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The operation parameter optimization in 2020 RHIC low energy run is

difficult. First, the RHIC luminosity is affected by many RHIC operation

parameters, as well as affected by many Low Energy RHIC electron Cooling

(LEReC) operation parameters. Second, the luminosity signal in this run is noisy

and not sensitive to these parameter changes, especially when these parameters

are very close to their optimized values. It is not easy to distinguish the effects

of one parameter from all other operation parameters separately. Therefore,

it is difficult to optimize the luminosity by varying these parameters one by

one. To find a way for luminosity optimization, we analyze some operation

parameters via a machine learning algorithm - XGBoost. After constructing a

black-box surrogate model from XGBoost and plotting their partial dependency

plots (PDF) and SHAP value plots for different operation parameters, we can

find the effects of an individual parameter on the RHIC luminosity and optimize

it accordingly.

1.Motivation

For a circular collider like RHIC, we can change some machine parameters and

beam parameters to maximize its luminosity. The luminosity formula for round

Gaussian and equal beams at the interaction point (IP), as is the case in RHIC,

can be expressed as

L = nb
fcN

2

4πσ2
H (1)

where nb is the collision bunch number, fc is the collision frequency, σ is the

transverse RMS beam size at the IP, and N is the particle number per bunch.

H is a geometric factor that accounts for the hourglass and crossing angle effect.

Therefore, we can optimize the luminosity according to the transverse ion beam

size, the bunch length, the ion beam intensity, and the revolution frequency.

During RHIC operation, several machine parameters can affect the ion beam

size and the bunch length, such as the beta*, the RF voltage, and the injection
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emittance. The machine tune, the chromaticity, the collimator position, and the

RF voltage are also critical for a higher integrated luminosity. We can optimize

these parameters for a longer beam lifetime by minimizing the beam loss, which

can be caused by all kinds of effects.

Fig. 1: The luminosity and Q1 quadrupole current for beta* squeeze.

In the 2020 RHIC low energy run, electron cooler LEReC operated to improve

the integrated luminosity. The parameters of the LEReC electron accelerator

can affect the cooling of ion bunches and the luminosity. These parameters are

the electron beam current, the electron energy, the current of solenoidal magnets

in the cooling section (which provides focusing for the electron beam), and the

beam position (transverse alignment of electrons with respect to the ion beam).

All the above RHIC and LEReC operation parameters can affect the lumi-

nosity. The effects of some parameters are straightforward, such as the ion beam

intensity, the injection beam emittance, the machine beta*, and the revolution
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frequency. On the other hand, the impact of other parameters is less straight-

forward or indirect. These parameters are the LEReC magnets current, the

electron beam current, the electron beam energy, the RHIC machine tune, the

chromaticity, the collimator position, and others.

It is hard to differentiate the impact of these effects on the luminosity. They

could also change simultaneously store by store, for example, the ion injection

intensity and the ion beam emittance, the electron beam position, and the

electron energy. Furthermore, the luminosity signal is noisy in the 2020 RHIC

low energy run. Fig. 1 shows the luminosity signal as well as a quadrupole

magnet current for the beta* squeeze. The luminosity signal is changed from

35 Hz to 45 Hz within several seconds. Operationally, it becomes impractical

to optimize these parameters one by one according to the luminosity. This

optimization is more impractical when we have moved some parameters very

close to their optimized values and would like to do some fine optimizations.

To address the above issues, we can use a machine-learning algorithm.

Machine-learning is a powerful tool for solving complex problems that can

not be defined by some clear rules or equations. Machine-learning is more useful

if some optimization problems have too many input parameters, or they correlate

in an unknown way. Therefore, we implemented a machine-learning algorithm

(XGBoost) [1] [2] to the 2020 RHIC and LEReC operation data analysis. After

acquiring some data for these parameters and constructing a model from XG-

Boost, the luminosity as a function of an individual parameter can be plotted

separately for different parameters. Then we can find some optimized operation

parameter values for a higher integrated luminosity.

2. Operation Data and Pre-Processing

2.1. Data Acquisition

For a machine-learning project, the data is the first, and the machine-learning

algorithm is the second. It is critical and essential to get more data with a

wide variety and high quality. Therefore, some RHIC and LEReC operation

parameter data is acquired before constructing an XGBoost model. Table 1 lists

these parameters and Table 2 lists the acquired data.

