

BNL-219926-2020-TECH EIC-ADD-TN-007

Simulation of Polarized Electron Bunch Acceleration in EIC RCS Bunch and Spin Densities at Extraction

F. Méot

September 2020

Electron-Ion Collider

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

EIC TECHNICAL NOTE	NUMBER EIC-ADD-TN-007							
AUTHORS François Méot Vahid Ranjbar	DATE Sept. 15, 2020							
Simulation of Polarized Electron Bunch Acceleration in EIC RCS Bunch and Spin Densities at Extraction								

Abstract

This Tech. Note reports numerical methods and outcomes regarding the simulation of polarized bunch acceleration in the EIC RCS [1], from injection (or bunch merge) energy to ESR store energy, including bunch densities and polarization at the end of the acceleration ramp, ready for transfer to the ESR. This work is based on earlier code developments and similar studies regarding CESR RCS injector [2].

C	Contents	
1	Introduction	2
2	EIC RCS Parameters	2
3	Simulation Hypotheses: RF, Phase Space, Spin	7
4	Acceleration From 1 to 18 GeV in 7738 Turns	10
5	Final Bunch Densities; Spin	11

1 Introduction

The EIC electron-hadron collider project, currently in its conceptual design stage, includes an electron rapid cycling synchrotron (RCS), as the full energy injector to the electron storage ring (ESR).

This Tech Note summarizes simulations of full acceleration cycles in the RCS, their outcomes include final bunch densities and polarization at the end of the acceleration ramp, ready for transfer to the ESR. Tracking simulation hypotheses are detailed, including some of the input data to the tracking code. Some developments specific to EIC RCS simulations, including RF management, are outlined, for clarity.

Specimen of the simulation input data files resorted to here, are available at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/EIC/RCS/

Similar studies have been performed in the past for a similar energy (greater repetition rate) RCS, namely, CESR injector at Cornell. Reference [2] can be referred to for comparison of both the methods and results, including polarization preservation. Simulation data files can be found at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/Cornell_rings/RCS_injector/

2 EIC RCS Parameters

Table 1 lists RCS parameters considered for the setup of the polarization transport simulation files. Figure 1 shows the orbit hypotheses (zero orbit), Figure 2 shows the optical functions, lattice parameters (MADX style "Twiss file" header) are given in Tab. 2.

Detailed statistics from Monte Carlo synchrotron radiation at 0.4, 1, 5, 10 and 18 GeV are given in page 5, they are summarized in Tab. 4. The latter also gives the SR integrals in ESR and RCS.

Initial energy	GeV	1						
Top energy	GeV	5, 10, 18						
Circumference C	m	3841.35						
Bend radius	m	235.000						
Lattice								
Arc β_x , β_y , max.	m	≈ 80						
Q_x, Q_y (frac.)		0.8329, 0.7543						
$\xi_{\rm x}, \xi_{\rm y}$		few units						
Bunch parameters, at injection								
$\beta \gamma \varepsilon_{\rm x,y}$	$(\pi \mu m)$	26						
Length, total	ps	180						
dE/E, rms		2.510^{-3}						
Longitudinal, RF								
f _{rev}	kHz	78.1						
h		7560						
voltage	MV	up to 60						
SR partition numb	ers	-						
$J_x = 1 - \mathcal{D}$		≈ 1						
J_y		1						
$J_l = 2 + \mathcal{D}$		≈ 2						

Table 1: RCS parameters in the tracking simulations.

Optical functions

Figure 1: In the defect free lattice simulated here, the design orbit is zero around the ring.

Figure 2: Betatron functions and dispersion.

