
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)

Photon Sciences

May 2021

Y. Hidaka

A High-Level Application Tool for Generation and Validation of Insertion
Device Orbit Feedforward Tables at NSLS-II

BNL-221578-2021-TECH

NSLSII-ASD-TN-359

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for
publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United
States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

NSLS-II TECHNICAL NOTE

BROOKHAVEN NATIONAL LABORATORY

 NUMBER

NSLSII-ASD-TN-359

AUTHORS:

Y. Hidaka, Y. Li

DATE

05/31/2021

A High-Level Application Tool for Generation and Validation

of Insertion Device Orbit Feedforward Tables at NSLS-II

Introduction:

We have developed a Python tool to automate the process of generating orbit feedforward tables for

insertion devices (IDs) and their validation at NSLS-II.

Even though the first and second field integrals (𝐼1 and 𝐼2) of an ID are minimized during the tuning

stage, the corrections are never perfect partially because the tuning must correct these field integrals for

all the available gap and phase values, as well as correct other higher-order multipole components [1].

These residual 𝐼1 and 𝐼2 of an ID result in an angle error and offset (position) error, respectively, at the

end of the ID, as shown schematically in Fig. 1. These errors result in closed orbit distortion (COD)

around the ring if not corrected.

Figure 1: Schematic of the beam trajectory around an ID with length 𝐿 showing the angle and offset errors

caused by the first and second field integrals of the ID.

Since these field integrals are defined as

𝐼1𝑥,𝑦 = ∫ 𝐵𝑥,𝑦(𝑠)𝑑𝑠,

𝐼2𝑥,𝑦 = ∬𝐵𝑥,𝑦(𝑠
′)𝑑𝑠′𝑑𝑠,

no matter what the actual distribution of magnetic field errors along the s-position is, the error souces can

be replaced with a virtual think kick upstream and downstream of the ID (as shown in Fig. 1) with the

following relations (only for horizontal kicks shown, but similar relations hold for the vertical kick):
𝐼1𝑦

𝐵𝜌
= Δ𝜃𝑥 = 𝜃𝑥,US + 𝜃𝑥,DS,

𝐼2𝑦

𝐵𝜌
= Δ𝑥 = 𝐿𝜃𝑥,US,

where 𝐵𝜌 is the magnetic rigidity (~10 for 3 GeV at NSLS-II), 𝜃𝑥,US and 𝜃𝑥,DS are the upstream and

downstream kick angles, while Δ𝑥 and Δ𝜃𝑥 are the offset and angle error at the end of the ID.

Therefore, the COD created by non-zero 𝐼1 and 𝐼2 can be eliminated by installing one orbit corrector at or

close to the upstream virtual kick and another corrector at or close to the downstream virtual kick, and

applying the opposite kicks at these correctors.

When the gap and/or phase of an ID is changed, the residual 𝐼1 and 𝐼2 can change as well. Therefore, we

need to create a table for correction values that can minimize the COD for each ID state. The table will be

1-D for gap-only IDs like in-vacuum undulators (IVUs), while it will be 2-D for devices like elliptically

polarizing undulators (EPUs) that have gap and phase as their state knobs.

Once these tables are generated, the stand-alone feedforward systems developed by Y. Tian at NSLS-II

will monitor the ID gap/phase values and automatically apply the power supply current values based on

the feedforward tables to the upstream/downstream correctors. The Python tool discussed in this paper

allows you to generate these tables and also confirm that the feedforward system is working properly.

Main Repository & Dependencies:

The main repository of this application is hosted at https://gitlab.nsls2.bnl.gov/hlatools/id-orb-fdfrwrd.

Requirements of this program are the following:

1. A Python 3 environment with the following packages: aphla [2,3], cothread [4], h5py,

matplotlib, NumPy, SciPy. (Optional: jupyter)

2. EPICS libraries for cothread to work.

Quick Start Guide:

First connect to one of the servers on NSLS-II Control Network:

$ ssh -Y physics01

If you use one of the official accelerator physics standard conda environments, all the dependencies are

already installed. This tool is not a package, so you have nothing to install other than the dependencies

mentioned above.

