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Three dimensional coherent electron cooling without a bypass

M. Blaskiewicz

BNL 911B, Upton, NY 11973, USA

This note considers the possibility of a coherent electron cooling system for the Electron Ion
Collider that does not include a bypass for the ions. A detailed design is not included. It is
simply assumed that appropriate density fluctuations in the kicker region can be obtained and the
implications of those modulations are considered.

INTRODUCTION

The Electron Ion Collider (EIC) requires strong hadron cooling (SHC) to reach luminosities of 1034cm−2s−1.
Without cooling, emittance growth times due to intrabeam scattering are as small as two hours. The current scenario
involves coherent electron cooling with a microbunching amplifier. This design requires a magnetic bypass for the
ions. This bypass is both complicated and expensive and a design that allowed the electrons and ions to copropagate
throughout the cooling section would be preferable. This note assumes a best case scenario for a new electron amplifier
and tests the efficacy of direct transverse kicks from the electron density fluctuations.

THE MODEL

The scenario is shown in 1. Here, and through most of the note, we work in the comoving frame where the average
momentum of the ion bunch is zero.
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FIG. 1: Diagram of the cooling scenario in the comoving frame. The horizontal black lines indicate the one sigma contours
of the electron bunch, the blue dot is the ion with its velocity indicated by the blue arrow. The red contours illustrate the
extent of the electron fluctuation seeded by the ion. In the modulator (M) the ion imprints a perturbation on the electron
bunch. In the amplifier (A) the electrons are focused and the signal is amplified. Note that any sort of focusing will cause the
perturbation to move transversely by a significant amount. The effect of the focusing on the ions is neglected. In the kicker (K)
the perturbation has grown to the point it can provide a substantial kick to the ions. Note that the betatron phase advance of
the electrons between M an K is a multiple of 2π.

To simplify the calculations assume the electron density perturbation in K is spherically symmetric and model the
density perturbation as

δρe(r) = δρ0
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Note that
∫
δρed

3r = 0 as required by charge conservation. Any damaging effects due to the bandwidth, dispersion
etc. of the amplifier are neglected. This is a strong assumption. The electric field generated by the perturbation is
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spherically symmetric and for r <∼ σ1 it is given by

E =
δρ0(1− σ3

1/σ
3
2)

3ε0
r +O(r3) ≡ CEr +O(r3) (2)

The ion’s three dimensional velocity in the comoving frame is v. The impulse approximation is used to obtain the
kick. Between the center of M and the center of K the ion travels a distance

∆r =
2LA + LM + LK

2γc
v,

where the lengths LA etc. are measured in the lab frame and the factor of γ accounts for time dilation. We assume
the beams in the lab frame are relativistic and only keep leading order terms in the Lorentz transformations. The
offset ∆r leads to the ion experiencing an electric field E = CE∆r. This field is applied for a time ∆t = LK/γc. The
momentum impulse is then

M∆v = QE∆t = QCE
2LA + LM + LK

2γc

LK
γc

v, (3)

where M and Q are the mass and charge of the ion. Since everything its spherically symmetric the cooling rates are
equal in all three dimensions. The kick in (3) happens once per turn and only when an ion interacts with the electron
bunch. This happens for a fraction of the time σze/σzi, where σze and σzi are the rms bunch lengths of the electrons
and ions, respectively. While it is irrelvant for the ratio, both lengths are measured in the comoving frame as stated
previously. The average velocity impulse for a single ion traversal of the cooling section is then

∆v = CE
Q

M

σze
σzi

2LA + LM + LK
2γc

LK
γc

v ≡ gv. (4)

Consider horizontal motion in the lab frame. We can model the cooling as a thin element with ∆x′ = −gx′. As long
as the tune is not too close to an integer the betatron amplitude decays as Ax(n) ∝ exp(−gn/2) with turn number n.
The inverse emittance cooling time is then

1

τc
= CE

Q

M

1

T0

σze
σzi

2LA + LM + LK
2γc

LK
γc

, (5)

with T0 the revolution period and CE given by equation (2).
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FIG. 2: Density pertubation as a function of radius for σ2 = 2σ1; enclosed charge within volume r, Q(r); resulting radial
electric field, E(r).

With the cooling rate of equation (5) we need to know the maximum value of CE , which is proportional to δρ0.
The primary consideration is maintaing the linearity of the electron amplifier [1, 2]. For simplicity assume r2 = 2r1.
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Relevant quantities are shown in Figure 2. We go back to the comoving frame and approximate the total density
perturbation of the electron bunch as the linear superposition of density perturbations from all ions and electrons

δρtot(r) =

Ne∑
k=0

δρe(r− rek) +

Ni∑
k=0

δρe(r− rik), (6)

where rek and rik denote the three dimensional locations, in the center of the modulator, of the electrons and ions,
respectively. There are Ni ions and Ne electrons and the expression for δρtot is only valid well within the electron
bunch. We neglect variations in δρ0 with macroscopic location within the electron bunch.

