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1 Summary

The principle results of this report are summarized in this and the
following three sections. The remaining sections provide details as needed
and may be treated as appendices.

The RF voltages and phases that produce flattened multi-harmonic
accelerating buckets are derived in Sections 5–8, 34–36, 52–54, and are
shown to be calculable in terms of voltages V1 and phases φ1 that satisfy

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (1)

Here Rs and ρs are the radius and radius-of-curvature of the orbit followed
by the synchronous particle, and B is the programmed guide field. For
given programmed voltages V1 and programmed guide field, the phase φ1
can be calculated throughout the field cycle just as it is for the usual
single-harmonic setup where one has voltages V ′1 and phases φ′1 that satisfy

V ′1 sinφ′1 = 2πRsρs

(
1

c

dB

dt

)
. (2)

The phases φ1 obtained from (1) can be used along with lookup tables to
obtain the required multi-harmonic voltages and phases throughout the
guide field cycle. With sufficiently short lookup times this could be done in
real time during the cycle. The formulae needed to produce the lookup
tables are summarized in Sections 18–19, 41, 59–60 for triple, double, and
quad-harmonic buckets respectively.

Having obtained the voltages and phases that produce flattened
multi-harmonic buckets, the widths and heights of matched bunches held
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in the buckets can be calculated and compared with those of bunches
matched to a single-harmonic bucket. For the acceleration of polarized
protons in AGS, the matched bunches are assumed to have a uniform
distribution of particles with a longitudinal emittance of 1 eV-s. The
parameters of the single and multi-harmonic buckets are adjusted so that
all buckets have an area of 2 eV-s, twice that of the matched bunches.
This is done for various values of Gγ and dB/dt.

The matched bunches in the flattened multi-harmonic buckets are longer
(wider) than those in the single-harmonic bucket, thereby reducing the
strength of the electromagnetic field seen by a given particle due to the
other particles in the bunch. One calculable effect of this field is the
incoherent tune shift. In Sections 29–32, 50, and 69, this is shown to be
inversely proportional to the bunch width. We then have

δQn
δQ1

=
W1

Wn
(3)

where δQn and δQ1 are the tune shifts in bunches matched to the n and
single-harmonic buckets, respectively, and Wn and W1 are the
corresponding bunch widths. As shown in Sections 32, 50, and 69 we may
also take

δQn
δQ1

=
Hn

H1
(4)

where Hn and H1 are the bunch heights.

The ratios W1/Wn and Hn/H1 for double, triple, and quad-harmonic
buckets are tabulated in Section 2 for polarized protons in AGS. These
quantify the extent to which the incoherent tune shift is reduced in the
flattened multi-harmonic buckets.

Using subscripts I and F to denote incoherent tune shifts, bunch widths,
and βγ2 at Gγ = 4.5 and 14.0, respectively, we have

(δQ)F
(δQ)I

=
WI (βγ2)I
WF (βγ2)F

= 0.591, 0.357, 0.273, 0.232 (5)

for matched bunches sitting in single, double, triple, and quad-harmonic
buckets, respectively, as shown in Sections 33, 51, and 70. This shows the
extent to which the incoherent tune shift is reduced as polarized protons
are accelerated in AGS.

The RF voltages and phases needed to produce the double, triple, and
quad-harmonic buckets in AGS are summarized in Sections 3 and 4.
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2 Matched bunch data summary

The following tables summarize the matched bunch data of Sections 22–27,
43–48, and 62–67. The bunch widths are given in degrees.

Table 1: Double-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W2 W1/W2 H2/H1

0.01 4.5 5.7784 195.4 222.9 0.877 0.7885
9.0 6.0 10.6883 86.79 122.8 0.707 0.634
18.0 7.5 16.9926 66.02 100.92 0.654 0.586
22.0 10.0 30.6069 50.94 83.89 0.607 0.544
25.0 12.5 48.1083 39.12 69.51 0.563 0.503
25.0 14.0 60.4754 31.61 59.73 0.529 0.473

Table 2: Triple-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W3 W1/W3 H3/H1

0.01 4.5 5.7784 195.4 239.6 0.816 0.703
9.0 6.0 10.6883 86.8 147.8 0.587 0.507
18.0 7.5 16.9926 66.0 126.5 0.522 0.448
22.0 10.0 30.6069 50.9 109.4 0.466 0.400
25.0 12.5 48.1083 39.1 94.3 0.415 0.355
25.0 14.0 60.4754 31.6 83.8 0.377 0.323

Table 3: Quad-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W4 W1/W4 H4/H1

0.01 4.5 5.7784 195.4 251.2 0.778 0.655
9.0 6.0 10.6883 86.79 166.3 0.522 0.439
18.0 7.5 16.9926 66.02 145.9 0.452 0.380
22.0 10.0 30.6069 50.94 129.2 0.394 0.331
25.0 12.5 48.1083 39.12 114.3 0.342 0.287
25.0 14.0 60.4754 31.61 103.6 0.305 0.256
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3 Multi-harmonic bucket voltage summary

The following tables summarize the multi-harmonic voltage data of
Sections 22–27, 43–48, and 62–67. Formulae for the voltages are derived in
Sections 6–8, 34–36, and 52–54. The voltage V ′1 needed to make a 2 eV-s
single-harmonic bucket is given in kV. The remaining voltages follow from
the tabulated ratios.

Table 4: Double-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1

843.9 0.01 4.5 7.498 0.7566 0.49995
1170.7 9.0 6.0 89.942 1.1042 0.3464
1489.0 18.0 7.5 152.715 1.2006 0.3122
2011.5 22.0 10.0 171.219 1.2583 0.2915
2529.4 25.0 12.5 184.954 1.2934 0.27775
2838.9 25.0 14.0 180.410 1.3104 0.2702

Table 5: Triple-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1 V3/V1

843.9 0.01 4.5 7.498 0.6270 0.7999 0.2000
1170.7 9.0 6.0 89.942 1.1656 0.5119 0.1096
1489.0 18.0 7.5 152.715 1.3049 0.4708 0.0949
2011.5 22.0 10.0 171.219 1.3880 0.4478 0.0863
2529.4 25.0 12.5 184.954 1.4390 0.4330 0.0805
2838.9 25.0 14.0 180.410 1.4640 0.4249 0.0772

Table 6: Quad-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1 V3/V1 V4/V1

843.9 0.01 4.5 7.498 0.5440 0.9997 0.4284 0.07140
1170.7 9.0 6.0 89.942 1.2048 0.6092 0.2163 0.03304
1489.0 18.0 7.5 152.715 1.3681 0.5686 0.1907 0.02804
2011.5 22.0 10.0 171.219 1.4654 0.5469 0.1763 0.02513
2529.4 25.0 12.5 184.954 1.5254 0.5331 0.1669 0.02317
2838.9 25.0 14.0 180.410 1.5552 0.5255 0.1616 0.02204
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4 Multi-harmonic bucket phase summary

The following tables summarize the multi-harmonic phase data of Sections
22–27, 43–48, and 62–67. Formulae for the phases are derived in Sections
6–8, 34–36, and 52–54. The phases are tabulated in degrees.

Table 7: Double-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2

0.01 4.5 0.52657 0.69601 0.9280 0.6960
9.0 6.0 43.59258 38.6424 56.3678 37.90275
18.0 7.5 54.3111 42.5683 64.4165 41.2951
22.0 10.0 62.30122 44.7193 69.7478 42.9610
25.0 12.5 68.6577 46.0637 73.7703 43.8738
25.0 14.0 72.72346 46.7777 76.3130 44.2976

Table 8: Triple-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2 ψ3

0.01 4.5 0.52657 0.8399 1.2599 0.9449 1.1199
9.0 6.0 43.59258 36.2684 62.5425 40.5938 51.6492
18.0 7.5 54.3111 38.4927 69.0067 42.7591 55.3468
22.0 10.0 62.30122 39.63665 73.1121 43.7449 57.2210
25.0 12.5 68.6580 40.3377 76.1527 44.2743 58.3137
25.0 14.0 72.7235 40.7118 78.0647 44.5229 58.8580

Table 9: Quad-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2 ψ3 ψ4

0.01 4.5 0.52657 0.9679 1.5488 1.1615 1.3766 1.4519
9.0 6.0 43.59258 34.9115 66.3048 41.9421 53.8989 58.8879
18.0 7.5 54.3111 36.4174 71.7797 43.4592 56.6599 62.4758
22.0 10.0 62.3012 37.1726 75.1831 44.1237 57.9947 64.3374
25.0 12.5 68.6577 37.6330 77.6775 44.4776 58.7570 65.4641
25.0 14.0 72.7235 37.8801 79.2400 44.6452 59.1360 66.0500
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5 Hamiltonian for multi-harmonic RF bucket

The hamiltonian for particle motion in an RF bucket is [1]

H(φ,W ) =
1

2
aW 2 + U(φ) (6)

where

a =
h2c2ηs
R2
sEs

, ηs =
1

γ2t
− 1

γ2s
, Es = mc2γs (7)

and

W =
E − Es
hωs

, ωs =
cβs
Rs

. (8)

The “potential” U satisfies

∂U

∂φ
= −F (φ+ φs) + F (φs) (9)

where the “force” function

F (x) = A1 sinx−A2 sin(2x−2ψ2)+A3 sin(3x−3ψ3)−A4 sin(4x−4ψ4) (10)

for quad-harmonic buckets, and

A1 =
eQV1
2πh

, A2 =
eQV2
2πh

, A4 =
eQV2
2πh

, A4 =
eQV3
2πh

. (11)

The subscript s denotes parameters of the synchronous particle.

φs is the synchronous phase and φ is the deviation from φs.

ψ2, ψ3, and ψ4 are adjustable phase offsets.

eQ is the charge of the particle and e is the elementary electric charge.

h is the fundamental harmonic number.

V1, V2, V3, and V4 are the adjustable amplitudes of the first, second, third,
and fourth harmonic voltages. The associated RF frequencies are hf , 2hf ,
3hf , and 4hf , respectively, where

f =
cβs

2πRs
(12)

is the revolution frequency of the synchronous particle.
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For single, double, triple, and quad-harmonic RF buckets we have
respectively

V1 6= 0, V2 = 0, V3 = 0, V4 = 0 (single) (13)

V1 6= 0, V2 6= 0, V3 = 0 V4 = 0 (double) (14)

V1 6= 0, V2 6= 0, V3 6= 0, V4 = 0 (triple) (15)

V1 6= 0, V2 6= 0, V3 6= 0, V4 6= 0 (quad). (16)

6 Potential for a triple-harmonic bucket

Defining
ψ = φ+ φs (17)

we have

U = A1 cosψ − 1

2
A2 cos(2ψ − 2ψ2) +

1

3
A3 cos(3ψ − 3ψ3) + Cψ (18)

∂U

∂ψ
= −A1 sinψ +A2 sin(2ψ − 2ψ2)−A3 sin(3ψ − 3ψ3) + C (19)

∂2U

∂ψ2
= −A1 cosψ + 2A2 cos(2ψ − 2ψ2)− 3A3 cos(3ψ − 3ψ3) (20)

∂3U

∂ψ3
= A1 sinψ − 4A2 sin(2ψ − 2ψ2) + 9A3 sin(3ψ − 3ψ3) (21)

∂4U

∂ψ4
= A1 cosψ − 8A2 cos(2ψ − 2ψ2) + 27A3 cos(3ψ − 3ψ3) (22)

∂5U

∂ψ5
= −A1 sinψ + 16A2 sin(2ψ − 2ψ2)− 81A3 sin(3ψ − 3ψ3) (23)

∂6U

∂ψ6
= −A1 cosψ + 32A2 cos(2ψ − 2ψ2)− 243A3 cos(3ψ − 3ψ3) (24)

and so on, where

C = A1 sinφs −A2 sin(2φs − 2ψ2) +A3 sin(3φs − 3ψ3). (25)

Using integer superscripts to denote the number of differentiations with
respect to ψ, we have

U1(φs) = 0 (26)
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U2(φs) = −A1 cosφs + 2A2 cos(2φs − 2ψ2)− 3A3 cos(3φs − 3ψ3) (27)

U3(φs) = A1 sinφs − 4A2 sin(2φs − 2ψ2) + 9A3 sin(3φs − 3ψ3) (28)

U4(φs) = A1 cosφs − 8A2 cos(2φs − 2ψ2) + 27A3 cos(3φs − 3ψ3) (29)

U5(φs) = −A1 sinφs + 16A2 sin(2φs − 2ψ2)− 81A3 sin(3φs − 3ψ3) (30)

U6(φs) = −A1 cosφs + 32A2 cos(2φs − 2ψ2)− 243A3 cos(3φs − 3ψ3). (31)

7 Conditions for a flattened triple-harmonic
bucket

For a flattened RF bucket we want derivatives

U1(φs) = U2(φs) = U3(φs) = U4(φs) = U5(φs) = 0 (32)

which gives
A1C1 = 2A2C2 − 3A3C3 (33)

−A1S1 = −4A2S2 + 9A3S3 (34)

−A1C1 = −8A2C2 + 27A3C3 (35)

A1S1 = 16A2S2 − 81A3S3 (36)

where

C1 = cosφs, C2 = cos(2φs − 2ψ2), C3 = cos(3φs − 3ψ3) (37)

S1 = sinφs, S2 = sin(2φs − 2ψ2), S3 = sin(3φs − 3ψ3). (38)

It then follows from (33) and (35) that

−6A2C2 + 24A3C3 = 0 (39)

4A3C3 = A2C2 (40)

4A1C1 = 5A2C2 = 20A3C3 (41)

and

A2C2 =
4

5
A1C1, A3C3 =

1

5
A1C1. (42)

Similarly from (34) and (36) we have

12A2S2 − 72A3S3 = 0 (43)
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6A3S3 = A2S2 (44)

2A1S1 = 5A2S2 = 30A3S3 (45)

and

A2S2 =
2

5
A1S1, A3S3 =

1

15
A1S1. (46)

Finally, dividing the equations in (46) by those in (42) we have

S2
C2

=
1

2

S1
C1
,

S3
C3

=
1

3

S1
C1

(47)

which give

tan(2φs − 2ψ2) =
1

2
tanφs, tan(3φs − 3ψ3) =

1

3
tanφs. (48)

Thus, if the value of φs is given, we can calculate values for the phases ψ2

and ψ3 and for the ratios A2/A1 and A3/A1. Specifically one has

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
, ψ3 = φs −

1

3
arctan

{
1

3
tanφs

}
(49)

and, according to (42) and (46),

A2

A1
=

4

5

{
cosφs

cos(2φs − 2ψ2)

}
=

2

5

{
sinφs

sin(2φs − 2ψ2)

}
(50)

A3

A1
=

1

5

{
cosφs

cos(3φs − 3ψ3)