The store length is about 2400 seconds for a nonimal store in the RHIC 2020

low energy run. To have more data sets or to include some early aborted store

data, these data are obtained within the first 1900 seconds of a nominal physics

store. In total, we used 791 useful stores (or data sets, measurements, samples,

examples) with 24 inputs (or variables, parameters, features, attributes).

The ion beam sizes (emittance) are from the H-jet emittance measurement

without further calculation. We averaged them for the first 20 seconds. We also

averaged the blue and the yellow ion beam intensity for the first 10 seconds.

If there was a beta* squeeze during a store, we ramp up the currents of some
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Table 1: Parameters and Their Abbreviations

RHIC LEReC

Parameters Abbreviations Parameters Abbreviations

Intensity B IntenB Electron BPM B Cooling ebpmB

Intensity Y IntenY Electron BPM Y Cooling ebpmY

Emittance B SizeB Ion BPM B ibpmB

Emittance Y SizeY Ion BPM Y ibpmY

Tune B H TuneBH Solenoid 1 B Bsol1

Tune B V TuneBV Solenoid 1 B Bsol1

Tune Y H TuneYH Electron Beam Current Current

Tune Y V TuneYV Electron Beam Energy Energy

Chrom B H ChromBH B Y Quadrupole Current BYquad

Chrom B V ChromBV

Chrom Y H ChromYH

Chrom Y V ChromYV

Collimator BH CollBH

Collimator BV CollBV

Collimator YH CollYH

Collimator YV CollYV

Beta* Squeeze Ramp Ramp

Luminosity Lumi

quadrupole magnets. Other parameters are all the average value of the total

1900 second store data.

There are eight beam position monitors (BPMs, 704 MHz) in both the blue

and the yellow LEReC cooling sections for the horizontal and the vertical planes.

The BPM data in Table 1 are the average of these 16 BPMs readings.

We excluded some parameters from constructing an XGBoos model. These

parameters are the ion beam loss rate (or ion beam decay) and the electron

beam angles. First, they are not the controllable parameters that we can directly

tune during our operation. Second, they have fewer effects on the machine

learning model, and they have some correlations with other parameters that will

affect later analysis. For many machine learning algorithms, we avoid using the

correlated input parameters. We sometimes can’t interpret a machine learning

model correctly because of this.

2.2. Parameter Correlations

To check the correlation between all input parameters before implementing a

machine learning algorithm, we can use the efficiency of correlation to evaluate
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Table 2: The acquired data sets used in XGBoost. The store fill number is

from 27341 to 28785.

Fig. 2: The correlations between some variables.

the degree to which two input parameters are linearly related. When we explain

a black box model results from some machine learning algorithms, to avoid an

inaccurate interpretation, we should pay more attention to the input parameters

with a high correlation coefficient between themselves.
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Fig. 3: The top plots are the luminosity scattering plot as a function of the

blue and yellow ion beam intensity. The bottom figures are the

luminosity scattering plots as a function of the blue and yellow ion

beam size. The unit of the ion intensity is 1E9; the RMS beam size

unit is um (emittance unit)

Fig. 4: The scattering plot shows the relationship between the ion beam

intensity and the beam emittance or beam size.
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The correlation coefficient equals the covariance of the two variables divided

by the product of their standard deviations. We define the correlation coefficient

as:

corr(X,Y ) =
Cov(X,Y )

σXσY
(2)

while Cov(X,Y ) = E[(X − µX)(Y − µY )] is the covariance of two random

variables X and Y. And µX and µY are their expected value. σX and σY
are their standard deviations. Cov(X,Y ) = 1 means the two variables X and

Y have a perfect positive linear relationship, and one variable increases with

another variable. Cov(X,Y ) = −1 also means X and Y have perfect linearity

between them, but one variable decrease when another variable increase. The

Cov(X,Y ) = 0 means there is no correlation between them, and the change of

one parameter doesn’t affect another parameter at all.

Fig. 2 is the matrix with correction coefficient values that shows the cor-

relations between some input parameters. The correction coefficient between

the luminosity and other parameters show in the green box at the bottom of

the figure. The IntenY and the IntenB have a positive 0.5 correction coefficient

between the luminosity. That means that the luminosity will likely increase if

the ion intensity increase. That is consistent with the theory result (Eq. 1).