To activate the latest official environment, just run

$ ap-conda-latest

If this command is not available, you can see all the available conda environments with

$ conda env list

Then find an environment whose name is like ap-2021-1.0a (latest version as of this publication) and

activate the environment with

$ conda activate ap-2021-1.0a

The environment naming convention is ap-YYYY-V.v[c], where YYYY is the release year, V and v are

major and minor versions. Occasionally a single alphabet is appended as well, denoted by c. This refers to

the bug fix version, which starts from a to z. These environments are available on box64-*, physics0*,

and hlaioc0*.

https://gitlab.nsls2.bnl.gov/hlatools/id-orb-fdfrwrd

How to Use:

The main repository contains 2 Jupyter notebooks (and their dependent modules) that are used to

calculate/refine/upload/validate orbit feedforward tables for IDs in NSLS-II Storage Ring. A third Jupyter

notebook is used to assess quickly how effective an existing feedforward table still is.

In the first notebook, you will measure the orbit response matrix for ID orbit correctors and its raw (i.e.,

uncorrected) gap- and/or phase-dependent orbit disturbance. In the second notebook, an orbit feedforward

table is first generated, based on the data measured in the first notebook. Then this table is further refined

for better correction. This refined table is finally uploaded to the relevant feedforward system PVs to

complete the task of updating the orbit feedforward table for the particular ID. As an optional step, you

can also validate how well the loaded table is working to minimize the gap- and/or phase-dependent orbit

disturbance. The third notebook will automatically close the gap with and without the feedforward

system, while measuring the rms COD of 180 BPMs around the ring. This will help you swiftly determine

whether the existing table is still effective or needs update.

Even though no installation is required for this tool, other than the dependencies, you do need to pull the

latest files and folders from the repository. If you do not know how, just follow the instructions below.

Otherwise, you can skip over the instructions on git.

Go to a directory where you want to download this repository.

If you have already set up an SSH key for GitLab, you can issue the following command:

$ git clone git@gitlab.cs.nsls2.local:hlatools/id-orb-fdfrwrd.git

If not, issue the following command instead:

$ git clone https://gitlab.nsls2.bnl.gov/hlatools/id-orb-fdfrwrd.git

after which you will be prompted for your username and password for GitLab.

Either way, this command will create a new folder called “id-orb-fdfrwrd” at the current directory. Go

into this newly created directory and open Jupyter with the following command, assuming you have

already activated the latest accelerator physics official environment:

(ap-2021-1.0a) $ jupyter notebook

Cloning is only needed for the first time. If you want to update to the latest code, just run the following

command in the “id-orb-fdfrwrd” directory (NOT the directory above where you issued the “git
clone” command):

$ git pull

mailto:git@gitlab.cs.nsls2.local:hlatools/id-orb-fdfrwrd.git
https://gitlab.nsls2.bnl.gov/hlatools/id-orb-fdfrwrd.git

1. Measurement Notebook
In Jupyter, click on “template_simple_orbff_meas” to open the first of the 3 notebooks. Then

follow the instructions contained in the notebook or later in this section.

Once you have measured the ID orbit corrector response matrix and the raw COD data with various gap

and phase values in the first notebook, you should open the second notebook

"template_simple_orbff_gen_validation" to postprocess the raw data and generate a new

feedforward table. Transfer the necessary information manually from the first notebook to the second

notebook, by following the instructions in the second notebook or in the later section.

Before you start
• Inject beam to Storage Ring (SR) as much as possible (to get better signal-to-noise), but below 2

mA to avoid Active Interlock (AI) beam dump.

• Any fill pattern will do.

• For Lattice MASAR, the latest operation lattice is recommended. But even if you use the bare

lattice, the resulting difference is likely very small. So, it is not too critical.

• For Orbit MASAR, the latest orbit file should be loaded.

• Make sure that the local bump setpoints are the latest ones by checking against the latest Local

Bump MASAR file ("ID_Localbumps" CID 71). If you see any difference, ask the lead operator,

or check the history to make sure the currently loaded setpoints are the values requested by the

beamline users, not accidentally changed values.

• Make sure that you know which ID Orbit Feedforward MASAR file (“Orbit_Feedforward”

CID 74) needs to be restored if you are just testing this program and want to restore the

original table later.

