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Abstract

We revisit the effect of coherent offset in velocity distribution of
the electron beam in electron coolers and consider its implications
for the dynamics of the cooled ion bunch. This effect becomes of
special importance for high-energy electron coolers due to reduction
of transverse angular spread with energy, thus requiring strict control.
As an example, estimates of the severity of and the possibility to
observe the considered effects for LEReC case are discussed.

1 Introduction

In electron cooling [1, 2] a “cold” electron beam co-traveling with the ion
beam in a common section of the storage ring, called cooling section (CS),
introduces a dynamical friction [3] to the ions. The dynamical friction force
reduces both the angular and the energy spread of the ion bunch, thus cooling
it.

Nonetheless, if the velocity distribution of the electron bunch has a co-
herent offset with respect to the average velocity of the affected ion bunch
then, under specific conditions, the ion bunch can exhibit unusual behavior.
Such as, bifurcations of bunch density and formation of two-hump density
distribution. These effects can also lead to a decrease in a lifetime of the ion
bunch.

*seletskiy@bnl.gov
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Thorough theoretical studies of the coherent offset effects were performed
by Ya. Derbenev [4]. Experimental observations of resulting ion beam dy-
namics can be found, for instance, in [5, 6].

In this paper we will review the theory of electron cooling with coherent
velocity offset. Next, we will explore the effect of coherent excitation using
a simple simulation model. Finally, we will apply the derived formulas to
electron-ion beam dynamics in LEReC.

2 Cooling force formulas for electron beam

distribution with coherent offset

The friction force acting on an ion co-traveling with an electron bunch with
velocity distribution f(ve) is given by [7, 8]:

~F = −4πnee
4Z2

me

∫
LC

~v − ~ve
|~v − ~ve|3

f(ve)d
3ve (1)

Here, ne is the electron bunch density in the beam frame, e is the electron
charge, Z · e is the ion charge, me is the mass of the electron, ~v and ~ve
are ion and electron velocities in the beam frame and LC is the Coulomb
logarithm, which can be assumed to be constant, in the LEReC case LC ≈ 8,
for example.

If we assume a Gaussian distribution of velocities in the electron bunch
then Eq. (1) can be simplified to 1D integrals for each component of the
friction force [9]. Of course, such formulas (named Binney’s formulas) are
much more convenient for numerical simulations and are what we need for
the studies described in this paper.

It is worth pointing out, that for the case of isotropic velocity distribution
(∆x = ∆y = ∆z ≡ ∆), the integrals in Binney’s formulas can be taken
analytically, as will be shown below. For the physics of the effects which
we are considering in this paper there is no qualitative difference between
isotropic and anisotropic distributions in e-bunch velocities. Yet, it is very
important for quantitative estimates to have proper expressions for a more
general anisotropic case.

We will derive Binney’s formulas for v-distribution with coherent offset
by following a detailed example [10] of derivation of Binney’s formulas for
electron coolers for no-offset v-distribution.

The electron bunch v-distribution is given by:
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f(ve) =
1

(2π)3/2∆x∆y∆z

exp−
(

(vex − µx)2

2∆2
x

+
(vey − µy)2

2∆2
y

+
(vez − µz)2

2∆2
z

)
(2)

Let us introduce an effective potential in a velocity-space:

U = C0

∫
f(ve)

|~v − ~ve|
d3ve (3)

such that
Fx,y,z = ∂U/∂vx,y,z (4)

Here, C0 = 4πnee4Z2LC
me

.
Noticing that 1/ |~v − ~ve| can be represented as:

1√
(vx − vex)2 + (vy − vey)2 + (vz − vez)2

=

2√
π

∫ ∞
0

exp
[
−p2

(
(vx − vex)2 + (vy − vey)2 + (vz − vez)2

)]
dp

(5)

we get from Eqs. (2)-(5):

U =
C0√

2π2∆x∆y∆z

∫ ∞
0

[∫ ∞
−∞

e
−p2(vx−vex)2− (vex−µx)2

2∆2
x dvex∫ ∞

−∞
e
−p2(vy−vey)2− (vey−µy)2

2∆2
y dvey

∫ ∞
−∞

e
−p2(vz−vez)2− (vez−µz)2

2∆2
z dvez

]
dp

(6)