}
=

1

15

{
sinφs

sin(3φs − 3ψ3)

}
. (51)

8 Synchronous phase for flattened
triple-harmonic bucket

As a function of phase, the RF voltage must satisfy

V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (52)

where

−U1(ψ) = A1 sinψ −A2 sin(2ψ − 2ψ2) +A3 sin(3ψ − 3ψ3)− C (53)

C = A1 sinφs −A2 sin(2φs − 2ψ2) +A3 sin(3φs − 3ψ3). (54)
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Thus, using

A1 =
eQV1
2πh

, A2 =
eQV2
2πh

, A3 =
eQV3
2πh

(55)

we have

V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2) + V3 sin(3ψ − 3ψ3). (56)

The synchronous phase φs must satisfy

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(57)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
Here it is useful to define phase φ1 such that

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (58)

We then have

V1 sinφs − V2 sin(2φs − 2ψ2) + V3 sin(3φs − 3ψ3) = V1 sinφ1 (59)

which gives

sinφs = sinφ1 +
V2
V1

sin(2φs − 2ψ2)−
V3
V1

sin(3φs − 3ψ3). (60)

Using
V2
V1

=
A2

A1
,

V3
V1

=
A3

A1
(61)

we then have

S1 = sinφ1 +
A2

A1
S2 −

A3

A1
S3 (62)

where, according to the conditions (46) for a flattened bucket,

A2

A1
=

2

5

{
S1
S2

}
,

A3

A1
=

1

15

{
S1
S3

}
. (63)

Thus

S1 = sinφ1 +
2

5
S1 −

1

15
S1 (64)

S1

{
1− 2

5
+

1

15

}
= sinφ1 (65)
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S1 =
3

2
sinφ1 (66)

and therefore

φs = arcsin

(
3

2
sinφ1

)
. (67)

Here we see that in order to have a real synchronous phase we must have

0 ≤ sinφ1 ≤
2

3
. (68)

This constraint is satisfied if

0 ≤ φ1 ≤ 41.8103 ◦ (69)

or
138.1897 ◦ ≤ φ1 < 180 ◦. (70)

If a particular φ1 is given, we can obtain φs from (67). This in turn can be
used in (49) to obtain ψ2 and ψ3. Finally, φs, ψ2, and ψ3 can be used in
(50) and (51) to obtain the ratios V2/V1 and V3/V1. The voltage V1 is given
by (58). We therefore have the result that the phases φs, ψ2, and ψ3, and
the ratios V2/V1 and V3/V1 are completely determined by the phase φ1.

9 Normalized triple-harmonic voltage and
potential

It is convenient to normalize the voltage and potential so that they are
dimensionless and completely determined by the phase φ1. We define
normalized voltage

V(ψ) =
1

V1
V (ψ) (71)

and normalized potential

U(ψ) =
1

A1
{U(ψu)− U(ψ)} (72)

with derivatives

Um(ψ) = − 1

A1
Um(ψ). (73)

Here
V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2) + V3 sin(3ψ − 3ψ3) (74)
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V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (75)

U(ψ) = A1 cosψ − 1

2
A2 cos(2ψ − 2ψ2) +

1

3
A3 cos(3ψ − 3ψ3) + Cψ (76)

U1(ψ) = −A1 sinψ +A2 sin(2ψ − 2ψ2)−A3 sin(3ψ − 3ψ3) + C (77)

U2(ψ) = −A1 cosψ + 2A2 cos(2ψ − 2ψ2)− 3A3 cos(3ψ − 3ψ3) (78)

C = A1 sinφs −A2 sin(2φs − 2ψ2) +A3 sin(3φs − 3ψ3) (79)

and therefore
V(ψ)− V(φs) = U1(ψ) (80)

U(ψ) = D − cosψ +
1

2
R2 cos(2ψ − 2ψ2)−

1

3
R3 cos(3ψ − 3ψ3)− Cψ (81)

U1(ψ) = sinψ −R2 sin(2ψ − 2ψ2) +R3 sin(3ψ − 3ψ3)− C (82)

U2(ψ) = − cosψ + 2R2 cos(2ψ − 2ψ2)− 3R3 cos(3ψ − 3ψ3) (83)

where

D = cosψu −
1

2
R2 cos(2ψu − 2ψ2) +

1

3
R3 cos(3ψu − 3ψ3) + Cψu (84)

C = sinφs −R2 sin(2φs − 2ψ2) +R3 sin(3φs − 3ψ3) (85)

and

R2 =
A2

A1
, R3 =

A3

A1
. (86)

The phase ψu in these equations is the unstable fixed point phase
associated with oscillations about the synchronous phase φs. It satisfies

U(ψu) = 0, U1(ψu) = 0. (87)

Below transition one has
0 < φs < ψu (88)

and
U2(ψu) < 0. (89)

There is an additional phase

ψe < φs < ψu (90)

that satisfies
U(ψe) = U(ψu) = 0. (91)

The equations of this and the previous section show that the normalized
voltage and potential are completely determined by the phase φ1. The
phases ψu and ψe are also completely determined by φ1.
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10 Triple-harmonic bucket width and area

The RF bucket associated with the stable fixed point phase φs extends
from ψe to ψu. It is defined by the curves W (ψ) where

W 2(ψ) =
2

a
{U(ψu)− U(ψ)} (92)

a =
h2c2ηs
R2
sEs

, ηs =
1

γ2t
− 1

γ2s
, Es = mc2γs. (93)

The phase width of the bucket is

∆ψ = |ψu − ψe| . (94)

In terms of the normalized potential (72) we have

W 2(ψ) =
2

a
A1 U(ψ) (95)

and

W (ψ) = ±
(

2A1

|a|

)1/2

| U(ψ)|1/2 . (96)

Here

A1 =
eQV1
2πh

,
1

|a|
=

R2
sEs

h2c2|ηs|
(97)

which gives (
2A1

|a|

)1/2

=
Rs
hc

{
eQV1Es
πh|ηs|

}1/2

=
B1

8
√

2
(98)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(99)

is the single-harmonic stationary bucket area one would have with RF
voltage V1. Thus we have

W (ψ) = ± B1

8
√

2
| U(ψ)|1/2 . (100)

The normalized triple-harmonic RF bucket is defined by the curves

W(ψ) = ± |U(ψ)|1/2 (101)

which are dimensionless and completely determined by the phase φ1.
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The area of the triple-harmonic bucket is

A3 = 2

∫ ψu

ψe

|W (ψ)| dψ (102)

where

|W (ψ)| = B1

8
√

2
| U(ψ)|1/2 . (103)

Defining normalized bucket area

B3 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (104)

we then have

A3 =
B1

8
√

2
B3. (105)

The normalized bucket area is dimensionless and is completely determined
by the phase φ1.

11 Bunch matched to triple-harmonic bucket

Consider a particle moving along the boundary of a bunch matched to the
triple-harmonic bucket and let ψR be the right turning point phase of the
boundary. Below transition one has

ψe < φs < ψR < ψu. (106)

The corresponding left turning point phase ψL satisfies

ψe < ψL < φs < ψR < ψu (107)

and
U(ψL) = U(ψR). (108)

Here, as shown in Section 9,

U(ψ) =
1

A1
{U(ψu)− U(ψ)} (109)

where

1

A1
U(ψu) = cosψu−

1

2
R2 cos(2ψu−2ψ2)+

1

3
R3 cos(3ψu−3ψ3)+Cψu (110)
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1

A1
U(ψ) = cosψ − 1

2
R2 cos(2ψ − 2ψ2) +

1

3
R3 cos(3ψ − 3ψ3) + Cψ (111)

C = sinφs −R2 sin(2φs − 2ψ2) +R3 sin(3φs − 3ψ3) (112)

and

R2 =
A2

A1
, R3 =

A3

A1
. (113)

Given either turning point phase, one can solve (108) numerically to obtain
the other. The phase width of the bunch is then

∆ψ = ψR − ψL. (114)

Alternatively, if ∆ψ is given, one can solve

U(ψR −∆ψ) = U(ψR) (115)

to obtain ψR and ψL = ψR −∆ψ.

Below transition the boundary of the matched bunch is given by the curves
W (ψ) where

W 2(ψ) =
2

a
{U(ψR)− U(ψ)} (116)

and
ψL ≤ ψ ≤ ψR. (117)

In terms of the normalized potential (109) we have

W 2(ψ) =
2

a
A1 {U(ψ)− U(ψR)} (118)

and

W (ψ) = ±
(

2A1

|a|

)1/2

| U(ψ)− U(ψR)|1/2 . (119)

According to (98) and (99) we then have

W (ψ) = ± B1

8
√

2
| U(ψ)− U(ψR)|1/2 (120)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(121)

is the single-harmonic stationary bucket area one would have with RF
voltage V1.
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The normalized bunch boundary is defined by the curves

W(ψ) = ± |U(ψ)− U(ψR)|1/2 (122)

where
ψL ≤ ψ ≤ ψR. (123)

The area of the bunch is

B =
B1

8
√

2
B (124)

where

B = 2

∫ ψR

ψL

| U(ψ)− U(ψR)|1/2 dψ (125)

is defined to be the normalized area. The normalized bunch boundary and
area are dimensionless and completely determined by the turning point
phase ψR and the phase φ1.

12 Potential for single-harmonic bucket

For a single-harmonic bucket we have

∂U

∂φ
= −F (φ+ φ′1) + F (φ′1) (126)

where

F (x) = A′1 sinx, A′1 =
eQV ′1
2πh

(127)

and φ′1 is the synchronous phase. Defining, as before,

ψ = φ+ φ′1 (128)

we have
U = A′1 cosψ + Cψ (129)

∂U

∂ψ
= −A′1 sinψ + C (130)

∂2U

∂ψ2
= −A′1 cosψ (131)

where
C = A′1 sinφ′1. (132)
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Using integer superscripts to denote the number of differentiations with
respect to ψ, we have

U1(φ′1) = 0 (133)

U2(φ′1) = −A′1 cosφ′1. (134)

13 Synchronous phase for single-harmonic bucket

The RF voltage must satisfy

V (ψ)− V (φ′1) = −
(

2πh

eQ

)
U1(ψ) (135)

where here
−U1(ψ) = A′1 sinψ −A′1 sinφ′1. (136)

Thus, using

A′1 =
eQV ′1
2πh

(137)

we have
V (ψ) = V ′1 sinψ. (138)

The synchronous phase φ′1 must satisfy

V ′1 sinφ′1 = 2πRsρs

(
1

c

dB

dt

)
(139)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
According to (58) we also have, for the triple-harmonic bucket,

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
(140)

and therefore
V ′1 sinφ′1 = V1 sinφ1. (141)

14 Normalized single-harmonic voltage and
potential

It is convenient to normalize the voltage and potential so that they are
dimensionless and completely determined by the phase φ′1. We define
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normalized voltage

V(ψ) =
1

V ′1
V (ψ) (142)

and normalized potential

U(ψ) =
1

A′1
{U(ψu)− U(ψ)} (143)

with derivatives

Um(ψ) = − 1

A′1
Um(ψ). (144)

Here
V (ψ) = V ′1 sinψ (145)

U(ψu) = A′1 cosψu + Cψu (146)

U(ψ) = A′1 cosψ + Cψ (147)

U1(ψ) = −A′1 sinψ + C (148)

U2(ψ) = −A′1 cosψ (149)

C = A′1 sinφ′1 (150)

and we have
V(ψ) = sinψ (151)

U(ψ) = cosψu − cosψ + (ψu − ψ) sinφ′1 (152)

U1(ψ) = sinψ − sinφ′1 (153)

U2(ψ) = cosψ. (154)

The phase ψu is the unstable fixed point phase associated with oscillations
about the synchronous phase φ′1. It satisfies

U(ψu) = 0, U1(ψu) = 0 (155)

and therefore
ψu = π − φ′1 (156)

which gives

U(ψ) = − cosφ′1 − cosψ + (π − φ′1 − ψ) sinφ′1. (157)

Thus the normalized potential is completely determined by the phase φ′1.
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Below transition one has
0 < φ′1 < ψu (158)

and
U2(ψu) < 0. (159)

There is an additional phase

ψe < φ′1 < ψu (160)

that satisfies
U(ψe) = U(ψu) = 0. (161)

Thus phases ψe and ψu are completely determined by the phase φ′1.

15 Single-harmonic bucket width and area

The RF bucket associated with the stable fixed point phase φ′1 extends
from ψe to ψu. It is defined by the curves W (ψ) where

W 2(ψ) =
2

a
{U(ψu)− U(ψ)} (162)

a =
h2c2ηs
R2
sEs

, η =
1

γ2t
− 1

γ2s
, Es = mc2γs. (163)

The phase width of the bucket is

∆ψ = |ψu − ψe|. (164)

In terms of the normalized potential (143) we have

W 2(ψ) =
2

a
A′1 U(ψ) (165)

and

W (ψ) = ±
(

2A′1
|a|

)1/2

| U(ψ)|1/2 . (166)

Here

A′1 =
eQV ′1
2πh

,
1

|a|
=

R2
sEs

h2c2|ηs|
(167)

which gives (
2A′1
|a|

)1/2

=
Rs
hc

{
eQV ′1Es
πh|ηs|

}1/2

=
B′1

8
√

2
(168)
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where

B′1 = 8
Rs
hc

{
2eQV ′1Es
πh|ηs|

}1/2

(169)

is the single-harmonic stationary bucket area one would have with RF
voltage V ′1 . Thus we have

W (ψ) = ± B′1
8
√

2
| U(ψ)|1/2 . (170)

For comparison with the normalized triple-harmonic bucket we define

W(ψ) =

(
B1

8
√

2

)−1
W (ψ) (171)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

. (172)

We then have

W(ψ) = ±
(
V ′1
V1

)1/2

| U(ψ)|1/2 (173)

where
U(ψ) = − cosφ′1 − cosψ + (π − φ′1 − ψ) sinφ′1. (174)

Here, according to (141), we have

V ′1
V1

=
sinφ1
sinφ′1

(175)

therefore

W(ψ) = ±
(

sinφ1
sinφ′1

)1/2

| U(ψ)|1/2 . (176)

These curves define the normalized single-harmonic bucket and show that
it is completely determined by the phases φ1 and φ′1.

The area of the single-harmonic bucket is

A1 = 2

∫ ψu

ψe

|W (ψ)| dψ (177)

where

|W (ψ)| = B′1
8
√

2
| U(ψ)|1/2 . (178)
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Thus we can write

A1 =
B′1

8
√

2
B′1 (179)

where

B′1 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ. (180)

For comparison with the normalized triple-harmonic area we define
normalized single-harmonic bucket area

B1 =

(
B1

8
√

2

)−1
A1. (181)

Using (175) we then have

B1 =

(
sinφ1
sinφ′1

)1/2

B′1 (182)

which shows that the normalized single-harmonic bucket area is completely
determined by the phases φ1 and φ′1.