The correction coefficient between the luminosity and the SizeY is abnormal,

and it has a positive 0.51 instead of a negative value. Presently, we can explain it

by the high correction coefficient of 0.69 between the IntenY and the SizeY. We

will further explain it in the next section with a scattering plot between them.

Other parameters have less correlation with the luminosity, such as the

electron beam current and energy. But this doesn’t mean these parameters are

not critical to the luminosity. If we have optimized the electron beam current

Fig. 5: The plots are the luminosity plots as a function of electron beam

current and energy. The unit of the electron beam current mA, and the

energy unit is MeV.
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and the electron beam energy for cooling, and there are not many changes during

the routine operation. Therefore their correlation coefficient with the luminosity

is small.

In Fig. 2, there are some other highly correlated items. In LEReC, the

electron beam passes through both the blue and the yellow cooling sections.

The beam position changes upstream will affect the downstream beam position.

Therefore, the correlation coefficient of the blue and the yellow beam position is

0.72. In RHIC, because both the blue and yellow injection ion beam intensity

are affected by the same source (AGS), the correlation coefficient of IntenY and

IntenB is 0.71.

Some correlations cannot be explained directly, such as the correlation be-

tween the blue ion beam size and the electron beam energy, as well as the

correlation between the blue ion beam size and the blue electron beam position.

Therefore, we can’t use these correlation coefficients to determine whether one

variable causes another one except there is a physical relationship between them.

2.3. Scattering Plots

To investigate the effects of some parameters, we plot the luminosity scattering

plot as a function of these parameters. The top two plots in Fig. 3 are the

relationship between the luminosity and the ion beam intensity. From these

plots, one can find that a higher ion intensity tends to have a higher luminosity,

which is predicted by Eq. 1. It is also consistent with the correlation results.

The bottom two plots are the relationship between the luminoisty and the

RMS beam size (or emittance). The plot of the SizeY (or emittance) shows that

a larger beam size results in a higher luminosity. It is not consistent with the

Eq. 1. We can explain it by Fig. 4. From Fig. 4, we can find that a higher

beam intensity will result in a higher emittance during injection for the blue ion

beam and the yellow ion beam. There are some correlations between the ion

beam intensity and the initial beam size as shows in Fig. 2.

The left plot in Fig. 5 shows the relationship between the luminosity and

the LEReC electron beam current. The right plot in Fig. 5 is the relationship

between the luminosity and the electron beam energy. From these plots, it is

not easy to find a clear tread between the luminosity and these parameters.

Therefore, there is limited guidance on optimizing the luminosity by tuning these

parameters store by store.

Other parameters, such as the machine tune, the chromaticity, the electron

beam position, and the ion beam position, also have similar behaviors. Their scat-

tering plots are in Appendix A. We also can’t optimize the operation parameters

only according to these plots.
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3. XGBoost: A superived machine learning algorithm

3.1. Extreme Gradient Boosting

To distinguish the effects on the luminosity from an individual input parameter,

we would like to have a function with multivariance for the luminosity. It may

have a similar function as below:

Lumi = f(x1, x2, x3...xn) (3)

while x1, x2, x3...xn are all input parameters that can affect the luminosity

direclty or indirectly.

With Eq. 3, we could find a function or partial dependence plot for each

input parameter. Therefore we can distinguish the effects from the individual

input parameter and optimize the luminosity according to these plots.

We have implemented a machine-learning algorithm named Extreme Gradient

Boosting (XGBoost) to create a black-box model between the luminosity and all

input parameters. This model can have a similar function of Eq. 3. XGBoost is

a supervised machine learning algorithm for either a classification problem or a

regression problem via a gradient descent method to optimize its loss function.

It was used by many winning teams of machine learning competitions, including

’CERN LHCb experiment Flavour of Physics’ [3]. It becomes well-known after

’Higgs Machine Learning Challenge’ [4] and the ’HEP meets ML award’ has

been given to its authors [5].

XGBoost tries to construct the relationship or model with the best predictive

power by using some previous logged input and output data. To evaluate how

well the algorithm models the input data sets, the algorithm can use a loss

function as its criterion. The loss function describes the difference between the

prediction and the actual output. Mean squared error (MSE) is one of the loss

function for a regression algorithm.

MSE =
1

m

m∑
i=1

(yi − ypi )2 (4)

where m = 791 is the total number of data sets for the case in this note.