• All feedback systems that could change orbit automatically should be disabled (and, if you

forget to do this, they will be disabled automatically by the code later): FOFB, SOFB, RF

Freq. Feedback, Bump Feedback (a.k.a. Bump Agents), Tune Feedback

• Bunch-by-bunch feedback could be left enabled, but will be automatically turned off by the code

later.

Load the ID feedforward module

import idff

Running the cell below will print all the available ID names

idff.ap.getElements('ID') + idff.ap.getElements('PHASER')

Pick one of these names and assign it to IDName in the next cell. The following names and mode numbers

for EPUs are available as of this publication:

IDName epu_mode Notes

epu57g1c02c 1, 2

ivu20g1c03c None

ivu23g1c04u None

ivu21g1c05d None

ovu42g1c07u None

epu60g1c07d 0, 1, 2, 3 Priority order: 2, 3, 0, 1

dw100g1c08ud None Not fully implemented

ivu22g1c10c None

ivu20g1c11c None

ivu23g1c12d None

ivu23g1c16c None

ivu21g1c17u None

ivu21g1c17d None

dw100g1c18ud None Not fully implemented

ivu18g1c19u None

epu57g1c21u 1

epu105g1c21d 2

epu49g1c23u 0, 1, 2, 3

epu49g1c23d 0, 1, 2, 3

dw100g1c28ud None Not fully implemented

_phaserg1c23c None

Select an ID for which you want to generate an orbit feedforward

table
• For EPUs, you need to also specify the value for "epu_mode". For IVUs, set this variable to

None.

• As an example, let us pick C05 ID, as shown below.

IDName, epu_mode = 'ivu21g1c05d', None

(Optional) Relax setpoint/readback difference tolerance if wait time

during ORM measurement is long
• Change the if clause from False to True to run this cell if you want.

if False:

 diff_tol = 0.1

 #diff_tol = 0.03 # for C07-2 EPU60

 _idobj = idff.ap.getElements(IDName)[0]

 for iCh in range(6):

 _idobj.setEpsilon(f'cch{iCh:d}', diff_tol)

Specify whether you are running this notebook to just estimate field

integrals (True) or to generate an orbit feedforward table (False).
• If False (default): An orbit response matrix for the ID correctors will be measured. You must

select this to generate a table.

• If True: An orbit response matrix for the ID correctors will NOT be measured.

fld_integ_meas = False

Running the cell below will get the pre-defined (recommended)

gap/phase values at which table values are generated for the

specified ID.

params = idff.orbff_select(IDName, fld_integ_meas=fld_integ_meas,
epu_mode=epu_mode)

params['parTable'], params['parList']

• If the pre-defined gap/phase values fall outside of the current gap/phase limit values, you would
see an error message in the cell above. In this case, you have 2 options.

• The first option is to temporarily change the min/max gap/phase limit values (if allowed, and by
asking the lead operator) to make all the pre-defined values valid.

• The other option is to manually adjust the pre-defined gap/phase vectors.

You can see the pre-defined gap and phase vectors with:

print(idff.ORBFF_CONFIG[IDName]['gaps'])

print(idff.ORBFF_CONFIG[IDName]['phases'])

For example, if the first 2 gap values are outside of the limit, skip the first 2 values:

idff.ORBFF_CONFIG[IDName]['gaps'] = idff.ORBFF_CONFIG[IDName]['gaps'][2:]

Note that you should NOT remove the fully open gap value from the vector.

After adjusting these vectors, re-run the cell above. This time you should not see any error message.

At this point, you should have a few CSS pages open. First, you need

to be able to see the gap/phase setpoint/readback values.
• As an example, we will use C05 ID for the training purpose.

• On CSS, go to: "Main" => "Sub-Systems" => "Insertion Devices" => "ID&FE Main" => "5

SRX" (near the top center)

(CRITICAL) Manually check if the ID corrector power supplies are

turned on by putting non-zero setpoint values and see if the

readback responds
• You need to open the power supply CSS page by clicking on the "chain"-looking icon button on

the CSS page we opened earlier for the gap/phase monitoring purpose.

• If the feedforward mode is "Manual", you can directly modify the "Setpoint" value in each

channel.

• If the feedforward mode is "Auto", even if you change the "Setpoint" value, the value may be

restored back to the original value due to the feedforward system. In this case, you can switch the

mode to "Manual", or, you can change the gap to have the feedforward system change the

setpoint value for you.