16 Bunch matched to single-harmonic bucket

Consider a particle moving along the boundary of a bunch matched to the
RF bucket and let ψR be the right turning point phase of the boundary.
Below transition one has

ψe < φ′1 < ψR < ψu. (183)

The corresponding left turning point phase ψL satisfies

ψe < ψL < φ′1 < ψR < ψu (184)

and
U(ψL) = U(ψR) (185)

where
U(ψL) = − cosφ′1 − cosψL + (π − φ′1 − ψL) sinφ′1 (186)

U(ψR) = − cosφ′1 − cosψR + (π − φ′1 − ψR) sinφ′1. (187)

Thus we must have

cosψR − cosψL = − (ψR − ψL) sinφ′1. (188)
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Given either turning point phase, one can solve (188) to obtain the other.
The phase width of the bunch is then

∆ψ = ψR − ψL. (189)

Alternatively, if ∆ψ is given, one can solve

cosψR − cos (ψR −∆ψ) = − (ψR − ψL) sinφ′1 (190)

to obtain ψR and ψL = ψR −∆ψ. The solution is [2]

ψR =
∆ψ

2
+ arcsin

{
∆ψ sinφ′1

2 sin (∆ψ/2)

}
(191)

ψL = −∆ψ

2
+ arcsin

{
∆ψ sinφ′1

2 sin (∆ψ/2)

}
. (192)

Below transition the boundary of the matched bunch is given by the curves
W (ψ) where

W 2(ψ) =
2

a
{U(ψR)− U(ψ)} (193)

and
ψL ≤ ψ ≤ ψR. (194)

In terms of the normalized potential (143) we have

W 2(ψ) =
2

a
A′1 {U(ψ)− U(ψR)} (195)

which gives

W (ψ) = ±
(

2A′1
|a|

)1/2

| U(ψ)− U(ψR)|1/2 . (196)

According to (168) and (169) we then have

W (ψ) = ± B′1
8
√

2
| U(ψ)− U(ψR)|1/2 (197)

where

B′1 = 8
Rs
hc

{
2eQV ′1Es
πh|ηs|

}1/2

(198)

is the single-harmonic stationary bucket area one would have with RF
voltage V ′1 .
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For comparison with the normalized bunch matched to the triple-harmonic
bucket, the normalized boundary of the bunch matched to the
single-harmonic bucket is defined by the curves

W(ψ) = ±
(
B1

8
√

2

)−1
W (ψ) (199)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

. (200)

We then have

W(ψ) = ±
(
V ′1
V1

)1/2

| U(ψ)− U(ψR)|1/2 (201)

where
U(ψ) = − cosφ′1 − cosψ + (π − φ′1 − ψ) sinφ′1 (202)

U(ψR) = − cosφ′1 − cosψR + (π − φ′1 − ψR) sinφ′1 (203)

and
U(ψ)− U(ψR) = cosψR − cosψ + (ψR − ψ) sinφ′1. (204)

Here, according to (141), we have

V ′1
V1

=
sinφ1
sinφ′1

(205)

and therefore

W(ψ) = ±
(

sinφ1
sinφ′1

)1/2

| U(ψ)− U(ψR)|1/2 . (206)

The area of the bunch is

B =
B1

8
√

2
B (207)

where

B = 2

(
sinφ1
sinφ′1

)1/2 ∫ ψR

ψL

| U(ψ)− U(ψR)|1/2 dψ (208)

is defined to be the normalized area. The normalized bunch boundary and
area are dimensionless and completely determined by the turning point
phase ψR and the phases φ1 and φ′1.
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17 Adjusting the ratio of triple to
single-harmonic bucket area

For the triple-harmonic bucket we have area

A3 =
B1

8
√

2
B3 (209)

and normalized area

B3 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (210)

where, as shown in Sections 8 and 9, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ1.

Similarly, for the single-harmonic bucket we have area

A1 =
B1

8
√

2
B1 (211)

and normalized area

B1 = 2

(
sinφ1
sinφ′1

)1/2 ∫ ψu

ψe

| U(ψ)|1/2 dψ (212)

where, as shown in Sections 14 and 15, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ′1.

Thus, the ratio
A3

A1
=
B3
B1

(213)

is completely determined by φ1 and φ′1. If either of these phases is given,
the other can be adjusted to give a desired value for the ratio.

If, for example, we start with a given single-harmonic bucket having
synchronous phase φ′1 and want a triple-harmonic bucket with the same
area, the phase φ1 can be adjusted to give

B3 = B1 (214)

and therefore
A3 = A1. (215)

Since, according to (141),

V1 sinφ1 = V ′1 sinφ′1 (216)

24



we also have voltage ratio
V1
V ′1

=
sinφ′1
sinφ1

. (217)

If the single-harmonic voltage V ′1 is given, we then have the required
triple-harmonic voltage V1.

18 Application of triple-harmonic bucket to
acceleration of polarized protons in AGS

For protons [3]
mc2 = 938.272 088 16(29) MeV (218)

g = 5.585 694 6893(16) (219)

G = (g − 2)/2 = 1.792 8473 4465 (220)

and in AGS [4]

Rs = 128.4526 m, ρs = 85.378351 m (221)

γt = 8.5, h = 6. (222)

Suppose we have acceleration of polarized protons in AGS set up using just
a single RF harmonic and wish to move to a triple-harmonic setup. Let V ′1 ,
and φ′1 be the voltage and synchronous phase for the single-harmonic
setup. For a given single-harmonic voltage V ′1 the synchronous phase φ′1
must satisfy

V ′1 sinφ′1 = 2πRsρs

(
1

c

dB

dt

)
(223)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
According to (58) we also have, for the triple-harmonic bucket,

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
(224)

and therefore
V1 sinφ1 = V ′1 sinφ′1. (225)

As a starting point for moving to a triple-harmonic setup, we would like
the triple-harmonic bucket to have the same area as that of the
single-harmonic bucket. As shown in the previous section, we can adjust
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the phase φ1 so that this is so. This would be done by an application at a
discrete set of points that amply cover the cycle of the programmed guide
field. Having these phases in hand we then have a first pass set of
triple-harmonic voltages V1 given by

V1 =

(
sinφ′1
sinφ1

)
V ′1 . (226)

These would be the starting voltages in the V1 voltage program for the
triple-harmonic bucket. They could be subsequently tuned if necessary. In
the next section it is shown that for any set of programmed values of V1,
the corresponding values of phases φs, ψ2, ψ3 and voltages V2 and V3 can
be obtained from lookup tables. These then give the triple-harmonic
voltage

V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2) + V3 sin(3ψ − 3ψ3) (227)

throughout the guide field cycle.

19 Lookup tables for triple-harmonic phases and
voltage ratios

We assume that voltage V1 and guide field time-derivative dB/dt are given
and require that phase φ1 satisfy

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (228)

Obtaining the required phase φ1 would be no different than what is
currently done to obtain the synchronous phase φ′1 in the single-harmonic
setup. As shown in Section 8 we must also have

0 ≤ sinφ1 ≤
2

3
. (229)

In practice this is no different than requiring that the single-harmonic
synchronous phase satisfy

0 ≤ sinφ′1 ≤ 1. (230)

The constraint (229) is satisfied if

0 ≤ φ1 ≤ 41.8103 ◦ (231)
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or
138.1897 ◦ ≤ φ1 < 180 ◦. (232)

Starting with

sinφ1 =
1

V1

{
2πRsρs

(
1

c

dB

dt

)}
(233)

we then have

sinφs =
3

2
sinφ1 (234)

φs = arcsin

{
3

2
sinφ1

}
(235)

tan (2φs − 2ψ2) =
1

2
tanφs (236)

2φs − 2ψ2 = arctan

{
1

2
tanφs

}
(237)

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
(238)

tan (3φs − 3ψ2) =
1

3
tanφs (239)

3φs − 3ψ3 = arctan

{
1

3
tanφs

}
(240)

ψ3 = φs −
1

3
arctan

{
1

3
tanφs

}
(241)

V2
V1

=
4

5

{
cosφs

cos(2φs − 2ψ2)

}
=

2

5

{
sinφs

sin(2φs − 2ψ2)

}
(242)

and
V3
V1

=
1

5

{
cosφs

cos(3φs − 3ψ3)

}
=

1

15

{
sinφs

sin(3φs − 3ψ3)

}
. (243)

These formulae can be used to construct lookup tables that give φs, ψ2,
ψ3, V2/V1, and V3/V1 for any φ1 in range (231) or (232).

The triple-harmonic voltage is then

V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2) + V3 sin(3ψ − 3ψ3). (244)

This satisfies

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(245)
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and produces a flattened RF bucket.

The phases φs, ψ2, and ψ3 are plotted as functions of φ1 in Figure 1.

The ratios V2/V1 and V3/V1 are plotted as functions of φ1 in Figure 2.

The phase φ1 is given by (233).

Figure 1: Triple-harmonic phases φs, ψ2, and ψ3 plotted as functions of φ1.
The horizontal axis gives φ1 in degrees. The vertical axis gives the phases
in degrees. Starting with the lowest curve and going up, the green, pink,
and blue curves are ψ2, ψ3, and φs, respectively. The phase φ1 is given by
(233). As sinφ1 approaches 2/3, the phases ψ2, ψ3, and φs approach π/4,
π/3, and π/2 respectively.
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Figure 2: Triple-harmonic voltage ratios V2/V1 and V3/V1 plotted as func-
tions of φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives
the voltage ratios. The upper and lower curves are V2/V1 and V3/V1, re-
spectively. The phase φ1 is given by (233). As sinφ1 approaches 2/3, the
ratios V2/V1 and V3/V1 approach 2/5 and 1/15, respectively.
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20 Triple-harmonic bucket turning point phases
and normalized area

The turning point phases ψe and ψu and normalized area for the
triple-harmonic bucket are plotted as functions of φ1 in Figures 3 and 4.

Figure 3: Triple-harmonic phases ψe, φs, and ψu plotted as functions of
φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives the
phases in degrees. The lower (green) and upper (pink) curves are ψe and
ψu, respectively. The middle curve (blue) is the synchronous phase φs. The
phase φ1 is given by (233). The triple-harmonic bucket extends from turning
point phase ψe to unstable fixed point phase ψu. As sinφ1 approaches 2/3,
all three phases approach π/2, and the bucket phase width ψu − ψe goes to
zero.
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Figure 4: Normalized triple-harmonic bucket area plotted as a function of
phase φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives
the normalized area B3 defined in Section 10. As sinφ1 approaches 2/3, the
area goes to zero.
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21 Triple-harmonic bucket and bunch example

Figure 5 shows an example of a normalized triple-harmonic bucket with
matched bunch and corresponding potential. These were obtained with
φ1 = 35 degrees. The normalized bucket area is 2.38. The width of the
matched bunch has been adjusted so that the bunch area is half that of the
bucket. The bunch width is 156 degrees.

Figure 6 shows the corresponding normalized RF voltages.

Figure 7 shows the voltages with the normalized potential and bucket
superimposed.

Figure 5: Normalized triple-harmonic bucket and bunch (green curves) and
potential (blue curve) obtained with φ1 = 35 degrees. The normalized
bucket area is 2.38. The width of the matched bunch has been adjusted
so that the bunch area is half that of the bucket. The bunch width is 156
degrees. The horizontal axis gives the RF phase ψ in degrees.
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Figure 6: Normalized triple-harmonic voltages sinψ, −(V2/V1) sin(2ψ −
2ψ2), and (V3/V1) sin(3ψ − 3ψ3) as functions of phase ψ. These are the
black, brown, and gray curves respectively. The orange curve is the sum of
the three voltages. The horizontal axis gives the phase in degrees.
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Figure 7: Normalized triple-harmonic voltages with the normalized potential
and bucket superimposed. The horizontal axis gives the phase in degrees.

34



22 Triple-harmonic parameters for Gγ = 4.5

For
Gγ = 4.5 (246)

we have

βγ2 = 5.7783768, Bρ = 7.2051786 Tm, B = 843.91166 G (247)

Taking
dB/dt = 0.01 G/ms (248)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (249)

then gives
V ′1 = 7.498 kV, φ′1 = 0.52657 degrees. (250)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 0.8399 degrees (251)

and therefore

φs = 1.2599, ψ2 = 0.9449, ψ3 = 1.1199, degrees (252)

V1
V ′1

= 0.6270,
V2
V1

= 0.7999,
V3
V1

= 0.2000. (253)

The resulting single and triple-harmonic buckets are shown in Figure 8
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 195.4 and 239.6 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.816.

The single and triple-harmonic bunch heights are 1.345 and 0.9458
respectively. The ratio of triple to single-harmonic bunch height is 0.703.
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Figure 8: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 4.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and triple-harmonic bunch widths are 195.4 and 239.6 degrees respec-
tively. The ratio of single to triple-harmonic bunch width is 0.816. The
single and triple-harmonic bunch heights are 1.345 and 0.9458 respectively.
The ratio of triple to single-harmonic bunch height is 0.703. The horizontal
axis gives the RF phase ψ in degrees.
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23 Triple-harmonic parameters for Gγ = 6.0

For
Gγ = 6.0 (254)

we have

βγ2 = 10.688256, Bρ = 9.9955569 Tm, B = 1170.7367 G (255)

Taking
dB/dt = 9.0 G/ms (256)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (257)

then gives
V ′1 = 89.942 kV, φ′1 = 43.59258 degrees. (258)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 36.2684 degrees (259)

and therefore

φs = 62.5425, ψ2 = 40.5938, ψ3 = 51.6492, degrees (260)

V1
V ′1

= 1.1656,
V2
V1

= 0.5119,
V3
V1

= 0.1096. (261)

The resulting single and triple-harmonic buckets are shown in Figure 9
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 86.8 and 147.8 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.587.

The single and triple-harmonic bunch heights are 0.3944 and 0.1992
respectively. The ratio of triple to single-harmonic bunch height is 0.505.
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Figure 9: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 6.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and triple-harmonic bunch widths are 86.8 and 147.8 degrees respec-
tively. The ratio of single to triple-harmonic bunch width is 0.587. The
single and triple-harmonic bunch heights are 0.3944 and 0.1992 respectively.
The ratio of triple to single-harmonic bunch height is 0.505. The horizontal
axis gives the RF phase ψ in degrees.
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24 Triple-harmonic parameters for Gγ = 7.5

For
Gγ = 7.5 (262)

we have

βγ2 = 16.992559, Bρ = 12.713026 Tm, B = 1489.0222 G (263)

Taking
dB/dt = 18.0 G/ms (264)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (265)

then gives
V ′1 = 152.715 kV, φ′1 = 54.3111 degrees. (266)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 38.4927 degrees (267)

and therefore

φs = 69.0067, ψ2 = 42.7591, ψ3 = 55.3468, degrees (268)

V1
V ′1

= 1.3049,
V2
V1

= 0.4708,
V3
V1

= 0.0949. (269)

The resulting single and triple-harmonic buckets are shown in Figure 10
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 66.0 and 126.5 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.522.