The goal of a machine learning method is to minimize its loss function by

calculating its error term. For a machine learning algorithm, if the error term

is the gradient of the loss function, the method is called ’gradient’. If it also

uses an ensemble learning method [6] such as Boosting to sample the training

data and combine several multiple trained models to one model, it is called

’gradient boosting’. If it includes the first and second-order Taylor approximation

(dependency on the 1st and 2nd order derivative) of its loss function into its

error calculation, it becomes ’extreme gradient boosting’.

In this note, we constructed an appropriate unknown functional relationship

(or black-box model) between the luminosity and some input parameters via
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Table 3: Parameters Importance

Abbreviations R2 Reduction Abbreviations R2 Reduction

IntenB 0.2446 TuneBV 0.0188

CollYV 0.1768 CollYH 0.0158

IntenY 0.1109 ibpmB 0.0152

Energy 0.0782 ChromBH 0.0139

CollBH 0.0551 CollBV 0.0110

SizeB 0.0418 TuneYH 0.0108

SizeY 0.0390 ChromYV 0.0050

ibpmY 0.0378 BYquad 0.0040

Current 0.0296 Ramp 0.0035

ebpmY 0.0196 ChromBV 0.0023

XGBoost. The function is denoted by a hypothesis function h close to the output

(luminosity). It is defined as below:

y ≈ h(x1, x2, x3, ..., xn) (5)

where n = 24 is the total numpber of the input parameters from Table.1.

3.2. XGBoost Model R2 Score and Parameters Importance

To have an XGBoost model, we use 85% of the 791 data sets as the training

data to construct (train) the model. To evaluate the model performance, we use

the other 15% data sets to compare the model prediction and its actual value.

Before using thes data, we also did some data pre-processing, such as filling the

empty data points with an average value.

After constructing an XGBoost model, a R2 score function (the coefficient

of determination) is used to evaluate the model performance. It is 0.87 for the

best XGBoost model achieved in this note with MSE of 0.5. Normally, R2 = 1

or MSE = 0 means the prediction of the regression model matches the actual

value perfectly. The 15% test data points and their predictions agree very well

and are plotted in Fig. 6

We could evaluate the effects of an individual parameter on the model

performance via a permutation method [7]. The method shuffles the values in

a single column (ibpmB in Table. 2 for example) while keeping other columns

unchanged, then check how much the R2 score decreases. We list the model

score deduction in Table. 3 for each input parameter after random shuffling.

That is the parameter importance of constructing this model.

But this parameter importance is only valid for this machine learning model.

They could have slightly different results for different models with the same
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algorithm. Furthermore, as we mentioned before, we should also distinguish this

importance from the actual parameter importance during the operation. For

example, we have already optimized the electron beam current and the electron

beam energy, and their parameter importance cannot be captured by the model

with the existing data.

Fig. 6: The comparsion plot between the test data points and their prediction

from the model

4.Model Interpretation with Partial Dependence Plot

As discussed in the previous section, we cannot optimize the luminosity only

according to their scattering plots, their correlations, or their parameter impor-

tance.

To resolve this issue, we can use a partial dependence plot (PDP) [8] [9] [10].

After constructing a machine learning model, a PDP can plot the marginal

effects of one or two input parameters on the model prediction. The partial

function ĥxS
(xS) is defined as below:

ĥxS
(xS) =

1

m

m∑
i=1

hxS
(x

(i)
1 , x

(i)
2 , ..., xS , ..., x

(i)
n ) (6)
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Fig. 7: The PDP plot of the ion beam intensity [1E9] and the ion beam size

(emittance) [um]

where h is the XGBoost hypothesis model (Eq5), while m = 791 is the total

number of the data sets and n = 24 is the total number of input parametes. xS

Fig. 8: The PDP plot of the electron beam current [mA] and energy [MeV].
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is the interested input parameter.

To get a partial dependence plot for the ibpmB parameter in Table. 2, we can

replace all other 790 values in that column with the first value ibpmB = 74.69.

This value will be one horizontal data point (x-axis) of the PDP plot. Meanwhile,

we keep other columns unchanged and calculate the average and standard

deviation of all model predictions with these 791 data sets. Thus, we get a

corresponded vertical data point (y-axis) of the PDP plot. That is the first data

point for the PDP plot. After that, we can repeat this procedure with the second

value of ibpmB = 100.30 for the second data point until the last value in this

column.