• In either "Manual" or "Auto" mode, you must confirm that the "Actual" values are also changing

with the setpoint values. Some IDs have different units in "Setpoint" and "Actual", so it is OK if

the values are very different. The important thing is to check that the "Actual" values are NOT

staying near zero. Also, ignore the "Setpoint Readback" column. Also note that some channels

are actually disconnected so that "Actual" will always be zero.

Power supplies being used for feedforward (and available modes for

EPUs) [Channel indexes here are starting from 0, not 1]:
IDName epu_mode Channel Indexes

epu57g1c02c 1, 2 0, 1, 4, 5

ivu20g1c03c None 0, 1, 4, 5

ivu23g1c04u None 0, 1, 4, 5

ivu21g1c05d None 0, 1, 4, 5

ovu42g1c07u None 0, 1, 2, 3

epu60g1c07d 0, 1, 2, 3 0, 1, 2, 3

dw100g1c08ud None Upstream DW ch.0, ch.4; Downstream DW ch.0, ch.4;

Upstream vertical slow ring corrector (2nd channel);

Downstream vertical slow ring corrector (2nd channel)

ivu22g1c10c None 0, 1, 2, 3

ivu20g1c11c None 0, 1, 4, 5

ivu23g1c12d None 0, 1, 4, 5

ivu23g1c16c None 0, 1, 4, 5

ivu21g1c17u None 0, 1, 4, 5

ivu21g1c17d None 0, 1, 4, 5

dw100g1c18ud None Upstream DW ch.0, ch.4; Downstream DW ch.0, ch.4;

Upstream vertical slow ring corrector (2nd channel);

Downstream vertical slow ring corrector (2nd channel)

ivu18g1c19u None 0, 1, 3, 4

epu57g1c21u 1 0, 1, 2, 3, 4, 5

epu105g1c21d 1, 2 0, 1, 4, 5

epu49g1c23u 0, 1, 2, 3 0, 1, 2, 3, 4, 5

epu49g1c23d 0, 1, 2, 3 0, 1, 2, 3, 4, 5

dw100g1c28ud None Upstream DW ch.0, ch.4; Downstream DW ch.0, ch.4;

Upstream vertical slow ring corrector (2nd channel);

Downstream vertical slow ring corrector (2nd channel)

_phaserg1c23c None Upstream horizontal/vertical slow ring correctors;

Downstream horizontal/vertical slow ring correctors

(CRITICAL: Only for EPUs with current strips in operation) If the

feedforward system for the current strips is NOT enabled, enable it

now. Also make sure that their power supplies are turned on. (Only

ID02, ID21-1, and ID21-2 are currently using current strips, as of

this publication).

Running the cell below will perform the following preparation tasks

and get a file path to which all the measured data will be saved.
• Open up the ID fully

• Turn off BPM auto gain control (AGC) and adjust BPM attenuation

• Switch feedforward mode to "Manual" (i.e., off)

• Disable all unwanted feedback systems

• Adjust ID local bumps to user setpoints

outputFile = idff.prepToMeasureOrbFF(params)

 (IMPORTANT) This data file path displayed in the cell above is the

only information you need to transfer to the second notebook.

Now let the actual measurement begin!
• If this cell stops in the middle (e.g., due to not being able to reach the target gap/phase), simply

re-run this cell again. It will automatically resume where it got stopped.

• If this measurement is interrupted and machine conditions have changed substantially, rather than

resuming, you may want to start from scratch, i.e., starting over from the top of this notebook.

• If this cell stopped due to a hardware problem, you obviously need to make sure that the hardware

problem has been fixed before you attempt to resume or restart from scratch.

idff.measure_orbff(params, outputFile)

Make sure to restore the ID to the “open” state
• If everything has gone right, the ID should be already fully open for IVUs. But, for EPUs, the

phase may not have been brought back to 0. So, it does not hurt to make sure the ID is opened up

at the end.

idff.openIDs(params)

2. Table Generation/Deployment/Validation Notebook
Once you are done with the first notebook, in Jupyter, click on

“template_simple_orbff_gen_validation"” to open the second notebook. Then follow the

instructions contained in the notebook or later in this section.