The single and triple-harmonic bunch heights are 0.2548 and 0.1142
respectively. The ratio of triple to single-harmonic bunch height is 0.448.
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Figure 10: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 7.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and triple-harmonic bunch widths are 66.0 and 126.5 degrees respec-
tively. The ratio of single to triple-harmonic bunch width is 0.522. The
single and triple-harmonic bunch heights are 0.2548 and 0.1142 respectively.
The ratio of triple to single-harmonic bunch height is 0.448. The horizontal
axis gives the RF phase ψ in degrees.
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25 Triple-harmonic parameters for Gγ = 10.0

For
Gγ = 10.0 (270)

we have

βγ2 = 30.606873, Bρ = 17.173957 Tm, B = 2011.5119 G (271)

Taking
dB/dt = 22.0 G/ms (272)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (273)

then gives
V ′1 = 171.219 kV, φ′1 = 62.30122 degrees. (274)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 39.63665 degrees (275)

and therefore

φs = 73.1121, ψ2 = 43.7449, ψ3 = 57.2210, degrees (276)

V1
V ′1

= 1.3880,
V2
V1

= 0.4478,
V3
V1

= 0.0863. (277)

The resulting single and triple-harmonic buckets are shown in Figure 11
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 50.9 and 109.4 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.466.

The single and triple-harmonic bunch heights are 0.1702 and 0.06801
respectively. The ratio of triple to single-harmonic bunch height is 0.400.
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Figure 11: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 10.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The single
and triple-harmonic bunch widths are 50.9 and 109.4 degrees respectively.
The ratio of single to triple-harmonic bunch width is 0.466. The single and
triple-harmonic bunch heights are 0.1702 and 0.06801 respectively. The ra-
tio of triple to single-harmonic bunch height is 0.400. The horizontal axis
gives the RF phase ψ in degrees.
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26 Triple-harmonic parameters for Gγ = 12.5

For
Gγ = 12.5 (278)

we have

βγ2 = 48.108272, Bρ = 21.595395 Tm, B = 2529.3760 G (279)

Taking
dB/dt = 25.0 G/ms (280)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (281)

then gives
V ′1 = 184.954 kV, φ′1 = 68.6580 degrees. (282)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 40.3377 degrees (283)

and therefore

φs = 76.1527, ψ2 = 44.2743, ψ3 = 58.3137, degrees (284)

V1
V ′1

= 1.4390,
V2
V1

= 0.4330,
V3
V1

= 0.0805. (285)

The resulting single and triple-harmonic buckets are shown in Figure 12
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 39.1 and 94.3 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.415.

The single and triple-harmonic bunch heights are 0.1136 and 0.04036
respectively. The ratio of triple to single-harmonic bunch height is 0.355.
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Figure 12: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 12.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The sin-
gle and triple-harmonic bunch widths are 39.1 and 94.3 degrees respectively.
The ratio of single to triple-harmonic bunch width is 0.415. The single and
triple-harmonic bunch heights are 0.1136 and 0.04036 respectively. The ra-
tio of triple to single-harmonic bunch height is 0.355. The horizontal axis
gives the RF phase ψ in degrees.
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27 Triple-harmonic parameters for Gγ = 14.0

For
Gγ = 14.0 (286)

we have

βγ2 = 60.475409, Bρ = 24.238302 Tm, B = 2838.9283 G (287)

Taking
dB/dt = 25.0 G/ms (288)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (289)

then gives
V ′1 = 180.410 kV, φ′1 = 72.7235 degrees. (290)

We can then adjust φ1 to give a normalized triple-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 40.7118 degrees (291)

and therefore

φs = 78.0647, ψ2 = 44.5229, ψ3 = 58.8580, degrees (292)

V1
V ′1

= 1.4640,
V2
V1

= 0.4249,
V3
V1

= 0.0772. (293)

The resulting single and triple-harmonic buckets are shown in Figure 13
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and triple-harmonic bunch widths are 31.6 and 83.8 degrees
respectively. The ratio of single to triple-harmonic bunch width is 0.377.

The single and triple-harmonic bunch heights are 0.08226 and 0.02659
respectively. The ratio of triple to single-harmonic bunch height is 0.323.
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Figure 13: Normalized single and triple-harmonic buckets and matched
bunches obtained for Gγ = 14.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The sin-
gle and triple-harmonic bunch widths are 31.6 and 83.8 degrees respectively.
The ratio of single to triple-harmonic bunch width is 0.377. The single and
triple-harmonic bunch heights are 0.08226 and 0.02659 respectively. The
ratio of triple to single-harmonic bunch height is 0.323. The horizontal axis
gives the RF phase ψ in degrees.
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28 Triple-harmonic parameter summary for
acceleration of polarized protons in AGS

The following tables summarize the data of Sections 22 through 27. The
guide field B and its time derivative are given in units of G and G/ms.
The single-harmonic RF voltage V ′1 is given in units of kV. The phases φ′1,
φ1, φs, ψ2, ψ3, and the single and triple-harmonic bunch widths W1 and
W3 are given in degrees. The ratio H3/H1 is the ratio of triple to
single-harmonic bunch height. Values of βγ2, W1, W3, and H3/H1 are
tabulated for comparison of the incoherent space charge tune shifts in the
single and triple-harmonic bunches.

Table 10: Triple-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1 V3/V1

843.9 0.01 4.5 7.498 0.6270 0.7999 0.2000
1170.7 9.0 6.0 89.942 1.1656 0.5119 0.1096
1489.0 18.0 7.5 152.715 1.3049 0.4708 0.0949
2011.5 22.0 10.0 171.219 1.3880 0.4478 0.0863
2529.4 25.0 12.5 184.954 1.4390 0.4330 0.0805
2838.9 25.0 14.0 180.410 1.4640 0.4249 0.0772

Table 11: Triple-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2 ψ3

0.01 4.5 0.52657 0.8399 1.2599 0.9449 1.1199
9.0 6.0 43.59258 36.2684 62.5425 40.5938 51.6492
18.0 7.5 54.3111 38.4927 69.0067 42.7591 55.3468
22.0 10.0 62.30122 39.63665 73.1121 43.7449 57.2210
25.0 12.5 68.6580 40.3377 76.1527 44.2743 58.3137
25.0 14.0 72.7235 40.7118 78.0647 44.5229 58.8580
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Table 12: Triple-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W3 W1/W3 H3/H1

0.01 4.5 5.7784 195.4 239.6 0.816 0.703
9.0 6.0 10.6883 86.8 147.8 0.587 0.507
18.0 7.5 16.9926 66.0 126.5 0.522 0.448
22.0 10.0 30.6069 50.9 109.4 0.466 0.400
25.0 12.5 48.1083 39.1 94.3 0.415 0.355
25.0 14.0 60.4754 31.6 83.8 0.377 0.323

29 Incoherent space charge tune shift formula

We follow here the treatment of Courant [5].

Consider a beam of particles of mass m and charge eq circulating in a
storage ring or accelerator. (Here e is the elementary charge and q is an
integer.) Assume that the density of particles in the beam is uniform over
longitudinal distances that are large compared to the transverse
dimensions of the beam. Assume further that the beam cross section in the
transverse plane is a uniformly populated ellipse of area πab, where a and b
are the horizontal and vertical half widths of the ellipse.

Any given particle moving with the beam will experience a shift in
betatron tune due to the presence of the other particles. It is assumed here
that the effect of the image currents generated in the vacuum chamber can
be ignored. The tune shift is then

δQ = − N

πQB

r0R

b(a+ b)

1

β2γ
(1− β2). (294)

This is Courant’s equation (1) with the tune denoted by Q instead of ν.
Here N is number of particles in the beam, R is the ring radius (i.e. the
ring circumference divided by 2π) and B, the bunching factor, is the
fraction of the ring circumference occupied by the beam. The classical
electrostatic radius of the particle is

r0 = q2
(
me

m

)
re (295)

where
re = 2.817 940 3262(13)× 10−15 m [3] (296)
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is the classical electron radius. The electron mass-energy equivalent is

mec
2 = 0.510 998 950 00(15) MeV [3]. (297)

As stated succinctly by Courant, the factor 1− β2 in (294) arises from the
combination of electric repulsion and magnetic attraction between the
given particle and the rest of the beam; the strength of the latter is β2

times the former.

30 Tune shift in terms of transverse emittance

Let πεH and πεV be the horizontal and vertical emittances of the beam
and let 〈βH〉 and 〈βV 〉 be the averages of the corresponding
Courant-Snyder parameters of the ring lattice. Then

a =
√
εH 〈βH〉, b =

√
εV 〈βV 〉 (298)

and
b(a+ b) = εV 〈βV 〉+

√
εV εH 〈βV 〉 〈βH〉. (299)

We shall assume that
εH = εV = ε (300)

and that
〈βH〉 = 〈βV 〉 = βAV (301)

where

βAV =
R

Q
. (302)

We then have
b(a+ b) = 2εβAV (303)

1

πQ

r0R

b(a+ b)
=

r0
2πε

(304)

and (294) becomes

δQ = −N
B

r0
2πε

1

β2γ
(1− β2). (305)

Since the normalized emittance is

πεN = βγ πε (306)
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we then have

δQ = −N
B

r0
2πεN

1

β
(1− β2) (307)

which we can write as

δQ = − r0
2πεN

(
N

Bβγ2

)
. (308)

31 Tune shift for a round gaussian beam

For a beam distribution that is cylindrically symmetric and Gaussian,
Conte and MacKay [6] obtain

(δQ)G = − r0
4πEN

(
N

Bβγ2

)
(309)

where πEN is the rms normalized emittance of the distribution. This is to
be compared with (308). The relationship between the two is

(δQ)G =

(
εN

2EN

)
δQ (310)

where πεN is the normalized emittance of a uniform distribution. If

εN = 2EN (311)

then the two tune shifts are the same.

32 Comparison of the incoherent tune shifts in
the single and triple-harmonic bunches

Let δQ1 and δQ3 be the incoherent space charge tune shifts in the single
and triple-harmonic bunches, respectively. Then the ratio

δQ3

δQ1
=
B1

B3
(312)

where B1 and B3 are the corresponding bunching factors. Here one may
simply take

B1 =
W1

2πh
, B3 =

W3

2πh
(313)
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where the bunch widths W1 and W3 are given in radians. This gives

δQ3

δQ1
=
W1

W3
. (314)

This ratio is the reduction of space charge tune shift due to the lengthing
of the bunch in the triple-harmonic bucket. It is tabulated in the sixth
column of Table 12 and goes from 0.816 to 0.377 as the bunch is
accelerated from Gγ = 4.5 to Gγ = 14.0.

The height of the bunch in the triple-harmonic bucket is also reduced,
thereby reducing the peak current of the circulating beam. This suggests a
refinement of what we take to be the bunching factor. Let H1 and H3 be
the heights of the bunches in the single and triple-harmonic buckets. Each
bunch has the same area, A say. We can then define new bunch widths W ′1
and W ′3 such that

W ′1H1 = W ′3H3 = A. (315)

This is illustrated in Figure 14 where boxes have been drawn around the
bunches. The widths of the boxes are W ′1 and W ′3. If we now take the
bunching factors to be

B1 =
W ′1
2πh

, B3 =
W ′3
2πh

(316)

then we have
δQ3

δQ1
=
W ′1
W ′3

=
H3

H1
. (317)

This ratio is tabulated in the last column of Table 12 and goes from 0.703
to 0.323 as the bunch is accelerated from Gγ = 4.5 to Gγ = 14.0.
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Figure 14: This is the same as Figure 12, but with boxes drawn around the
bunches to illustrate the widths W ′1 and W ′3. The bunches and boxes all
have the same area. W ′1 and W ′3 are the widths of the single and triple-
harmonic boxes, respectively. The box heights H1 and H3 are equal to the
corresponding bunch heights. The ratio W ′1/W

′
3 is equal to the ratio H3/H1.
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33 Reduction of incoherent tune shift with
increasing gamma

Let (δQ)I and (δQ)F be the initial and final incoherent tune shifts as
proton bunches are accelerated from Gγ = 4.5 to Gγ = 14.0. Then the
reduction in tune shift is given by the ratio

(δQ)F
(δQ)I

=
BI (βγ2)I
BF (βγ2)F

(318)

where bunching factors

BI =
WI

2πh
, BF =

WF

2πh
(319)

and WI and WF are the initial and final bunch widths (in radians). Thus
the ratio

(δQ)F
(δQ)I

=
WI (βγ2)I
WF (βγ2)F

. (320)

Putting in numbers from columns three and four of Table 12 we obtain

(δQ)F
(δQ)I

= 0.591 (321)

for bunches in the single-harmonic bucket.

Putting in numbers from columns three and five of the table gives

(δQ)F
(δQ)I

= 0.273 (322)

for bunches in the triple-harmonic bucket.

This shows that the triple-harmonic bucket gives a significantly greater
reduction in incoherent tune shift with increasing gamma.
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34 Potential for a double-harmonic bucket

Defining
ψ = φ+ φs (323)

we have

U = A1 cosψ − 1

2
A2 cos(2ψ − 2ψ2) + Cψ (324)

∂U

∂ψ
= −A1 sinψ +A2 sin(2ψ − 2ψ2) + C (325)

∂2U

∂ψ2
= −A1 cosψ + 2A2 cos(2ψ − 2ψ2) (326)

∂3U

∂ψ3
= A1 sinψ − 4A2 sin(2ψ − 2ψ2) (327)

∂4U

∂ψ4
= A1 cosψ − 8A2 cos(2ψ − 2ψ2) (328)

and so on, where

C = A1 sinφs −A2 sin(2φs − 2ψ2). (329)

Using integer superscripts to denote the number of differentiations with
respect to ψ, we have

U1(φs) = 0 (330)

U2(φs) = −A1 cosφs + 2A2 cos(2φs − 2ψ2) (331)

U3(φs) = A1 sinφs − 4A2 sin(2φs − 2ψ2) (332)

U4(φs) = A1 cosφs − 8A2 cos(2φs − 2ψ2). (333)

35 Conditions for a flattened double-harmonic
bucket

For a flattened RF bucket we want derivatives

U1(φs) = U2(φs) = U3(φs) = 0 (334)

which gives
A1C1 = 2A2C2 (335)
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A1S1 = 4A2S2 (336)

where
C1 = cosφs, C2 = cos(2φs − 2ψ2) (337)

S1 = sinφs, S2 = sin(2φs − 2ψ2). (338)

It then follows that

tan(2φs − 2ψ2) =
1

2
tanφs (339)

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
(340)

and
A2

A1
=

1

2

C1

C2
=

1

4

S1
S2
. (341)

Thus, given synchronous phase φs, one obtains ψ2 and the ratio A2/A1.