To estimate the maximum value of δρ0 we focus on the center of the electron bunch and use the parameter M
defined via

〈δρ2tot(0)〉 =
1

M
ρ2e(0), (7)

where the angular brackets denote an ensemble average and ρe(0) is the charge density at the center of the electron
bunch. To estimate the ensemble average treat the electrons and ions as identical, independently distributed, random
variables. Then

〈δρ2tot(0)〉 =

∫
δρ2e(r) (NePe(r) +NiPi(r)) d3r ≈ (NePe(0) +NiPi(0))

∫
δρ2e(r)d3r, (8)

where Pe(r) and Pi(r) are the single particle distribution functions of the electrons and ions, respectively. The
approximation assumes σ1 and σ2, the length scales of δρe, are small compared to any of the distribution widths.
With equation (1) the integral is straightforward.∫

δρ2e(r)d3r = δρ20σ
3
1π

3/2

(
1 + λ−3 − 25/2

(1 + λ2)3/2

)
≡ δρ20Veff ,

where we have defined λ = σ2/σ1 and Veff , the effective volume of the perturbation.
Now, ρe(0) = eNePe(0) with e the charge of the electron. So

δρ0 =
eNePe(0)√

MVeff [NePe(0) +NiPi(0)]
. (9)

For a numerical estimate we use the parameters in Table I. The emittance cooling time of 1.4 hours is less than the 2
hour growth times predicted for IBS. . The parameter δρ0Veff/e is an estimate of the number of electrons contributing
to the kick of a single ion. The horizontal emittance of the protons is εx = 10 nm. Coupled with βx = 200 m this
implies an angular spread of σ(x′) = 7 × 10−6 and a typical motion between M and K of δx/σ1 = 1.6. One sigma
particles in x are at 1.6 on the horizontal axis of Figure 2. This is well outside the linear cooling region so the 1.4
hour cooling time estimate is too short. A nonlinear analysis is required to get a reliable estimate.

Consider horizontal motion in the lab frame. For small amplitudes we have ∆x′ = −gx′ where g is defined in
equation (4). We have g = T0/τc. For larger values of x′

∆x′ = −g E(Leffx
′)

LeffdE/dx0
≡ −gf(x′), (10)

where E(x) is the horizontal electric field plotted in Figure 2, Leff = LA + (LM + LK)/2 is the effective distance
between the modulator and the kicker, and dE/dx0 is the derivative of E with respect to x at x = 0.

The change in the mean square angular spread on one traversal of the cooling system is

∆〈x′2〉 = −2g〈x′f(x′)〉 = −2g

∫
Pθ(x

′)x′f(x′)dx′, (11)

where Pθ(x
′) is the angular probability distribution function for the ions. In the linear approximation this is just

∆〈x′2〉 = −2g〈x′2〉,

The nonlinear emittance cooling time τc,nl is related to the linear cooling time by

τc
τc,nl

=

∫
Pθ(x

′)x′f(x′)dx′∫
Pθ(x′)x′2dx′

Taking a Gaussian distribution for the ions and using the parameters in Table 1, τc,nl = 4.τc = 5.6 hours. The last
concern is heating due to the kicks from the other coherent kicks created by the other ions and electrons [3]. We
simply state it is irrelevantly small.
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TABLE I: Cooling parameters for protons at peak luminosity. Entries above the double horizontal line are inputs and those
below are outputs. Simulations by W. Bergan suggest M = 10 is a reasonable lower limit.

parameter value

γ 293

LM = LA = LK 40m

βx, βy 200m

σxi 1.4mm

σyi 0.47mm

σzi/γ 7 cm

Ni 7 × 1010

σxe = σye 1.4mm

σze/γ 1cm

Ne 6.25 × 109 (1 nC)

M 10

σ1 = σ2/2 0.35mm = σxi/4

τc 1.4 hours

δρ0Veff/e 13.3

CONCLUSIONS

A first pass estimate of transverse cooling without using a bypass was made. An emittance cooling time of 5.6
hours was found. A cooling system without a bypass is probably cheaper and less prone to jitter and similar effects
than a cooling system with a bypass. It is also less tuneable. However, this all relies on a sufficiently robust amplifier,
which is by no means a certainty. Multiparticle simulation codes exist that can fully model these effects.
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