cooler (right). Theory (orange plots) and simulation data (blue

plots) are included.

current SHC configuration of EIC, namely: a 275 GeV proton beam, an electron beam with

a peak current of Ie = en0c = 17 A, a normalized transverse emittance of γ0ε = 2.8µm

and an energy spread of σe = 1 × 10−4, a 1 m average beta function at the amplifier,

Σx = Σy = Σ = 0.43 mm, Σx,h = 1.1 mm, Σy,h = 0.24 mm, Lm = Lk = 39 m, Ld = 43 m.

Moreover, we have rp = Σp/Σ = 0.22 and the chicane strengths are Re,1 = Re,2 = 0.5 cm (for

simplicity, only one amplification stage is assumed). As far as the simulation parameters are

concerned, we have Ne ≈ 107, Nh ≈ 2.5×103, Ne,m = 2×106, Nh,m = 2.5×103, L = N0Σ/γ0

with N0 = 20 and Lh = L/250. In Fig. 1 we show the comparison between theory and sim-

ulation as far the local density ratio S is concerned. For the theory, we have utilized the

cold beam model when describing the three-dimensional plasma oscillations. Furthermore,

to remove a heavy noise background from the simulation results, we have subtracted the

code output for the case of zero electron energy modulation (i.e. no hadrons), which allows

us to focus on the coherent signal. Reasonably good agreement is observed between the two

approaches and the amplification of the electron beam modulation (or bunching) is evident.
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V. CONCLUSIONS

In this note, we have developed a set of fully three-dimensional simulation and theory-

based techniques for the study of microbunched cooling, including the crucial effect of gain

amplification. A 3D macroparticle code, along with a Vlasov equation-based, frequency-

domain method, have been used to track the bunching of the electron beam along the cooler

lattice. Good agreement is observed between theory and simulation, which paves the way

for subsequent calculations of other key parameters, such as the effective wakefield and the

cooling time scales.
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