36 Synchronous phase for double-harmonic
bucket

As a function of phase, the RF voltage must satisfy

V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (342)

where
−U1(ψ) = A1 sinψ −A2 sin(2ψ − 2ψ2)− C (343)

C = A1 sinφs −A2 sin(2φs − 2ψ2). (344)

Thus, using

A1 =
eQV1
2πh

, A2 =
eQV2
2πh

(345)

we have
V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2). (346)

The synchronous phase φs must satisfy

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(347)
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where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
Here it is useful to define phase φ1 such that

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (348)

We then have

V1 sinφs − V2 sin(2φs − 2ψ2) = V1 sinφ1 (349)

which gives

sinφs = sinφ1 +
V2
V1

sin(2φs − 2ψ2). (350)

Using
V2
V1

=
A2

A1
(351)

we then have

S1 = sinφ1 +
A2

A1
S2 (352)

where, according to (341),
A2

A1
=

1

4

S1
S2
. (353)

Thus

S1 = sinφ1 +
1

4
S1 (354)

S1

{
1− 1

4

}
= sinφ1 (355)

S1 =
4

3
sinφ1 (356)

and therefore

φs = arcsin

(
4

3
sinφ1

)
. (357)

Here we see that in order to have a real synchronous phase we must have

0 < sinφ1 ≤
3

4
. (358)

This constraint is satisfied if

0 ≤ φ1 ≤ 48.5904 ◦ (359)
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or
131.4096 ◦ ≤ φ1 < 180 ◦. (360)

If a particular φ1 is given, we can obtain φs from (357). This in turn can
be used in (340) to obtain ψ2. Finally, φs and ψ2 can be used in (341) to
obtain the ratio V2/V1. The voltage V1 is given by (348). We therefore
have the result that the phases φs and ψ2, and the ratio V2/V1 are
completely determined by the phase φ1.

37 Normalized double-harmonic voltage and
potential

It is convenient to normalize the voltage and potential so that they are
dimensionless and completely determined by the phase φ1. We define
normalized voltage

V(ψ) =
1

V1
V (ψ) (361)

and normalized potential

U(ψ) =
1

A1
{U(ψu)− U(ψ)} (362)

with derivatives

Um(ψ) = − 1

A1
Um(ψ). (363)

Here
V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2) (364)

V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (365)

U(ψ) = A1 cosψ − 1

2
A2 cos(2ψ − 2ψ2) + Cψ (366)

U1(ψ) = −A1 sinψ +A2 sin(2ψ − 2ψ2) + C (367)

U2(ψ) = −A1 cosψ + 2A2 cos(2ψ − 2ψ2) (368)

C = A1 sinφs −A2 sin(2φs − 2ψ2) (369)

and therefore
V(ψ)− V(φs) = U1(ψ) (370)

U(ψ) = D − cosψ +
1

2
R2 cos(2ψ − 2ψ2)− Cψ (371)
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U1(ψ) = sinψ −R2 sin(2ψ − 2ψ2)− C (372)

U2(ψ) = − cosψ + 2R2 cos(2ψ − 2ψ2) (373)

where

D = cosψu −
1

2
R2 cos(2ψu − 2ψ2) + Cψu (374)

C = sinφs −R2 sin(2φs − 2ψ2) (375)

and

R2 =
A2

A1
. (376)

The phase ψu in these equations is the unstable fixed point phase
associated with oscillations about the synchronous phase φs. It satisfies

U(ψu) = 0, U1(ψu) = 0. (377)

Below transition one has
0 < φs < ψu (378)

and
U2(ψu) < 0. (379)

There is an additional phase

ψe < φs < ψu (380)

that satisfies
U(ψe) = U(ψu) = 0. (381)

The equations of this and the previous section show that the normalized
voltage and potential are completely determined by the phase φ1. The
phases ψu and ψe are also completely determined by φ1.

38 Double-harmonic bucket width and area

The RF bucket associated with the stable fixed point phase φs extends
from ψe to ψu. It is defined by the curves W (ψ) where

W 2(ψ) =
2

a
{U(ψu)− U(ψ)} (382)

a =
h2c2ηs
R2
sEs

, ηs =
1

γ2t
− 1

γ2s
, Es = mc2γs. (383)
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The phase width of the bucket is

∆ψ = |ψu − ψe| . (384)

In terms of the normalized potential (362) we have

W 2(ψ) =
2

a
A1 U(ψ) (385)

and

W (ψ) = ±
(

2A1

|a|

)1/2

| U(ψ)|1/2 . (386)

Here

A1 =
eQV1
2πh

,
1

|a|
=

R2
sEs

h2c2|ηs|
(387)

which gives (
2A1

|a|

)1/2

=
Rs
hc

{
eQV1Es
πh|ηs|

}1/2

=
B1

8
√

2
(388)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(389)

is the single-harmonic stationary bucket area one would have with RF
voltage V1. Thus we have

W (ψ) = ± B1

8
√

2
| U(ψ)|1/2 . (390)

The normalized double-harmonic RF bucket is defined by the curves

W(ψ) = ± |U(ψ)|1/2 (391)

which are dimensionless and completely determined by the phase φ1.

The area of the double-harmonic bucket is

A2 = 2

∫ ψu

ψe

|W (ψ)| dψ (392)

where

|W (ψ)| = B1

8
√

2
| U(ψ)|1/2 . (393)

Defining normalized bucket area

B2 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (394)
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we then have

A2 =
B1

8
√

2
B2. (395)

The normalized bucket area is dimensionless and is completely determined
by the phase φ1.

39 Bunch matched to double-harmonic bucket

Consider a particle moving along the boundary of a bunch matched to the
double-harmonic bucket and let ψR be the right turning point phase of the
boundary. Below transition one has

ψe < φs < ψR < ψu. (396)

The corresponding left turning point phase ψL satisfies

ψe < ψL < φs < ψR < ψu (397)

and
U(ψL) = U(ψR). (398)

Here, as shown in Section 37,

U(ψ) =
1

A1
{U(ψu)− U(ψ)} (399)

where
1

A1
U(ψu) = cosψu −

1

2
R2 cos(2ψu − 2ψ2) + Cψu (400)

1

A1
U(ψ) = cosψ − 1

2
R2 cos(2ψ − 2ψ2) + Cψ (401)

C = sinφs −R2 sin(2φs − 2ψ2) (402)

and

R2 =
A2

A1
. (403)

Given either turning point phase, one can solve (398) numerically to obtain
the other. The phase width of the bunch is then

∆ψ = ψR − ψL. (404)
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Alternatively, if ∆ψ is given, one can solve

U(ψR −∆ψ) = U(ψR) (405)

to obtain ψR and ψL = ψR −∆ψ.

Below transition the boundary of the matched bunch is given by the curves
W (ψ) where

W 2(ψ) =
2

a
{U(ψR)− U(ψ)} (406)

and
ψL ≤ ψ ≤ ψR. (407)

In terms of the normalized potential (399) we have

W 2(ψ) =
2

a
A1 {U(ψ)− U(ψR)} (408)

and

W (ψ) = ±
(

2A1

|a|

)1/2

| U(ψ)− U(ψR)|1/2 . (409)

According to (388) and (389) we then have

W (ψ) = ± B1

8
√

2
| U(ψ)− U(ψR)|1/2 (410)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(411)

is the single-harmonic stationary bucket area one would have with RF
voltage V1.

The normalized bunch boundary is defined by the curves

W(ψ) = ± |U(ψ)− U(ψR)|1/2 (412)

where
ψL ≤ ψ ≤ ψR. (413)

The area of the bunch is

B =
B1

8
√

2
B (414)

where

B = 2

∫ ψR

ψL

| U(ψ)− U(ψR)|1/2 dψ (415)

is defined to be the normalized area. The normalized bunch boundary and
area are dimensionless and completely determined by the turning point
phase ψR and the phase φ1.
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40 Adjusting the ratio of double to
single-harmonic bucket area

For the double-harmonic bucket we have area

A2 =
B1

8
√

2
B2 (416)

and normalized area

B2 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (417)

where, as shown in Sections 36 and 37, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ1.

Similarly, for the single-harmonic bucket we have area

A1 =
B1

8
√

2
B1 (418)

and normalized area

B1 = 2

(
sinφ1
sinφ′1

)1/2 ∫ ψu

ψe

| U(ψ)|1/2 dψ (419)

where, as shown in Sections 14 and 15, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ′1.

Thus, the ratio
A2

A1
=
B2
B1

(420)

is completely determined by φ1 and φ′1. If either of these phases is given,
the other can be adjusted to give a desired value for the ratio.

If, for example, we start with a given single-harmonic bucket having
synchronous phase φ′1 and want a double-harmonic bucket with the same
area, the phase φ1 can be adjusted to give

B2 = B1 (421)

and therefore
A2 = A1. (422)

Since
V1 sinφ1 = V ′1 sinφ′1 (423)
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we also have voltage ratio
V1
V ′1

=
sinφ′1
sinφ1

. (424)

If the single-harmonic voltage V ′1 is given, we then have the required
double-harmonic voltage V1.

41 Lookup tables for double-harmonic phases
and voltage ratio

Proceeding as in Sections 18 and 19, we start with

sinφ1 =
1

V1

{
2πRsρs

(
1

c

dB

dt

)}
(425)

and calculate

sinφs =
4

3
sinφ1 (426)

φs = arcsin

{
4

3
sinφ1

}
(427)

tan (2φs − 2ψ2) =
1

2
tanφs (428)

2φs − 2ψ2 = arctan

{
1

2
tanφs

}
(429)

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
(430)

and
V2
V1

=
1

2

{
cosφs

cos(2φs − 2ψ2)

}
=

1

4

{
sinφs

sin(2φs − 2ψ2)

}
. (431)

These formulae can be used to construct lookup tables that give φs, ψ2,
and V2/V1 for any φ1 in range (359) or (360).

The double-harmonic voltage is then

V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ2). (432)

This satisfies

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(433)
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and produces a flattened RF bucket.

The phases φs and ψ2 are plotted as functions of φ1 in Figure 15.

The ratio V2/V1 is plotted as a function of φ1 in Figure 16.

The phase φ1 is given by (425).

Figure 15: Double-harmonic phases φs and ψ2 plotted as functions of φ1.
The horizontal axis gives φ1 in degrees. The vertical axis gives φs and
ψ2 in degrees. The upper (blue) and lower (green) curves are φs and ψ2,
respectively. The phase φ1 is given by (425). As sinφ1 approaches 3/4, the
phases φs and ψ2 approach π/2 and π/4, respectively.
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Figure 16: Double-harmonic voltage ratio V2/V1 plotted as a function of
φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives V2/V1.
The phase φ1 is given by (425). As sinφ1 approaches 3/4, the voltage ratio
approaches 1/4.
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42 Double-harmonic bucket turning point phases
and normalized area

The turning point phases ψe and ψu and normalized area for the
double-harmonic bucket are plotted as functions of φ1 in Figures 17 and 18.

Figure 17: Double-harmonic phases ψe, φs, and ψu plotted as functions
of φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives
the phases in degrees. The lower (green) and upper (pink) curves are ψe
and ψu, respectively. The middle curve (blue) is the synchronous phase
φs. The phase φ1 is given by (425). The double-harmonic bucket extends
from turning point phase ψe to unstable fixed point phase ψu. As sinφ1
approaches 3/4, all three phases approach π/2, and the bucket phase width
ψu − ψe goes to zero.
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Figure 18: Normalized double-harmonic bucket area plotted as a function
of phase φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives
the normalized area B2 defined in Section 38. As sinφ1 approaches 3/4, the
area goes to zero.
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43 Double-harmonic parameters for Gγ = 4.5

For
Gγ = 4.5 (434)

we have

βγ2 = 5.7783768, Bρ = 7.2051786 Tm, B = 843.91166 G (435)

Taking
dB/dt = 0.01 G/ms (436)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (437)

then gives
V ′1 = 7.498 kV, φ′1 = 0.52657 degrees. (438)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 0.69601 degrees (439)

and therefore
φs = 0.9280, ψ2 = 0.6960 degrees (440)

V1
V ′1

= 0.7566,
V2
V1

= 0.49995. (441)

The resulting single and double-harmonic buckets are shown in Figure 19
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 195.4 and 222.9 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.877.

The single and double-harmonic bunch heights are 1.224 and 0.9654
respectively. The ratio of double to single-harmonic bunch height is 0.7885.
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Figure 19: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 4.5. The two buckets have the same area (2 eV s)
and each bunch has half the area of the bucket that holds it. The single
and double-harmonic bunch widths are 195.4 and 222.9 degrees respectively.
The ratio of single to double-harmonic bunch width is 0.877. The single and
double-harmonic bunch heights are 1.224 and 0.9654 respectively. The ratio
of double to single-harmonic bunch height is 0.7885. The horizontal axis
gives the RF phase ψ in degrees.
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44 Double-harmonic parameters for Gγ = 6.0

For
Gγ = 6.0 (442)

we have

βγ2 = 10.688256, Bρ = 9.9955569 Tm, B = 1170.7367 G (443)

Taking
dB/dt = 9.0 G/ms (444)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (445)

then gives
V ′1 = 89.942 kV, φ′1 = 43.59258 degrees. (446)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 38.6424 degrees (447)

and therefore
φs = 56.3678, ψ2 = 37.90275 degrees (448)

V1
V ′1

= 1.1042,
V2
V1

= 0.3464. (449)

The resulting single and double-harmonic buckets are shown in Figure 20
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 86.79 and 122.8 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.707.

The single and double-harmonic bunch heights are 0.4052 and 0.2569
respectively. The ratio of double to single-harmonic bunch height is 0.634.
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Figure 20: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 6.0. The two buckets have the same area (2 eV s)
and each bunch has half the area of the bucket that holds it. The single
and double-harmonic bunch widths are 86.79 and 122.8 degrees respectively.
The ratio of single to double-harmonic bunch width is 0.707. The single and
double-harmonic bunch heights are 0.4052 and 0.2569 respectively. The ratio
of double to single-harmonic bunch height is 0.634. The horizontal axis gives
the RF phase ψ in degrees.
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45 Double-harmonic parameters for Gγ = 7.5

For
Gγ = 7.5 (450)

we have

βγ2 = 16.992559, Bρ = 12.713026 Tm, B = 1489.0222 G (451)

Taking
dB/dt = 18.0 G/ms (452)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (453)

then gives
V ′1 = 152.715 kV, φ′1 = 54.3111 degrees. (454)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 42.56825 degrees (455)

and therefore
φs = 64.4165, ψ2 = 41.2951, degrees (456)

V1
V ′1

= 1.2006,
V2
V1

= 0.3122. (457)

The resulting single and double-harmonic buckets are shown in Figure 21
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 66.02 and 100.92 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.654.