Since:

∫ ∞
−∞

e
−p2(vx−vex)2− (vex−µx)2

2∆2
x dvex =

√
2π∆x

exp
(
−p2(vx−µx)2

1+2p2∆2
x

)
√

1 + 2p2∆2
x

(7)

we get for the effective potential:

U =
2C0√
π

∫ ∞
0

exp
(
−p2(vx−µx)2

1+2p2∆2
x
− p2(vy−µy)2

1+2p2∆2
y
− p2(vz−µz)2

1+2p2∆2
z

)
√

(1 + 2p2∆2
x)(1 + 2p2∆2

y)(1 + 2p2∆2
z)

dp (8)

From Eqs. (4) and (8) we obtain Binney’s formulas. For example, for Fx:
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Fx = −4C0√
π

∫ ∞
0

p2(vx − µx)
1 + 2p2∆2

x

exp
(
−p2(vx−µx)2

1+2p2∆2
x
− p2(vy−µy)2

1+2p2∆2
y
− p2(vz−µz)2

1+2p2∆2
z

)
√

(1 + 2p2∆2
x)(1 + 2p2∆2

y)(1 + 2p2∆2
z)

dp

(9)
A more conventional and maybe more elegant form of Binney’s formulas

is obtained by substituting p2 = 1/(2q∆2
t ) into expressions (9), here we are

assuming ∆x = ∆y ≡ ∆t. Then we get:


Fx,y = −C(vx,y − µx,y)

∫∞
0
gt(q)dq

Fz = −C(vz − µz)
∫∞

0
gz(q)dq

gt(q) = 1

∆2
t (1+q)2

√
∆2
t q+∆2

z

exp
[
− (vx−µx)2+(vy−µy)2

2∆2
t (1+q)

− (vz−µz)2

2(∆2
t q+∆2

z)

]
gz(q) = 1

(1+q)(∆2
t q+∆2

z)3/2 exp
[
− (vx−µx)2+(vy−µy)2

2∆2
t (1+q)

− (vz−µz)2

2(∆2
t q+∆2

z)

] (10)

where C = 2
√

2πner
2
emec

4Z2LC .
In case of µx,y,z = 0 one can introduce vt =

√
v2
x + v2

y and Ft =
√
F 2
x + F 2

y

and Binney’s formulas (10) take a form as implemented in the BETACOOL
code [11].

In case of isotropic velocity distribution Eq. 10 results in a simple analytic
formula:

{
Fx,y,z = − C

∆3a3 (vx,y,z − µx,y,z)
[
−2ae−a

2/2 +
√

2πErf
(

a√
2

)]
a =

√
(vx − µx)2 + (vy − µy)2 + (vz − µz)2/∆

(11)

Here the error function Erf(z) ≡ 2√
π

∫ z
0
e−t

2
dt.

Formulas (10) present the dependence of the components of the dynamical
friction force on the ion’s velocity in a form convenient for numerical inte-
gration. Figure 1 shows the results of such calculations for the operational
LEReC parameters. As one can see, the presence of a coherent offset in the
velocity distribution of the electron bunch manifests itself in a respective
shift of the force function w.r.t. the zero ion velocity.

3 Dynamics of the ion experiencing cooling

force with coherent offset

The turn-by-turn dynamics of the uncoupled transverse motion of the ion, in
the presence of external friction force due to the electrons, can be represented
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Figure 1: Longitudinal component of the friction force for the v-distribution
of the electron bunch having a coherent offset µz = 2∆z (solid red line) and
for the v-distribution with no offset (dashed blue line).

in Courant-Snyder coordinates (ξ = x/
√
βT , ζ = αTx/

√
βT +

√
βTx

′, where
αT and βT are Twiss parameters) as:

ξ′′ + (2π)2ξ = 2π

√
βCSFxLCS
mic2β2

comb(1 + νx) (12)

Here mi is the mass of an ion, βCS is βT in the cooling section, to reduce the
simulations time and without a loss of generality we substitute a tune Qx

with 1 + νx, where νx is a fractional horizontal tune, and we define the comb
function as:

comb(1 + νx) =

{
1 , s = n(1 + νx)
0 , s 6= n(1 + νx)

(13)

where an independent variable s in Eqs. 12 and 13 is a fraction of a betatron
oscillation and integer n = 1, 2 . . .∞.