There is one important manual step. You need to copy and paste the path to the measurement file

generated in the first notebook into the second notebook. See the detailed instructions in the cell titled

“Replace the file path to the path of the HDF5 file you just created in the first notebook” below.

Before you start
• Read and follow the machine setup described in "Before you start" in

"template_simple_orbff_meas.ipynb" (i.e., the first notebook) or in the previous section

“1. Measurement Notebook”.

Load the ID feedforward module and matplotlib
import idff

import matplotlib.pylab as plt

plt.rcParams['figure.figsize'] = (14, 10)

Replace the example file path in the cell to the path of the actual

HDF5 file you just created in the first notebook
• Copy the string in the variable “outputFile” in "template_simple_orbff_meas.ipynb"

(i.e., the first notebook) and replace the example file path being used here with this path.

• This file path should have been printed out in the cell right above the heading “(IMPORTANT)

This data file path displayed in the cell above is the only information you need to transfer to the

second notebook.” in the first notebook.

orbff_meas_filepath = \
'/epics/aphla/SR/2021_02/ID/_phaserg1c23c_orbitFF_2021_02_25_021724.hdf5'

 (CRITICAL) Manually check if the ID corrector power supplies

are turned on by putting non-zero setpoint values and see if the

readback responds
• You can skip this step if you have just completed the first notebook as you must have passed this

check in the first notebook.

• If not, see the instructions in the first notebook.

(CRITICAL: Only for EPUs with current strips in operation) If the

feedforward system for the current strips is NOT enabled, enable it

now. Also make sure that their power supplies are turned on.

Running the cell below will perform data extraction from the

measurement performed in the first notebook
• (IMPORTANT) The path to the HDF5 file ('*.ffresult.*.hdf5') that will be displayed

in the output of this cell is the file path you need to manually assign to the variable

"ffresult_filepath" in a later cell if you skip to the automatic table validation section

to just validate a previously created table.

orbffgen = idff.OrbFFGenerator(orbff_meas_filepath)

If you want to just perform automatic validation (i.e., if feedforward

PVs have already been populated with valid correction currents and

you know which HDF5 file is associated with the loaded table value),

skip over to the cell titled "Perform an automated validation..."

below. Otherwise, do NOT skip.

Calculate the first estimated feedforward table

orbffgen.calcOrbFFTable()

Flip the safety switch variable "online" to True
• If left False, no caput() will be performed.

online = True

Running the cell below will perform the following preparation tasks.
• Open up the ID fully

• Turn off BPM auto gain control (AGC) and adjust BPM attenuation

• Switch feedforward mode to "Manual" (i.e., off)

• Disable all unwanted feedback systems

• Adjust ID local bumps to user setpoints

orbffgen.prepToFineTuneTable(online)

Now let the iterative table refining process begin!
• If this cell stops in the middle (e.g., due to not being able to reach the target gap/phase), and if

you want to resume where it got stopped, simply run this cell again after making sure that the

variable "resume" in this cell is set to True.

• If this measurement is interrupted and machine conditions may have changed substantially, rather

than resuming, you may want to start from scratch. In this case, re-run the cell right above that

calls orbffgen.prepToFineTuneTable(), and then run this cell after making sure that the

variable "resume" in this cell is set to False.

• If this cell stopped due to a hardware problem, you obviously need to make sure that the hardware

problem has been fixed before you attempt to resume or restart from scratch.

resume = False

orbffgen.fineTuneTable(online, resume)

Run the cell below after completing all the refinement steps in the

previous cell in order to save the collected data to an HDF5 file,

visualize the postprocessed results, and save all the plots into a PDF

file.

orbffgen.summarize()

----------- If NOT uploading the new table to PVs, stop here. -----------

Upload the newly computed feedforward table to the relevant PVs
• If you plan to perform a validation step after uploading the new table, set

"will_run_auto_validation" to True.

• If you plan to stop after uploading the table to the PVs, without performing the validation step, set

"will_run_auto_validation" to False. In this case, the ID will be opened up fully and its

feedforward system will be enabled, setting the ID ready for user operation.

will_run_auto_validation = True

orbffgen.applyNewTable(online, will_run_auto_validation)

----------- If NOT performing the validation step, stop here. -----------

Perform an automated validation (including interpolation) for an ID

orbit feedforward table
• If you did NOT skip the sections for table calculation/refining in this notebook, you do NOT have

to change anything in the cell below before running the cell.