The single and double-harmonic bunch heights are 0.2656 and 0.1556
respectively. The ratio of double to single-harmonic bunch height is 0.586.
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Figure 21: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 7.5. The two buckets have the same area (2 eV s)
and each bunch has half the area of the bucket that holds it. The single and
double-harmonic bunch widths are 66.02 and 100.92 degrees respectively.
The ratio of single to double-harmonic bunch width is 0.654. The single
and double-harmonic bunch heights are 0.2656 and 0.1556 respectively. The
ratio of double to single-harmonic bunch height is 0.586. The horizontal axis
gives the RF phase ψ in degrees.
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46 Double-harmonic parameters for Gγ = 10.0

For
Gγ = 10.0 (458)

we have

βγ2 = 30.606873, Bρ = 17.173957 Tm, B = 2011.5119 G (459)

Taking
dB/dt = 22.0 G/ms (460)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (461)

then gives
V ′1 = 171.219 kV, φ′1 = 62.30122 degrees. (462)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 44.719265 degrees (463)

and therefore
φs = 69.7478, ψ2 = 42.9610, degrees (464)

V1
V ′1

= 1.2583,
V2
V1

= 0.2915. (465)

The resulting single and double-harmonic buckets are shown in Figure 22
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 50.94156 and 83.8858
degrees respectively. The ratio of single to double-harmonic bunch width is
0.607.

The single and double-harmonic bunch heights are 0.17876 and 0.09717
respectively. The ratio of double to single-harmonic bunch height is 0.544.
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Figure 22: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 10.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and double-harmonic bunch widths are 50.94156 and 83.8858 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.607.
The single and double-harmonic bunch heights are 0.17876 and 0.09717 re-
spectively. The ratio of double to single-harmonic bunch height is 0.544.
The horizontal axis gives the RF phase ψ in degrees.
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47 Double-harmonic parameters for Gγ = 12.5

For
Gγ = 12.5 (466)

we have

βγ2 = 48.108272, Bρ = 21.595395 Tm, B = 2529.3760 G (467)

Taking
dB/dt = 25.0 G/ms (468)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (469)

then gives
V ′1 = 184.954 kV, φ′1 = 68.6577 degrees. (470)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 46.0637 degrees (471)

and therefore
φs = 73.7703, ψ2 = 43.8738 degrees (472)

V1
V ′1

= 1.2934,
V2
V1

= 0.27775. (473)

The resulting single and double-harmonic buckets are shown in Figure 23
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 39.1183 and 69.5079
degrees respectively. The ratio of single to double-harmonic bunch width is
0.563.

The single and double-harmonic bunch heights are 0.1198 and 0.06032
respectively. The ratio of double to single-harmonic bunch height is 0.503.
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Figure 23: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 12.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and double-harmonic bunch widths are 39.1183 and 69.5079 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.563.
The single and double-harmonic bunch heights are 0.1198 and 0.06032 re-
spectively. The ratio of double to single-harmonic bunch height is 0.503.
The horizontal axis gives the RF phase ψ in degrees.
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48 Double-harmonic parameters for Gγ = 14.0

For
Gγ = 14.0 (474)

we have

βγ2 = 60.475409, Bρ = 24.238302 Tm, B = 2838.9283 G (475)

Taking
dB/dt = 25.0 G/ms (476)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (477)

then gives
V ′1 = 180.410 kV, φ′1 = 72.72346 degrees. (478)

We can then adjust φ1 to give a normalized double-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 46.7777 degrees (479)

and therefore
φs = 76.3130, ψ2 = 44.2976 degrees (480)

V1
V ′1

= 1.3104,
V2
V1

= 0.2702. (481)

The resulting single and double-harmonic buckets are shown in Figure 24
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and double-harmonic bunch widths are 31.6137 and 59.7323
degrees respectively. The ratio of single to double-harmonic bunch width is
0.529.

The single and double-harmonic bunch heights are 0.08691 and 0.04113
respectively. The ratio of double to single-harmonic bunch height is 0.473.
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Figure 24: Normalized single and double-harmonic buckets and matched
bunches obtained for Gγ = 14.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and double-harmonic bunch widths are 31.6137 and 59.7323 degrees
respectively. The ratio of single to double-harmonic bunch width is 0.529.
The single and double-harmonic bunch heights are 0.08691 and 0.04113 re-
spectively. The ratio of double to single-harmonic bunch height is 0.473.
The horizontal axis gives the RF phase ψ in degrees.
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49 Double-harmonic parameter summary for
acceleration of polarized protons in AGS

The following tables summarize the data of Sections 43 through 48. The
guide field B and its time derivative are given in units of G and G/ms.
The single-harmonic RF voltage V ′1 is given in units of kV. The phases φ′1,
φ1, φs, ψ2, and the single and double-harmonic bunch widths W1 and W2

are given in degrees. The ratio H2/H1 is the ratio of double to
single-harmonic bunch height. Values of βγ2, W1, W2, and H2/H1 are
tabulated for comparison of the incoherent space charge tune shifts in the
single and double-harmonic bunches.

Table 13: Double-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1

843.9 0.01 4.5 7.498 0.7566 0.49995
1170.7 9.0 6.0 89.942 1.1042 0.3464
1489.0 18.0 7.5 152.715 1.2006 0.3122
2011.5 22.0 10.0 171.219 1.2583 0.2915
2529.4 25.0 12.5 184.954 1.2934 0.27775
2838.9 25.0 14.0 180.410 1.3104 0.2702

Table 14: Double-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2

0.01 4.5 0.52657 0.69601 0.9280 0.6960
9.0 6.0 43.59258 38.6424 56.3678 37.90275
18.0 7.5 54.3111 42.5683 64.4165 41.2951
22.0 10.0 62.30122 44.7193 69.7478 42.9610
25.0 12.5 68.6577 46.0637 73.7703 43.8738
25.0 14.0 72.72346 46.7777 76.3130 44.2976
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Table 15: Double-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W2 W1/W2 H2/H1

0.01 4.5 5.7784 195.4 222.9 0.877 0.7885
9.0 6.0 10.6883 86.79 122.8 0.707 0.634
18.0 7.5 16.9926 66.02 100.92 0.654 0.586
22.0 10.0 30.6069 50.94 83.89 0.607 0.544
25.0 12.5 48.1083 39.12 69.51 0.563 0.503
25.0 14.0 60.4754 31.61 59.73 0.529 0.473

50 Comparison of the incoherent tune shifts in
the single and double-harmonic bunches

Let δQ1 and δQ2 be the incoherent space charge tune shifts in the single
and double-harmonic bunches, respectively. Then the ratio

δQ2

δQ1
=
B1

B2
(482)

where B1 and B2 are the corresponding bunching factors. Here one may
simply take

B1 =
W1

2πh
, B2 =

W2

2πh
(483)

where the bunch widths W1 and W2 are given in radians. This gives

δQ2

δQ1
=
W1

W2
. (484)

This ratio is the reduction of space charge tune shift due to the lengthing
of the bunch in the double-harmonic bucket. It is tabulated in the sixth
column of Table 15 and goes from 0.877 to 0.529 as the bunch is
accelerated from Gγ = 4.5 to Gγ = 14.0.

As shown in Section 32, one may also take

δQ2

δQ1
=
H2

H1
. (485)

This ratio is tabulated in the last column of Table 15 and goes from 0.789
to 0.473 as the bunch is accelerated from Gγ = 4.5 to Gγ = 14.0.
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51 Reduction of incoherent tune shift with
increasing gamma

Let (δQ)I and (δQ)F be the initial and final incoherent tune shifts as
proton bunches are accelerated from Gγ = 4.5 to Gγ = 14.0. Then the
reduction in tune shift is given by the ratio

(δQ)F
(δQ)I

=
BI (βγ2)I
BF (βγ2)F

(486)

where bunching factors

BI =
WI

2πh
, BF =

WF

2πh
(487)

and WI and WF are the initial and final bunch widths (in radians). Thus
the ratio

(δQ)F
(δQ)I

=
WI (βγ2)I
WF (βγ2)F

. (488)

Putting in numbers from columns three and four of Table 15 we obtain

(δQ)F
(δQ)I

= 0.591 (489)

for bunches in the single-harmonic bucket.

Putting in numbers from columns three and five of the table gives

(δQ)F
(δQ)I

= 0.357 (490)

for bunches in the double-harmonic bucket.

This shows that the double-harmonic bucket gives a significantly greater
reduction in incoherent tune shift with increasing gamma. For the
triple-harmonic bucket one has

(δQ)F
(δQ)I

= 0.273 (491)

as shown in Section 33.
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52 Potential for a quad-harmonic bucket

Defining
ψ = φ+ φs (492)

C1(ψ) = cosψ, C2(ψ) = cos(2ψ − 2ψ2) (493)

C3(ψ) = cos(3ψ − 3ψ3), C4(ψ) = cos(4ψ − 4ψ4) (494)

and
S1(ψ) = sinψ, S2(ψ) = sin(2ψ − 2ψ2) (495)

S3(ψ) = sin(3ψ − 3ψ3), S4(ψ) = sin(4ψ − 4ψ4) (496)

we have

U = A1C1(ψ)− 1

2
A2C2(ψ) +

1

3
A3C3(ψ)− 1

4
A4C4(ψ) + Cψ (497)

∂U

∂ψ
= −A1S1(ψ) +A2S2(ψ)−A3S3(ψ) +A4S4(ψ) + C (498)

∂2U

∂ψ2
= −A1C1(ψ) + 2A2C2(ψ)− 3A3C3(ψ) + 4A4C4(ψ) (499)

∂3U

∂ψ3
= A1S1(ψ)− 4A2S2(ψ) + 9A3S3(ψ)− 16A4S4(ψ) (500)

∂4U

∂ψ4
= A1C1(ψ)− 8A2C2(ψ) + 27A3C3(ψ)− 64A4C4(ψ) (501)

∂5U

∂ψ5
= −A1S1(ψ) + 16A2S2(ψ)− 81A3S3(ψ) + 256A4S4(ψ) (502)

∂6U

∂ψ6
= −A1C1(ψ) + 32A2C2(ψ)− 243A3C3(ψ) + 1024A4C4(ψ) (503)

∂7U

∂ψ7
= A1S1(ψ)− 64A2S2(ψ) + 729A3S3(ψ)− 4096A4S4(ψ) (504)

and so on, where

C = A1S1(φs)−A2S2(φs) +A3S3(φs)−A4S4(φs). (505)

Using integer superscripts to denote the number of differentiations with
respect to ψ, we have

U1(φs) = 0 (506)
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U2(φs) = −A1C1 + 2A2C2 − 3A3C3 + 4A4C4 (507)

U3(φs) = A1S1 − 4A2S2 + 9A3S3 − 16A4S4 (508)

U4(φs) = A1C1 − 8A2C2 + 27A3C3 − 64A4C4 (509)

U5(φs) = −A1S1 + 16A2S2 − 81A3S3 + 256A4S4 (510)

U6(φs) = −A1C1 + 32A2C2 − 243A3C3 + 1024A4C4 (511)

U7(φs) = A1S1 − 64A2S2 + 729A3S3 − 4096A4S4 (512)

where

C1 = C1(φs), C2 = C2(φs), C3 = C3(φs), C4 = C4(φs) (513)

S1 = S1(φs), S2 = S2(φs), S3 = S3(φs), S4 = S4(φs). (514)

53 Conditions for a flattened quad-harmonic
bucket

For a flattened RF bucket we want derivatives

U2(φs) = U3(φs) = U4(φs) = U5(φs) = U6(φs) = U7(φs) = 0 (515)

which gives
A1C1 = 2A2C2 − 3A3C3 + 4A4C4 (516)

−A1C1 = −8A2C2 + 27A3C3 − 64A4C4 (517)

A1C1 = 32A2C2 − 243A3C3 + 1024A4C4 (518)

and
−A1S1 = −4A2S2 + 9A3S3 − 16A4S4 (519)

A1S1 = 16A2S2 − 81A3S3 + 256A4S4 (520)

−A1S1 = −64A2S2 + 729A3S3 − 4096A4S4. (521)

These equations imply

0 = −6A2C2 + 24A3C3 − 60A4C4 (522)

0 = 24A2C2 − 216A3C3 + 960A4C4 (523)

0 = 6A2C2 − 54A3C3 + 240A4C4 (524)

0 = −30A3C3 + 180A4C4 (525)
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and
0 = 12A2S2 − 72A3S3 + 240A4S4 (526)

0 = −48A2S2 + 648A3S3 − 3840A4S4 (527)

0 = −12A2S2 + 162A3S3 − 960A4S4 (528)

0 = 90A3S3 − 720A4S4. (529)

One then finds that

A4C4 =
1

6
A3C3, A3C3 =

3

7
A2C2, A2C2 = A1C1 (530)

A4S4 =
1

8
A3S3, A3S3 =

2

7
A2S2, A2S2 =

1

2
A1S1 (531)

which give

A4C4 =
1

14
A1C1, A3C3 =

3

7
A1C1, A2C2 = A1C1 (532)

A4S4 =
1

56
A1S1, A3S3 =

1

7
A1S1, A2S2 =

1

2
A1S1 (533)

and therefore

S4
C4

=
1

4

S1
C1
,

S3
C3

=
1

3

S1
C1
,

S2
C2

=
1

2

S1
C1

(534)

A4

A1
=

1

14

C1

C4
=

1

56

S1
S4

(535)

A3

A1
=

3

7

C1

C3
=

1

7

S1
S3

(536)

A2

A1
=
C1

C2
=

1

2

S1
S2
. (537)

Thus, if the value of φs is given, we can calculate values for the phases ψ2,
ψ3, and ψ4, and the ratios A2/A1, A3/A1, and A4/A1. Specifically one has

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
(538)

ψ3 = φs −
1

3
arctan

{
1

3
tanφs

}
(539)
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ψ4 = φs −
1

4
arctan

{
1

4
tanφs

}
(540)

and
A2

A1
=

{
cosφs

cos(2φs − 2ψ2)

}
=

1

2

{
sinφs

sin(2φs − 2ψ2)

}
(541)

A3

A1
=

3

7

{
cosφs

cos(3φs − 3ψ3)

}
=

1

7

{
sinφs

sin(3φs − 3ψ3)

}
(542)

A4

A1
=

1

14

{
cosφs

cos(3φs − 3ψ3)