Equation of motion (12) can be integrated numerically. Yet, prior to
simulating the dynamics of the ion bunch let us consider the physics of an
ion interaction with the offset cooling force.

3.1 Qualitative analysis of ion-electron interaction

As one can easily see from Fig. 1, the electron bunch with the coherent offset
in its v-distribution creates a friction force that causes an excitation rather

5



than a damping of the ion’s oscillations for ions with v ∈ [0, µ]. Let us denote
the friction force in this velocity range as F+.

The ion having the velocity v ∈ [−µ, µ] will experience the exciting fric-
tion force F+ on some turns in the storage ring and the damping friction force
F− on the other turns depending on its betatron phase. Whether the aver-
age friction force experienced by the ion is damping or exciting the betatron
oscillations depends on the relation between F+ and F−.

Let us consider two scenarios.

Figure 2: The friction force produced by e-bunch with v-distribution with a
“small” coherent velocity shift (blue solid line). The green dashed line is a
reflection of the friction force acting on the ions with v < 0 across the vertical
axis, and is shown to make the visual comparison of F+ and F− easier.

Under the first scenario, demonstrated in Fig. 2, the coherent shift µ is
smaller than the velocity at which the first derivative of the friction force
changes sign (v ≈ ∆x). For that case F+ < F− ∀v ∈ [−∞,∞], therefore the
ions at all betatron amplitudes will experience the net cooling force.

Under the second scenario (Fig. 3) the coherent shift µ is larger than the
velocity at which the first derivative of the friction force changes sign. For
that case, the net friction force acting on ions with small betatron amplitudes
excites the betatron oscillations. Indeed, as Fig. 3 demonstrates, F+ >
F− ∀v ∈ [−µ, µ] and the net friction force is an exciting one rather than a
damping one. On the other hand, the ions with large betatron amplitudes
still experience a net damping force. Hence, all the ions will eventually reach
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Figure 3: The friction force produced by e-bunch with v-distribution with a
“large” coherent velocity shift (blue solid line). The green dashed line is a
reflection of the friction force acting on the ions with v < 0 across the vertical
axis, and is shown to make the visual comparison of F+ and F− easier.

the phase space amplitude (J =
√
ξ2 + ζ2), which can be roughly estimated

as:

J0 ≈
√
βCSµ

γβc
(14)

Therefore, for the second case we expect that the shifted friction force
will create a circular attractor in the phase space and that with enough time
allowed all the ions will be performing the betatron oscillations with J0, thus
forming a ring-shaped distribution in the phase space. The projection of the
phase space doughnut on the physical space will be observed as a double-
hump density distribution.

It is worth to mention that the formation of the circular attractor in the
phase space is possible only because the friction force is non-monotonic. The
non-linearity of the friction force alone is not enough to create conditions
necessary for this interesting phenomenon.

3.2 Numerical studies of ion bunch dynamics

We assume αT = 0 in the CS (which is a typical setup) and for the sake of
convenience we rewrite Eq. (12) as:
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χ′′ + (2π)2χ =
LCSFx(χ

′σθγβc)

σθmic2β2
comb(1 + νx) (15)

where we introduced new variable χ ≡ x/(2πσθβCS) and explicitly wrote
Fx(vx) in terms of χ′.

We integrate Eq. (15) numerically with an explicit, exactly simplectic,
third order method [12]. To accelerate the numerical studies we will use a
large friction kick (see Fig. 4), so that the effect of excitation is clearly seen
after a few hundred turns.

Figure 4: The angular kick produced by friction force (blue line). This kick
is used in numerical studies described in Section 3.2. The green, red and blue
circles show the initial velocities of the three test particles.

First, we track three sample ions for 500 turns in the presence of friction
force produced by electron bunch with v-distribution having a coherent shift
µx = 0.8∆x. As was expected from considerations in section 3.1 the cooling
process goes undisturbed when µ is smaller than the velocity for which the
friction force is maximized (Fig. 5).

Second, we track three sample ions for 1000 turns in the presence of fric-
tion force produced by electron bunch with v-distribution having a coherent
shift µx = 2∆x. As one can see from Fig. 6 all three ions reach the circular
attractor after several hundred turns.