Fig. 7 shows the PDP plots of the ion beam intensity and the beam size.

The light blue area is the deviation of the model predictions. The predicted

luminosity has a clear trend for both the blue and the yellow intensity. It also has

a clear tread for both the blue and yellow beam size. The PDP plots of the beam

size also agree with the theory (Eq.1) qualitatively. While from their scattering

plots in Fig. 3, it is not clear for the SizeB. It even doesn’t agree with the theory

for the SizeY. This PDP plot demonstrated that the constructed XGBoost model

and their PDP plots could distinguish the effects of one parameter from other

parameters and predict the luminosity correctly.

Fig. 9: The PDP plot of the machine tune (the setpoint values).
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Fig. 10: The PDP plot of the machine collimators [steps]. (where 0

corresponds to collimators fully retracted out and 2000 steps equal to

1 mm.)

Fig. 8 is the PDP plot for the electron beam current and the electron energy.

This plot shows that the 17 mA operation electron current is very close to the

optimized region ( 18mA). Meanwhile, according to the plot, we can further

optimize the luminosity by decreasing the electron beam energy.

Fig. 9 is the machine tune PDP plot. These tunes and chromaticities are the

setpoint values to the machine, not the measurement values. According to the

plot, we can optimize the luminosity by reducing the blue vertical and yellow

horizontal tune. The blue horizontal plan is less clear because of fewer data

points, while the yellow vertical tune of 1.185 is very close to its maximum.

Fig. 10 is the collimator position PDP plots. The unit of the collimator

position is steps, and 2000 steps equal to 1 mm. During operation, the collimator

positions are a compromise between the STAR luminosity and its background.

The greater number of the collimator position (steps) means the collimator closer

to the ion beam, while 0 corresponds to collimators fully retracted out. To have a

cleaner background, it could be that the yellow horizontal collimator and vertical

collimator too close to the ion beam, and they affected the luminosity. The

yellow horizontal collimator position of 56000 um could be an optimized position

for both luminosity and background. The plot also suggests that it is possible
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Fig. 11: The PDP plot for the ion beam and the electron beam positions [um].

to optimize the luminosity with the blue horizontal and vertical collimators.

Fig. 11 are the PDP plots for the ion beam position and the electron beam

position. We can find that a smaller ion beam and electron beam position tends

to have a higher luminosity, which agrees with the LEReC cooling theory [11].

The PDP plot for the machine chromaticity is in Appendix A.

From the above plots, we can see that a PDP can show the effects of individual

parameters. To have a clear interpretation of a PDP plot, we should make sure

there is no significant correlation between these input parameters. We have

used the correlation heatmap Fig. 2 to choose the parameters for the XGBoost

algorithm.

5.Model Interpretation with Shapley Value and SHAP

To overcome the potential correlation issue from a PDP plot, we can also use

so-called Shapley values (SHAP, Shapley Additive exPlanation) [12] [13] to

interpret the effect of an individual input parameter on the XGBoost model

prediction. The Shapley value calculates the marginal contribution of one input

parameter to the model prediction, as it does in the PDP plot. The formula to

calculate the Shapley value of an input parameter is [9]
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φj =
∑

S⊆(x1,...,xn)\(xj)

|S|!(n− |S| − 1)!

n!
(hx(S ∪ xj)− hx(S)) (7)

where (x1, . . . , xn) includes all input parameter values (n=24) in one data set

(one row in Table.2). xj is the interested paramter, and S is one of all possible

parameter subsets without xj . And j is the jth parameter in this data set (this

row) and it is less than nth. Because the order in which a machine learning

model uses an input parameter can affect its Shapley value calculation (the

contribution to the model prediction), we need all possible subsets. Each subset

S can be any possible parameter combination, and they can include 0, or 1, . . . ,

Fig. 12: The overview of all SHAP values for all input values in Fig.2
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or n− 1 input parameters.

The XGBoost model or function is hx (Eq.5) and hx(S∪xj)−hx(S) represents

the marginal contribution of xj for one possible subset (S) of parameters. It

Fig. 13: The SHAP values plots for the ion beam intensity [1E9] and beam

size [um] (emittance).

Fig. 14: The SHAP values plots for the electron beam current [mA] and

energy [MeV].
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calculates the difference of the parameter xj on the model prediction with and

without this parameter. The weighted total value of the marginal contributions

for all possible subsets is the Shapley value of the j parameter value in this data

set (this row).