}
=

1

56

{
sinφs

sin(3φs − 3ψ3)

}
. (543)

54 Synchronous phase for flattened
quad-harmonic bucket

As a function of phase, the RF voltage satisfies

V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (544)

where

−U1(ψ) = A1S1(ψ)−A2S2(ψ) +A3S3(ψ)−A4S4(ψ)− C (545)

C = A1S1 −A2S2 +A3S3 −A4S4. (546)

Thus, using

A1 =
eQV1
2πh

, A2 =
eQV2
2πh

, A3 =
eQV3
2πh

, A4 =
eQV4
2πh

(547)

we have
V (ψ) = V1S1(ψ)− V2S2(ψ) + V3S3(ψ)− V4S4(ψ). (548)

The synchronous phase φs must satisfy

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(549)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
Here it is useful to define phase φ1 such that

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (550)
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We then have
V1S1 − V2S2 + V3S3 − V4S4 = V1 sinφ1 (551)

which gives

S1 = sinφ1 +
V2
V1
S2 −

V3
V1
S3 +

V4
V1
S4. (552)

Using
V2
V1

=
A2

A1
,

V3
V1

=
A3

A1
,

V4
V1

=
A4

A1
(553)

we then have

S1 = sinφ1 +
A2

A1
S2 −

A3

A1
S3 +

A4

A1
S4 (554)

where, as shown in the previous section,

A2

A1
=

1

2

S1
S2
,

A3

A1
=

1

7

S1
S3
,

A4

A1
=

1

56

S1
S4
. (555)

Thus

S1 = sinφ1 +
1

2
S1 −

1

7
S1 +

1

56
S1 (556)

S1

{
1− 1

2
+

1

7
− 1

56

}
= sinφ1 (557)

S1 =
8

5
sinφ1 (558)

and therefore

φs = arcsin

(
8

5
sinφ1

)
. (559)

Here we see that in order to have a real synchronous phase we must have

0 ≤ sinφ1 ≤
5

8
. (560)

This constraint satisfied if

0 ≤ φ1 ≤ 38.6822 ◦ (561)

or
141.3178 ◦ ≤ φ1 < 180 ◦. (562)

If a particular φ1 is given, we can obtain φs from (559). This in turn can
be used in (538), (539), and (540) to obtain ψ2, ψ3, and ψ4. Finally, φs,
ψ2, ψ3, and ψ4 can be used in (541), (542), and (543) to obtain the ratios
V2/V1, V3/V1, and V4/V1. The voltage V1 is given by (550).
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55 Normalized quad-harmonic voltage and
potential

It is convenient to normalize the voltage and potential so that they are
dimensionless and completely determined by the phase φ1. We define
normalized voltage

V(ψ) =
1

V1
V (ψ) (563)

and normalized potential

U(ψ) =
1

A1
{U(ψu)− U(ψ)} (564)

with derivatives

Um(ψ) = − 1

A1
Um(ψ). (565)

Here
V (ψ) = V1S1(ψ)− V2S2(ψ) + V3S3(ψ)− V4S4(ψ) (566)

V (ψ)− V (φs) = −
(

2πh

eQ

)
U1(ψ) (567)

U(ψ) = A1C1(ψ)− 1

2
A2C2(ψ) +

1

3
A3C3(ψ)− 1

4
A4C4(ψ) + Cψ (568)

U1(ψ) = −A1S1(ψ) +A2S2(ψ)−A3S3(ψ) +A4S4(ψ) + C (569)

U2(ψ) = −A1C1(ψ) + 2A2C2(ψ)− 3A3C3(ψ) + 4A4C4(ψ) (570)

C = A1S1 −A2S2 +A3S3 −A4S4 (571)

and therefore
V(ψ)− V(φs) = U1(ψ) (572)

U(ψ) = D − C1(ψ) +
1

2
R2C2(ψ)− 1

3
R3C3(ψ) +

1

4
R4C4(ψ)− Cψ (573)

U1(ψ) = S1(ψ)−R2S2(ψ) +R3S3(ψ)−R4S4(ψ)− C (574)

U2(ψ) = −C1(ψ) + 2R2C2(ψ)− 3R3C3(ψ) + 4R4C4(ψ) (575)

where

D = C1(ψu)− 1

2
R2C2(ψu) +

1

3
R3C3(ψu)− 1

4
R4C4(ψu) + Cψu (576)

C = S1 −R2S2 +R3S3 −R4S4 (577)

88



and

R2 =
A2

A1
, R3 =

A3

A1
, R4 =

A4

A1
. (578)

The phase ψu in these equations is the unstable fixed point phase
associated with oscillations about the synchronous phase φs. It satisfies

U(ψu) = 0, U1(ψu) = 0. (579)

Below transition one has
0 < φs < ψu (580)

and
U2(ψu) < 0. (581)

There is an additional phase

ψe < φs < ψu (582)

that satisfies
U(ψe) = U(ψu) = 0. (583)

The equations of this and the previous section show that the normalized
voltage and potential are completely determined by the phase φ1. The
phases ψu and ψe are also completely determined by φ1.

56 Quad-harmonic bucket width and area

The RF bucket associated with the stable fixed point phase φs extends
from ψe to ψu. It is defined by the curves W (ψ) where

W 2(ψ) =
2

a
{U(ψu)− U(ψ)} (584)

a =
h2c2ηs
R2
sEs

, η =
1

γ2t
− 1

γ2s
, Es = mc2γs. (585)

The phase width of the bucket is

∆ψ = |ψu − ψe|. (586)

In terms of the normalized potential (564) we have

W 2(ψ) =
2

a
A1 U(ψ) (587)
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and

W (ψ) = ±
(

2A1

|a|

)1/2

| U(ψ)|1/2 . (588)

Here

A1 =
eQV1
2πh

,
1

|a|
=

R2
sEs

h2c2|ηs|
(589)

which gives (
2A1

|a|

)1/2

=
Rs
hc

{
eQV1Es
πh|ηs|

}1/2

=
B1

8
√

2
(590)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(591)

is the single-harmonic stationary bucket area. Thus we have

W (ψ) = ± B1

8
√

2
| U(ψ)|1/2 . (592)

The normalized quad-harmonic RF bucket is defined by the curves

W(ψ) = ± |U(ψ)|1/2 (593)

which are dimensionless and completely determined by the phase φ1.

The area of the quad-harmonic bucket is

A4 = 2

∫ ψu

ψe

|W (ψ)| dψ (594)

where

|W (ψ)| = B1

8
√

2
| U(ψ)|1/2 . (595)

Defining normalized bucket area

B4 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (596)

we then have

A4 =
B1

8
√

2
B4. (597)

The normalized bucket area is dimensionless and is completely determined
by the phase φ1.
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57 Bunch matched to quad-harmonic bucket

Consider a particle moving along the boundary of a bunch matched to the
quad-harmonic bucket and let ψR be the right turning point phase of the
boundary. Below transition one has

ψe < φs < ψR < ψu. (598)

The corresponding left turning point phase ψL satisfies

ψe < ψL < φs < ψR < ψu (599)

and
U(ψL) = U(ψR). (600)

As in section 11, the normalized bunch boundary is defined by the curves

W(ψ) = ± |U(ψ)− U(ψR)|1/2 (601)

where
ψL ≤ ψ ≤ ψR. (602)

The area of the bunch is

B =
B1

8
√

2
B (603)

where

B1 = 8
Rs
hc

{
2eQV1Es
πh|ηs|

}1/2

(604)

and

B = 2

∫ ψR

ψL

| U(ψ)− U(ψR)|1/2 dψ (605)

is defined to be the normalized area. The normalized bunch boundary and
area are dimensionless and completely determined by the turning point
phase ψR and the phase φ1.

58 Adjusting the ratio of quad to
single-harmonic bucket area

For the quad-harmonic bucket we have area

A4 =
B1

8
√

2
B4 (606)
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and normalized area

B4 = 2

∫ ψu

ψe

| U(ψ)|1/2 dψ (607)

where, as shown in Sections 54 and 55, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ1.

Similarly, for the single-harmonic bucket we have area

A1 =
B1

8
√

2
B1 (608)

and normalized area

B1 = 2

(
sinφ1
sinφ′1

)1/2 ∫ ψu

ψe

| U(ψ)|1/2 dψ (609)

where, as shown in Sections 14 and 15, the phases ψe and ψu, and the
normalized potential U(ψ) are completely determined by the phase φ′1.

Thus, the ratio
A4

A1
=
B4
B1

(610)

is completely determined by φ1 and φ′1. If either of these phases is given,
the other can be adjusted to give a desired value for the ratio.

If, for example, we start with a given single-harmonic bucket having
synchronous phase φ′1 and want a quad-harmonic bucket with the same
area, the phase φ1 can be adjusted to give

B4 = B1 (611)

and therefore
A4 = A1. (612)

Since
V1 sinφ1 = V ′1 sinφ′1 (613)

we also have voltage ratio
V1
V ′1

=
sinφ′1
sinφ1

. (614)

If the single-harmonic voltage V ′1 is given, we then have the required
quad-harmonic voltage V1.
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59 Application of quad-harmonic bucket to
acceleration of polarized protons in AGS

For protons
mc2 = 938.272 088 16(29) MeV (615)

g = 5.585 694 6893(16) (616)

G = (g − 2)/2 = 1.792 8473 4465 (617)

and in AGS
Rs = 128.4526 m, ρs = 85.378351 m (618)

γt = 8.5, h = 6. (619)

Suppose we have acceleration of polarized protons in AGS set up using just
a single RF harmonic and wish to move to a quad-harmonic setup. Let h,
V ′1 , and φ′1 be the harmonic number, voltage, and synchronous phase,
respectively, for the single-harmonic setup. For a given single-harmonic
voltage V ′1 the synchronous phase φ′1 must satisfy

V ′1 sinφ′1 = 2πRsρs

(
1

c

dB

dt

)
(620)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.
According to (550) we also have, for the quad-harmonic bucket,

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
(621)

and therefore
V1 sinφ1 = V ′1 sinφ′1. (622)

As a starting point for moving to a quad-harmonic setup, we would like
the quad-harmonic bucket to have the same area as that of the
single-harmonic bucket. As shown in the previous section, we can adjust
the phase φ1 so that this is so. This would be done by an application at a
discrete set of times that amply cover the cycle of the programmed guide
field. Having these phases in hand we then have a first pass set of
quad-harmonic voltages V1 given by

V1 =

(
sinφ′1
sinφ1

)
V ′1 . (623)
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These would be the starting voltages in the V1 voltage program for the
quad-harmonic bucket. They could be subsequently tuned if necessary. In
the next section it is shown that for any set of programmed values of V1,
the corresponding values of phases φs, ψ2, ψ3, ψ4 and voltages V2, V3, V4
can be obtained from lookup tables. These then give the quad-harmonic
voltage

V (ψ) = V1 sinψ−V2 sin(2ψ−2ψ2)+V3 sin(3ψ−3ψ3)−V4 sin(4ψ−4ψ4) (624)

throughout the guide field cycle.

60 Lookup tables for quad-harmonic phases and
voltage ratios

We assume that voltage V1 and guide field time-derivative dB/dt are given
and require that phase φ1 satisfy

V1 sinφ1 = 2πRsρs

(
1

c

dB

dt

)
. (625)

Obtaining the required phase φ1 would be no different than what is
currently done to obtain the synchronous phase φ′1 in the single-harmonic
setup. As shown in Section 54 we must also have

0 ≤ sinφ1 ≤
5

8
. (626)

In practice this is no different than requiring that the single-harmonic
synchronous phase satisfy

0 ≤ sinφ′1 ≤ 1. (627)

The constraint (626) is satisfied if

0 ≤ φ1 ≤ 38.6822 ◦ (628)

or
141.3178 ◦ ≤ φ1 < 180 ◦. (629)

Starting with

sinφ1 =
1

V1

{
2πRsρs

(
1

c

dB

dt

)}
(630)

we then have

sinφs =
8

5
sinφ1 (631)

94



φs = arcsin

{
8

5
sinφ1

}
(632)

tan (2φs − 2ψ2) =
1

2
tanφs (633)

2φs − 2ψ2 = arctan

{
1

2
tanφs

}
(634)

ψ2 = φs −
1

2
arctan

{
1

2
tanφs

}
(635)

tan (3φs − 3ψ2) =
1

3
tanφs (636)

3φs − 3ψ3 = arctan

{
1

3
tanφs

}
(637)

ψ3 = φs −
1

3
arctan

{
1

3
tanφs

}
(638)

tan (4φs − 4ψ2) =
1

4
tanφs (639)

4φs − 4ψ4 = arctan

{
1

4
tanφs

}
(640)

ψ4 = φs −
1

4
arctan

{
1

4
tanφs

}
(641)

V2
V1

=

{
cosφs

cos(2φs − 2ψ2)

}
=

1

2

{
sinφs

sin(2φs − 2ψ2)

}
(642)

V3
V1

=
3

7

{
cosφs

cos(3φs − 3ψ3)

}
=

1

7

{
sinφs

sin(3φs − 3ψ3)

}
(643)

and
V4
V1

=
1

14

{
cosφs

cos(3φs − 3ψ3)

}
=

1

56

{
sinφs

sin(3φs − 3ψ3)

}
. (644)

These formulae can be used to construct lookup tables that give φs, ψ2,
ψ3, ψ4, V2/V1, V3/V1, and V4/V1 for any φ1 in range (628) or (629).

The quad-harmonic voltage is then

V (ψ) = V1 sinψ−V2 sin(2ψ−2ψ2)+V3 sin(3ψ−3ψ3)−V4 sin(4ψ−4ψ4) (645)
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which satisfies

V (φs) = 2πRsρs

(
1

c

dB

dt

)
(646)

and produces a flattened RF bucket.

The phases φs, ψ2, ψ3, ψ4 are plotted as functions of φ1 in Figure 25.

The ratios V2/V1, V3/V1, V4/V1 are plotted as functions of φ1 in Figure 26.

The phase φ1 is given by (630).

Figure 25: Quad-harmonic phases φs, ψ2, and ψ3 plotted as functions of φ1.
The horizontal axis gives φ1 in degrees. The vertical axis gives the phases
in degrees. Starting with the lowest curve and going up, the green, pink,
violet, and blue curves are ψ2, ψ3, ψ4, and φs, respectively. The phase φ1
is given by (630). As sinφ1 approaches 5/8, the phases ψ2, ψ3, ψ4, and φs
approach π/4, π/3, 3π/8, and π/2, respectively.
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Figure 26: Quad-harmonic voltage ratios V2/V1, V3/V1, and V4/V1 plotted
as functions of φ1. The horizontal axis gives φ1 in degrees. The vertical
axis gives the voltage ratios. Starting with the upper curve and going down,
the blue, green, and pink curves are V2/V1, V3/V1, and V4/V1, respectively.
The phase φ1 is given by (630). As sinφ1 approaches 5/8, the ratios V2/V1,
V3/V1, and V4/V1 approach 1/2, 1/7, and 1/56, respectively.
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61 Quad-harmonic bucket turning point phases
and normalized area

The turning point phases ψe and ψu and normalized area for the
quad-harmonic bucket are plotted as functions of φ1 in Figures 27 and 28.