Next, we study the evolution of the ion bunch in the phase space. We start
with the bunch having the Gaussian distribution and observe its behavior in
the presence of the circular attractor. Figure 7 shows that in the ideal linear
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Figure 5: Dynamics of the three test ions cooled by e-beam with µ = 0.8∆x.

Figure 6: Dynamics of the three test ions in the presence of force shown in
Fig 4 (µ = 2∆x).

machine in the absence of any additional effects the phase space ring is well
developed after 500 turns. We can make a conclusion that the reasonable
measure of a characteristic time of the formation of the phase space ring (τR)
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is the time that it takes an ion with a zero initial betatron amplitude to reach
the circular attractor.

Figure 7: Formation of the circular distribution in the phase space and of
the respective two-hump distribution in the physical space in the presence of
circular attractor.

Of course, the tune spread erodes the perfect phase space circle turning
it into a doughnut (Fig. 8).

Figure 8: Evolution of the ion bunch with the tune spread with σν = 0.01ν0

in the presence of circular attractor.

A presence of the IBS, or of any other heating mechanism for that matter,
farther dilutes the circular distribution in the phase space. The shape of a
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final balanced distribution depends on the relative strength of the cooling
(without coherent shift) and heating forces.

For example, Fig. 9 shows the formation of the phase space doughnut
when the diffusion is about ten times smaller than the cooling. Figure 10
shows the case of the diffusion being just two times weaker than the cooling.
For that case the presence of the circular attractor is completely masked
by the IBS heating and qualitatively the effect of the coherent offset in v-
distribution becomes indistinguishable from an effect of the increase in the
rms spread of v-distribution of the electron bunch.

Figure 9: Effect of the circular attractor on the evolution of the ion bunch
in the presence of weak IBS (diffusion is about ten times weaker than the
cooling without coherent shift in v-distribution).

Finally, if one introduces the coherent shift after the ion bunch is cooled
to low emittance then one can observe the bifurcations of the ion bunch
density. As Fig. 11 demonstrates, such an effect results from the small
emittance i-bunch orbiting along the circular attractor.

All the effects studied in this section are relevant for the longitudinal
direction as well as for the transverse one. In the next section we will apply
the theory of coherent excitation, which we developed here, to the ion beam
dynamics in LEReC.
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Figure 10: Effect of the circular attractor on the evolution of the ion bunch
in the presence of strong IBS (diffusion is about 2 times weaker than the
cooling without coherent shift in v-distribution). Plot (a.) shows an initial
ion bunch’s distribution, plot (b.) shows the balance distribution in the
presence of circular attractor, plot (c.) shows the cooling by e-beam with
zero offset in v-distribution.

Figure 11: The density distribution of the ion bunch bifurcates as the small-
emittance bunch goes along the circular attractor in the phase space.

4 Implications of coherent excitation theory

for beam dynamics in LEReC

For operational LEReC parameters the angular kick obtained by an ion in-
teracting with the electron bunch on a single pass through the CS is shown
in Fig. 12. The force in Fig. 12 is given for coherent angular misalignment
of θ = 2σθ between the electron and the ion trajectories.

To determine the characteristic time of the transverse coherent excitation
(τRt) in LEReC we numerically solve Eq. (15) for an ion with a zero initial
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Figure 12: Angular kick for operational LEReC parameters.

betatron amplitude. To reduce the simulation’s time we assume that an ion
interacts with the electron beam on each turn in RHIC. In reality, due to a
picket-fence time structure of the LEReC macro-bunch, the rms ion sees the
electron beam on average every fourth turn. Hence, the characteristic time
obtained from simulations must be multiplied by a factor of four.

Figure 13: Evolution of the betatron amplitude of an ion in the presence of
a circular attractor at J0 = 2σθ

√
βCS.
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Figure 13 shows a growth of the betatron amplitude of the considered
ion. In our simulations it takes the ion ≈ 25 · 106 turns to reach the circu-
lar attractor. The period of RHIC revolution is T = 12.7 µs. Hence, the
expected time of the formation of the phase space doughnut for µ/∆t = 2 is:

τRt ≈
(4 · 25 · 106[turns]) · T [sec]

60[sec/min]
≈ 21 min (16)

During operational cooling the IBS-driven growth time is comparable to
the cooling time. Therefore, as was shown in section 3.2, for the ion bunches
with design intensity the effect of a circular attractor on bunch dynamics is
indistinguishable from the effect of the increased angular spread in electron
bunches.