With Eq.7, we can calculate the Shapley value for an individual parameter

value that represents its contribution to the model prediction. After calculating

the contribution (Shapley value) of the ibpmB = 74.69 value in the first row of

Table.2, we can repeat this calculation for the second input parameter values

ibpmY = 156.60 until the last parameter value in the row. Thus, we calculate

the contribution (Shapley values) of all input parameter values in this data

set. After we repeat the calculation for all other rows of data sets (791 rows in

Table.2), we will get a 791× 24 Shapley value table.

Then we can plot these SHAP values as well as all parameter values in Fig.

12. Each dot has three characteristics. First, the horizontal axis shows its

Shapley value that indicates whether the effect of that value causes a higher or

lower prediction. Second, the most left vertical location shows what parameter

it is depicting, such as IntenB, IntenY. We rank these parameters in descending

order according to their total contributions to the model prediction. They are

similar to the result in Table.3. We can find that the yellow vertical collimator,

the blue horizontal collimator, and the electron beam energy are critical in the

model, besides the blue and yellow ion beam intensity.

Last, the color shows the high or low value for that parameter. The maximum

value of one parameter (one column in Table.2) is red, while the minimum value

in that column shows blue. The colors between blue and red represent the values

between the maximum and the minimum. From Fig. 12, we can find a high

IntenB or a high IntenY value (red) has a positive (a positive SHAP value)

effect on the luminosity. But a lower CollYV (blue) value has a positive value

(prediction) on the luminosity. Therefore, we can optimize the luminosity by

increasing or decreasing a parameter if we assume a linear relationship between

them.

Fig. 12 is the overview of all parameters and their Shapley values. We can

also plot the SHAP value for an individual input parameter like the PDP plot.

Fig. 13 is the plot for the ion beam intensity and the ion beam size, and Fig. 14

is the plots for the electron beam current and the electron energy. They all have

a similar trend to their PDP plots.

We list more SHAP plots in Appendix A for comparison. Both the PDP

plots and the SHAP plots show a similar trend between the luminosity and their

input parameters.
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6. Summary and Discussion

To find the optimum operation parameters for RHIC low energy run, we imple-

mented a machine learning regression algorithm (XGBoost) using RHIC and

LEReC operation data.

After constructing an XGBoost model offline, we can distinguish the effects

of each operation parameter and optimize the luminosity according to their

PDP and SHAP plots. According to these plots, we can further optimize the

luminosity by decreasing the electron beam energy and increasing the electron

beam current to 18 mA. Other possible optimizations may include reduction of

the blue vertical and yellow horizontal tunes, moving out the yellow collimators

(horizontal and the vertical), move in the blue horizontal collimators, etc.

To get a good XGBoost model and find the optimized operation parameter

values, one needs to change all input parameters within a wide range. If

we optimize the luminosity by changing only one or two machine operation

parameters during one store, it requires lots of stores. Due to many parameter

changes within one store, one cannot easily identify parameters that improve the

luminosity. But if we optimize the luminosity with XGBoost and their partial

dependence plots (or SHAP plot), there is no such limitation. We can change all

input operation parameters during one store and distinguish their effects later

with XGBoost and their PDP plots. As a result, we can optimize the luminosity

faster and using fewer stores.

But machine-learning algorithms are impartial, and these trained models are

based on input data. Therefore if the input data has changed significantly, it will

most likely affect the model prediction. Meanwhile, different machine learning

algorithms will result in different models and predictions.
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8. Appendix A: More Scattering Plots, PDP Plots and SHAP plots
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Fig. 15: The scattering plot for the machine tune.

Fig. 16: The scattering plot for the machine chromaticity.
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Fig. 17: The scattering plot for the machine collimator position [steps]. 2000

steps equal to 1 mm.
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Fig. 18: The scattering plot for the ion beam and electron beam positions

[um].

Fig. 19: The PDP plot for the machine chromaticity.
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Fig. 20: The SHAP values plots for the machine tune.
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Fig. 21: The SHAP values plots for the machine chromaticity.

Fig. 22: The SHAP values plots for the machine collimator position

[steps].2000 steps equal to 1 mm.
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Fig. 23: The SHAP values plots for the ion beam and the electron beam bpms

[um].
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