Figure 27: Quad-harmonic phases ψe, φs, and ψu plotted as functions of
φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives the
phases in degrees. The lower (green) and upper (pink) curves are ψe and
ψu, respectively. The middle curve (blue) is the synchronous phase φs. The
phase φ1 is given by (630). The quad-harmonic bucket extends from turning
point phase ψe to unstable fixed point phase ψu. As sinφ1 approaches 5/8,
all three phases approach π/2, and the bucket phase width ψu − ψe goes to
zero.
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Figure 28: Normalized quad-harmonic bucket area plotted as a function of
phase φ1. The horizontal axis gives φ1 in degrees. The vertical axis gives
the normalized area B3 defined in Section 56. As sinφ1 approaches 5/8, the
area goes to zero.
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62 Quad-harmonic parameters for Gγ = 4.5

For
Gγ = 4.5 (647)

we have

βγ2 = 5.7783768, Bρ = 7.2051786 Tm, B = 843.91166 G (648)

Taking
dB/dt = 0.01 G/ms (649)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (650)

then gives
V ′1 = 7.498 kV, φ′1 = 0.526567 degrees. (651)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 0.96790882 degrees (652)

and therefore

φs = 1.5488, ψ2 = 1.1615, ψ3 = 1.3766, ψ4 = 1.4519, degrees (653)

V1
V ′1

= 0.5440,
V2
V1

= 0.9997,
V3
V1

= 0.4284,
V4
V1

= 0.07140. (654)

The resulting single and quad-harmonic buckets are shown in Figure 29
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 195.4 and 251.2 degrees
respectively. The ratio of single to quad-harmonic bunch width is 0.778.

The single and quad-harmonic bunch heights are 1.444 and 0.9462
respectively. The ratio of triple to single-harmonic bunch height is 0.655.
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Figure 29: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 4.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 195.4 and 251.2 degrees respec-
tively. The ratio of single to quad-harmonic bunch width is 0.778. The
single and quad-harmonic bunch heights are 1.444 and 0.9462 respectively.
The ratio of quad to single-harmonic bunch height is 0.655. The horizontal
axis gives the RF phase ψ in degrees.
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63 Quad-harmonic parameters for Gγ = 6.0

For
Gγ = 6.0 (655)

we have

βγ2 = 10.688256, Bρ = 9.9955569 Tm, B = 1170.7367 G (656)

Taking
dB/dt = 9.0 G/ms (657)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (658)

then gives
V ′1 = 89.942 kV, φ′1 = 43.59258 degrees. (659)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 34.9114831 degrees (660)

and therefore

φs = 66.3048, ψ2 = 41.9421, ψ3 = 53.8989, ψ4 = 58.8879 (661)

V1
V ′1

= 1.2048,
V2
V1

= 0.6092,
V3
V1

= 0.2163,
V4
V1

= 0.03304. (662)

The resulting single and quad-harmonic buckets are shown in Figure 30
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 86.79 and 166.3 degrees
respectively. The ratio of single to quad-harmonic bunch width is 0.522.

The single and quad-harmonic bunch heights are 0.3879 and 0.1704
respectively. The ratio of quad to single-harmonic bunch height is 0.439.
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Figure 30: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 6.0. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 86.79 and 166.3 degrees respec-
tively. The ratio of single to quad-harmonic bunch width is 0.522. The
single and quad-harmonic bunch heights are 0.3879 and 0.1704 respectively.
The ratio of quad to single-harmonic bunch height is 0.439. The horizontal
axis gives the RF phase ψ in degrees.
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64 Quad-harmonic parameters for Gγ = 7.5

For
Gγ = 7.5 (663)

we have

βγ2 = 16.992559, Bρ = 12.713026 Tm, B = 1489.0222 G (664)

Taking
dB/dt = 18.0 G/ms (665)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (666)

then gives
V ′1 = 152.715 kV, φ′1 = 54.311135 degrees. (667)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 36.417402 degrees (668)

and therefore

φs = 71.7797, ψ2 = 43.4592, ψ3 = 56.6599, ψ4 = 62.4758 (669)

V1
V ′1

= 1.3681,
V2
V1

= 0.5686,
V3
V1

= 0.1907,
V4
V1

= 0.02804. (670)

The resulting single and quad-harmonic buckets are shown in Figure 31
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 66.0154 and 145.918
degrees respectively. The ratio of single to quad-harmonic bunch width is
0.452.

The single and quad-harmonic bunch heights are 0.2488 and 0.09453
respectively. The ratio of quad to single-harmonic bunch height is 0.380.
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Figure 31: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 7.5. The two buckets have the same area (2
eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 66.0154 and 145.918 degrees re-
spectively. The ratio of single to quad-harmonic bunch width is 0.452. The
single and quad-harmonic bunch heights are 0.2488 and 0.09453 respectively.
The ratio of quad to single-harmonic bunch height is 0.380. The horizontal
axis gives the RF phase ψ in degrees.
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65 Quad-harmonic parameters for Gγ = 10.0

For
Gγ = 10.0 (671)

we have

βγ2 = 30.606873, Bρ = 17.173957 Tm, B = 2011.5119 G (672)

Taking
dB/dt = 22.0 G/ms (673)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (674)

then gives
V ′1 = 171.219 kV, φ′1 = 62.301222 degrees. (675)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 37.172555 degrees (676)

and therefore

φs = 75.1831, ψ2 = 44.1237, ψ3 = 57.9947, ψ4 = 64.3374 (677)

V1
V ′1

= 1.4654,
V2
V1

= 0.54685,
V3
V1

= 0.1763,
V4
V1

= 0.02513. (678)

The resulting single and quad-harmonic buckets are shown in Figure 32
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 50.940481 and 129.199
degrees respectively. The ratio of single to quad-harmonic bunch width is
0.394.

The single and quad-harmonic bunch heights are 0.1656 and 0.05478
respectively. The ratio of quad to single-harmonic bunch height is 0.331.
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Figure 32: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 10.0. The two buckets have the same area
(2 eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 50.940481 and 129.199 degrees
respectively. The ratio of single to quad-harmonic bunch width is 0.394.
The single and quad-harmonic bunch heights are 0.1656 and 0.05478 respec-
tively. The ratio of quad to single-harmonic bunch height is 0.331. The
horizontal axis gives the RF phase ψ in degrees.
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66 Quad-harmonic parameters for Gγ = 12.5

For
Gγ = 12.5 (679)

we have

βγ2 = 48.108272, Bρ = 21.595395 Tm, B = 2529.3760 G (680)

Taking
dB/dt = 25.0 G/ms (681)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (682)

then gives
V ′1 = 184.954 kV, φ′1 = 68.657683 degrees. (683)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 37.632985 degrees (684)

and therefore

φs = 77.6775, ψ2 = 44.4776, ψ3 = 58.7570, ψ4 = 65.4641 (685)

V1
V ′1

= 1.5254,
V2
V1

= 0.5331,
V3
V1

= 0.1669,
V4
V1

= 0.02317. (686)

The resulting single and quad-harmonic buckets are shown in Figure 33
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 39.118263 and 114.2815
degrees respectively. The ratio of single to quad-harmonic bunch width is
0.342.

The single and quad-harmonic bunch heights are 0.1103 and 0.03164
respectively. The ratio of quad to single-harmonic bunch height is 0.287.
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Figure 33: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 12.5. The two buckets have the same area
(2 eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 39.118263 and 114.2815 degrees
respectively. The ratio of single to quad-harmonic bunch width is 0.342.
The single and quad-harmonic bunch heights are 0.1103 and 0.03164 respec-
tively. The ratio of quad to single-harmonic bunch height is 0.287. The
horizontal axis gives the RF phase ψ in degrees.
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67 Quad-harmonic parameters for Gγ = 14.0

For
Gγ = 14.0 (687)

we have

βγ2 = 60.475409, Bρ = 24.238302 Tm, B = 2838.9283 G (688)

Taking
dB/dt = 25.0 G/ms (689)

and adjusting V ′1 to give single-harmonic bucket area

A1 = 2.0 eVs (690)

then gives
V ′1 = 180.410 kV, φ′1 = 72.723463 degrees. (691)

We can then adjust φ1 to give a normalized quad-harmonic bucket with
the same area as the normalized single-harmonic bucket. This gives

φ1 = 37.880106 degrees (692)

and therefore

φs = 79.2400, ψ2 = 44.6452, ψ3 = 59.1360, ψ4 = 66.0500 (693)

V1
V ′1

= 1.5552,
V2
V1

= 0.5255,
V3
V1

= 0.1616,
V4
V1

= 0.02204 (694)

The resulting single and quad-harmonic buckets are shown in Figure 13
along with their matched bunches. The two buckets have the same area,
and each bunch has half the area of the bucket that holds it.

The single and quad-harmonic bunch widths are 31.609889 and 103.5727
degrees respectively. The ratio of single to quad-harmonic bunch width is
0.305.

The single and quad-harmonic bunch heights are 0.07977 and 0.02038
respectively. The ratio of quad to single-harmonic bunch height is 0.256.
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Figure 34: Normalized single and quad-harmonic buckets and matched
bunches obtained for Gγ = 14.0. The two buckets have the same area
(2 eV s) and each bunch has half the area of the bucket that holds it. The
single and quad-harmonic bunch widths are 31.609889 and 103.5727 degrees
respectively. The ratio of single to quad-harmonic bunch width is 0.305.
The single and quad-harmonic bunch heights are 0.07977 and 0.02038 re-
spectively. The ratio of quad to single-harmonic bunch height is 0.256. The
horizontal axis gives the RF phase ψ in degrees.
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68 Quad-harmonic parameter summary for
acceleration of polarized protons in AGS

The following tables summarize the data of Sections 62 through 67. The
guide field B and its time derivative are given in units of G and G/ms.
The single-harmonic RF voltage V ′1 is given in units of kV. The phases φ′1,
φ1, φs, ψ2, ψ3, ψ4, and the single and quad-harmonic bunch widths W1

and W4 are given in degrees. The ratio H4/H1 is the ratio of quad to
single-harmonic bunch height. Values of βγ2, W1, W4, and H4/H1 are
tabulated for comparison of the incoherent space charge tune shifts in the
single and quad-harmonic bunches.

Table 16: Quad-harmonic RF voltages

B dB/dt Gγ V ′1 V1/V
′
1 V2/V1 V3/V1 V4/V1

843.9 0.01 4.5 7.498 0.5440 0.9997 0.4284 0.07140
1170.7 9.0 6.0 89.942 1.2048 0.6092 0.2163 0.03304
1489.0 18.0 7.5 152.715 1.3681 0.5686 0.1907 0.02804
2011.5 22.0 10.0 171.219 1.4654 0.5469 0.1763 0.02513
2529.4 25.0 12.5 184.954 1.5254 0.5331 0.1669 0.02317
2838.9 25.0 14.0 180.410 1.5552 0.5255 0.1616 0.02204

Table 17: Quad-harmonic RF phases

dB/dt Gγ φ′1 φ1 φs ψ2 ψ3 ψ4

0.01 4.5 0.52657 0.9679 1.5488 1.1615 1.3766 1.4519
9.0 6.0 43.59258 34.9115 66.3048 41.9421 53.8989 58.8879
18.0 7.5 54.3111 36.4174 71.7797 43.4592 56.6599 62.4758
22.0 10.0 62.3012 37.1726 75.1831 44.1237 57.9947 64.3374
25.0 12.5 68.6577 37.6330 77.6775 44.4776 58.7570 65.4641
25.0 14.0 72.7235 37.8801 79.2400 44.6452 59.1360 66.0500
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Table 18: Quad-harmonic matched bunch parameters

dB/dt Gγ βγ2 W1 W4 W1/W4 H4/H1

0.01 4.5 5.7784 195.4 251.2 0.778 0.655
9.0 6.0 10.6883 86.79 166.3 0.522 0.439
18.0 7.5 16.9926 66.02 145.9 0.452 0.380
22.0 10.0 30.6069 50.94 129.2 0.394 0.331
25.0 12.5 48.1083 39.12 114.3 0.342 0.287
25.0 14.0 60.4754 31.61 103.6 0.305 0.256

69 Comparison of the incoherent tune shifts in
the single and quad-harmonic bunches

Let δQ1 and δQ4 be the incoherent space charge tune shifts in the single
and quad-harmonic bunches, respectively. Then the ratio

δQ4

δQ1
=
B1

B4
(695)

where B1 and B4 are the corresponding bunching factors. Here one may
simply take

B1 =
W1

2πh
, B4 =

W4

2πh
(696)

where the bunch widths W1 and W4 are given in radians. This gives

δQ4

δQ1
=
W1

W4
. (697)

This ratio is the reduction of space charge tune shift due to the lengthing
of the bunch in the quad-harmonic bucket. It is tabulated in the sixth
column of Table 18 and goes from 0.778 to 0.305 as the bunch is
accelerated from Gγ = 4.5 to Gγ = 14.0.

As shown in Section 32, one may also take

δQ4

δQ1
=
H4

H1
. (698)

This ratio is tabulated in the last column of Table 18 and goes from 0.655
to 0.256 as the bunch is accelerated from Gγ = 4.5 to Gγ = 14.0.
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70 Reduction of incoherent tune shift with
increasing gamma

Let (δQ)I and (δQ)F be the initial and final incoherent tune shifts as
proton bunches are accelerated from Gγ = 4.5 to Gγ = 14.0. Then the
reduction in tune shift is given by the ratio

(δQ)F
(δQ)I

=
BI (βγ2)I
BF (βγ2)F

(699)

where bunching factors

BI =
WI

2πh
, BF =

WF

2πh
(700)

and WI and WF are the initial and final bunch widths (in radians). Thus
the ratio

(δQ)F
(δQ)I

=
WI (βγ2)I
WF (βγ2)F

. (701)

Putting in numbers from columns three and four of Table 18 we obtain

(δQ)F
(δQ)I

= 0.591 (702)

for bunches in the single-harmonic bucket.

Putting in numbers from columns three and five of the table gives

(δQ)F
(δQ)I

= 0.232 (703)

for bunches in the quad-harmonic bucket.

This shows that the quad-harmonic bucket gives a significantly greater
reduction in incoherent tune shift with increasing gamma. For the
triple-harmonic bucket one has

(δQ)F
(δQ)I

= 0.273 (704)

as shown in Section 33.
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