On the other hand, dedicated studies with either reduced intensity of the
ions or with comparison of multiple stores with a varied coherent electron-ion
angle shall reveal the presence of the attractor in transverse phase space.

For the longitudinal phase space the equivalent of Eq. (15) is:

ψ′′ + (2π)2ψ =
LCSγFz(ψ

′σδβc)

σδmic2β2
comb(0.017) (17)

where ψ ≡ β2fstl/(ησδ), tl is a time delay of an ion with respect to the
ion bunch center, η is a time slippage over RHIC turn, fs is a synchrotron
frequency, 0.017 is a fraction of synchrotron period in which average ion sees
the longitudinal kick from the friction force and we explicitly expressed vz in
Fz(vz) in terms of ψ′.

Figure 14: Longitudinal kick for operational LEReC parameters.

To determine the characteristic time of the longitudinal coherent excita-
tion (τRz) in LEReC we numerically solve Eq. (17) for an ion with a zero
initial synchrotron amplitude. To reduce the simulation’s time we assume
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that an ion interacts with electron beam on each turn in RHIC. For opera-
tional LEReC parameters the longitudinal kick obtained by an ion interacting
with the electron bunch on a single pass through the CS is shown in Fig. 14.
The force in Fig. 14 is given for coherent offset δ = 2σδ.

Figure 15: Excitation of an ion with a zero initial synchrotron amplitude in
the presence of a circular attractor.

The simulations show (see Fig. 15) that it takes the ion ≈ 14000 syn-
chrotron turns to reach the circular attractor. A period of the synchrotron
oscillation for operational RHIC parameters is Ts = 3.4 ms. Therefore:

τRz ≈
(4 · 14000[turns]) · Ts[sec]

60[sec/min]
≈ 3 min (18)

5 Importance of coherent excitation effect for

high energy coolers

It was shown above that the coherent excitation effect limits the performance
of the cooler. Indeed, if the “large offset conditions” are satisfied, then the
ions with small oscillation amplitudes will get excited rather than cooled.

The requirement to the coherent velocity offset is µ < ∆. Converting
it to the beam-alignment requirements in longitudinal (µδ = µz/(βc)) and
transverse (µθ = µx,y/(γβc)) phase space one gets:
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µδ < σδ =
∆z

βc
; µθ < σθ =

∆t

γβc
(19)

For LEReC Eq. (19) sets better than 5× 10−4 requirement to the align-
ment of the γ-factors of the electron and ion bunches and better than 140
µrad (at γ = 4.1) or better than 120 µrad (at γ = 4.9) requirement to angular
alignment of ion and electron trajectories.

For high energy coolers the requirement on γ-matching remains similar
to the LEReC requirement. Yet, the requirement to the angular alignment
and stability of the trajectories is getting tightened as 1/γ.

For example, for the proposed EIC 275 MeV ring cooler (Table 1) the
requirement to angular alignment of the electron and proton trajectories at
γ = 293 is better than 10 µrad.

Table 1: Electron bunch parameters in EIC Ring Cooler.
γ-factor 293.1
geometric εx,y [nm] 30, 25
βCS [m] 300
σδ 8.6e-4
rms bunch length [cm] 8.9
LCS [m] 170

6 Conclusion

This paper discussed the effect of coherent offset in the velocity distribution
of an electron bunch on the beam dynamics of the cooled ions. Under cer-
tain conditions such an offset causes coherent excitation of ions with small
betatron or synchrotron amplitudes and creates a circular attractor in the
ion bunch phase space.

A set of simple formulas describing this effect was derived and applied to
simulations of the ion bunch dynamics in LEReC.

It was shown that for the LEReC operational parameters the coherent
excitation effect is non-negligible. It was further concluded that the charac-
teristic features of ion beam dynamics in the presence of circular attractor
must be observable in LEReC for low intensity ion bunches.

The effect discussed in this paper becomes of special concern to the high-
energy cooling due to scaling of angular spread with energy and thus resulting

16



in a very strict requirement to the relative angular alignment of electron and
ion trajectories at high energy.
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