• If you DID skip over to this cell without running through the table calculation/refining cells in

this notebook, you DO need to manually specify a processed HDF5 file.

– "ffresult_filepath" must contain the correct path to a processed HDF5 file

('*.ffresult.*.hdf5'), which is automatically generated when

idff.OrbFFGenerator() is called in an earlier cell.

try:

 orbffval = idff.OrbFFValidator(orbffgen.output_hdf5_filepath)

except:

 ffresult_filepath =
'ivu20g1c03c_orbitFF_2019_02_03_023512.ffresult.2019-02-03T04-20-15.hdf5'

 import os

 try:

 assert os.path.basename(ffresult_filepath).split('.')[0] == \

 os.path.basename(orbff_meas_filepath).split('.')[0]

 except AssertionError:

 print('The name of the underlying measurement file for the
processed HDF5 file specified by "ffresult_filepath"')

 print('is based must match the name of the measurement HDF5 file
specified by "orbff_meas_filepath" (defined in')

 print('the 2nd cell of this notebook).')

 raise

 try:

 orbffval = idff.OrbFFValidator(ffresult_filepath)

 except:

 orbffval = idff.OrbFFValidator(ffresult_filepath,
orbff_meas_filepath=orbff_meas_filepath)

Running the cell below will perform the following preparation tasks.
• Open up the ID fully

• Turn off BPM auto gain control (AGC) and adjust BPM attenuation

• Switch feedforward mode to "Auto" (i.e., on)

• Disable all unwanted feedback systems

• Adjust ID local bumps to user setpoints

online = True

orbffval.prepToValidate(online)

Now let the validation process start!
• If this cell stops in the middle (e.g., due to not being able to reach the target gap/phase), and if

you want to resume where it got stopped, simply run this cell again after making sure that the

variable "resume" in this cell is set to True.

• If this measurement is interrupted and machine conditions have changed substantially, rather than

resuming, you may want to start from scratch. In this case, re-run the cell right above that calls

orbffval.prepToValidate(), and then run this cell after making sure that the variable

"resume" in this cell is set to False.

• If this cell stopped due to a hardware problem, you obviously need to make sure that the hardware

problem has been fixed before you attempt to resume or restart from scratch

resume = False

orbffval.validate(online, resume, orbit_stable_wait=3.0,

 nOrbShots=10, include_userBPMs=False)

Run the cell below after completing all the validation steps in the

previous cell in order to save the collected data to an HDF5 file.

orbffval.save()

Finally visualize the validation results, and save all the plots into a

PDF file.

orbffval.summarize()

This concludes the whole process of generating, deploying, and verifying the orbit feedforward table for

an ID.

3. Quick Table Assessment Notebook

The third notebook “template_quick_orbff_check” should be opened in Jupyter and run if you

want to quickly check whether the existing table for an ID is still good or not. If not good enough, you

should start the process of updating the table by using the first notebook, followed by the second

notebook (see “1. Measurement Notebook” and “2. Table Generation/Deployment/Validation

Notebook“).

The difference of this notebook from the full validation performed in the second notebook is that this

notebook checks the orbit distortion that includes the transient effects of the ID motion and the ID orbit

correctors and the lag between them. If the ID is moving too fast or the corrector response is too slow,

you may observe a noticeable orbit distortion even if the table is effective. In the second notebook, orbit is

measured after the ID stops moving and the corrector current is stabilized. Therefore, it can evaluate

purely the effectiveness of the table, excluding the transient effects, at the cost of much longer

measurement time.

This notebook will perform the following steps for an ID of your interest:

1. Enable the orbit feedforward system

2. Open up the gap

3. Correct the local bump

4. Set the current orbit as the reference

5. Start monitoring COD from this reference

6. Start closing the gap

7. Wait 10 seconds after reaching the minimum gap

8. Disable the feedforward system and set all ID orbit corrector currents to zero

9. After waiting for 10 seconds, start opening the gap

10. Wait 10 seconds after reaching the maximum gap

11. Enable the feedforward system

12. Plot the rms COD around the ring while moving the gap vs. time.

The quick table assessment feature for EPUs is still under development as of this publication.

Before you start
• Inject beam to Storage Ring (SR) as much as possible (to get better signal-to-noise), but below 2

mA to avoid Active Interlock (AI) beam dump.

• Any fill pattern will do.

• For Lattice MASAR, the latest operation lattice is recommended. But even if you use the bare

lattice, the resulting difference is likely very small. So, it is not too critical.

• For Orbit MASAR, the latest orbit file should be loaded.

• Make sure that the local bump setpoints are the latest ones by checking against the latest Local

Bump MASAR file ("ID_Localbumps" CID 71). If you see any difference, ask the lead operator,

or check the history to make sure the currently loaded setpoints are the values requested by the

beamline users, not accidentally changed values.

• Make sure that all the ID orbit feedforward tables are the latest ones by checking against the latest

ID Orbit Feedforward MASAR file ("Orbit_Feedforward" CID 74). If you see any difference, ask

the lead operator for the reason for discrepancy. Note that C23 IDs may well have different

tables, as there are 2 modes of operation - canted vs. non-canted.

• All feedback systems that could change orbit automatically should be disabled (There is no

automatic disabling feature for this notebook): FOFB, SOFB, RF Freq. Feedback, Bump

Feedback (a.k.a. Bump Agents), Tune Feedback

• Bunch-by-bunch feedback could be left enabled.

Load the ID feedforward module and matplotlib
from orbff_quick_check import start_quick_check_v2 as start_quick_check
from orbff_quick_check import plot_result_v2 as plot_result

from orbff_quick_check import plt

plt.rcParams['figure.figsize'] = (14, 10)

Flip the safety switch variable "online" to True
• If left False, no caput() will be performed.

online = True

Select an ID for which you want to assess the feedforward table
• As an example, let us pick C03 ID, as shown below.

idname = 'ivu20g1c03c'; opts = dict(max_gap_mm=None, min_gap_mm=None)

The following table shows the currently available valid names and options:

idname Opts
ivu20g1c03c dict(max_gap_mm=None, min_gap_mm=None)
ivu23g1c04u dict(max_gap_mm=None, min_gap_mm=None)
ivu21g1c05d dict(max_gap_mm=None, min_gap_mm=None)
ovu42g1c07u dict(max_gap_mm=None, min_gap_mm=None)
ivu22g1c10c dict(max_gap_mm=None, min_gap_mm=None)
ivu20g1c11c dict(max_gap_mm=None, min_gap_mm=None)
ivu23g1c12d dict(max_gap_mm=None, min_gap_mm=None)
ivu23g1c16c dict(max_gap_mm=None, min_gap_mm=None)
ivu21g1c17u dict(max_gap_mm=None, min_gap_mm=None)
ivu21g1c17d dict(max_gap_mm=None, min_gap_mm=None)
ivu18g1c19u dict(max_gap_mm=None, min_gap_mm=None)
_phaserg1c23c dict(max_gap_mm=123.0, min_gap_mm=None)

By specifying None for max_gap_mm and min_gap_mm, the minimum and maximum values are

automatically retrieved from the relevant PVs. If you want to customize the scan range, use these options.

Start the measurement!

$ output_filepath = start_quick_check(idname, online=online, **opts)

Plot the measurement result

plot_result(output_filepath)

References:

[1] T. Tanabe, Y. Hidaka, C. Kitegi, D. Hidas, M. Musardo, D. A. Harder, J. Rank, P. Cappadoro, H.

Fernandes, and T. Corwin, “Latest experiences and future plans on NSLS-II insertion devices”, AIP Conf.

Proc. 1741, 020004 (2016).

[2] L. Yang, J. Choi, Y. Hidaka, G. Shen, G. Wang, “Development Progress of NSLS-II Accelerator

Physics High Level Applications” in Proc. IPAC2012, New Orleans, Louisiana, USA (2012), THPPR018.

[3] https://github.com/NSLS-II/aphla

[4] http://controls.diamond.ac.uk/downloads/python/cothread/; https://github.com/dls-controls/cothread

https://github.com/NSLS-II/aphla
http://controls.diamond.ac.uk/downloads/python/cothread/
https://github.com/dls-controls/cothread