Q	LENGTH	3841.351355			
Q	ALFA	0.4688745367E-03			
G	ORBIT5	-0			
Q	GAMMATR	46.18188718			
Q	Q1	0.8328968821			
G	Q2	0.7543490456			
Q	DQ1	0.8333740361			
G	DQ2	-0.3950533812			
Q	DXMAX	1.04806880E+00	G	DXMIN	-3.83664534E-0
g	DYMAX	0.0000000E+00	Q	DYMIN	0.000000E+0
g	XCOMAX	1.23786225E-05	Q	XCOMIN	-3.00842877E-0
G	YCOMAX	0.0000000E+00	Ø	YCOMIN	0.000000E+0
g	BETXMAX	1.78264978E+02	Q	BETXMIN	1.15867478E+0
g	BETYMAX	1.59288020E+02	Q	BETYMIN	7.66285809E-0
0	XCORMS	9.23721890E-08			
@	DXRMS	3.39655418E-01			
Q	TITLE	"Zgoubi model"			

Table 2: "Twiss file" header, from raytracing

2 EIC RCS PARAMETERS

A summary of SR statistics data

Table 4 summarizes some of the statistics outcome detailed in page 5, as resulting from Monte Carlo SR simulation. Theoretical data are included for comparison.

Table 4: Summary of SR statistic data, from Monte Carlo tracking, 10,000 particles, one pass around the RCS. Curvature radius in tracking trials is $\rho = 235$ m (Tab 1). Theoretical values are given for comparison.

Energy (E _s)	(GeV)	0.4	1	5	10	18			
SR loss (U_s) theory ^(a)	(MeV/turn)	$\begin{array}{c} 9.74 \times 10^{-6} \\ 9.63 \times 10^{-6} \end{array}$	3.79×10^{-4} 3.74×10^{-4}	$0.2368 \\ 0.2352$	3.790 3.764	39.725 39.5 17			
damping time (E_s/U_s)	(turn)	41×10^6	2.64×10^6	21116	2642	453			
rms energy loss $theory^{(b)}$	(keV)	$\begin{array}{c} 3.44 \times 10^{-4} \\ 3.38 \times 10^{-4} \end{array}$	5.37×10^{-3} 5.28×10^{-3}	$\begin{array}{c} 0.671 \\ 0.660 \end{array}$	$5.376 \\ 5.278$	$31.28 \\ 30.78$			
(a) Theor. $U_s = C_{\gamma} E_s^4 / \rho = 88.46276 \times E_{s[GeV]}^4 / \rho_{[m]}.$									
(b) Theor. rms energy loss= $\frac{\sqrt{211}}{15\sqrt{3}}\epsilon_c$, ϵ_c = energy of critical photon = $\frac{3}{2}\frac{\hbar\gamma^3 c}{\rho e}$.									

Equilibrium quantities at 18 GeV

Values of equilibrium quantities in the "theory" columns, Table below, are derived from SR integrals. Values in the "tracking" column are from Monte Carlo SR, 2,000 particles tracked over 2700 turns (about 6 damping times). ESR data are included for comparison.

The difference in the theoretical horizontal equilibrium emittances, between ESR and RCS, results from the difference in I_5/I_2 .

		ESR	RCS			
		theory	theory	tracking		
			SR integrals			
I1		1.82434	1.82434			
I2		0.02489	0.026737			
13		1.0150e-4	1.137743e-4			
I4		≈ 0	3.3e-5			
15		4.23E-06	7.38e-6			
		Equil	librium quanti	ities		
$ au_{\epsilon_x}$	ms	6.27	5.842	5.8		
$ au_{\epsilon_y}$	ms	6.27	5.834	5.8		
$ au_l$	ms	3.133	2.915	3.0		
$\gamma \epsilon_x / \pi$	mm	2.85	4.61	4.2		
ϵ_x/π	nm	81	131	120		
ϵ_l/π	μ eV.s		≈ 400	363		

3 Simulation Hypotheses: RF, Phase Space, Spin

RF Ramp

• All the RF is located at RFCA1 (s=1204 m), rather than split over the 4 RFCA stations. It has been checked that this makes no difference on beam and spin dynamics over the acceleration cycle. It makes no difference either, to locate the RF at an end of the ring sequence instead.

Voltage and phase ramps are pre-calculated (Fig. 3). During tracking they are read from a dedicated log file.

This RF ramp is undergoing optimization, essentially in order to reduce losses (which are small anyway, here), results derived here are preliminary, however they produce the bulk of the behavior.

"CAVITE" input data: the RF is concatenated at station RFCA1 (located at s=1240 m). RF program is read from a pre-computed ancillary

Cavity option 11(allows double-frequency, SR compensation). Circumference; harmonic number. Voltage and RF phase not used, due to above EICRCS_File, indicating that they are read from zgoubi.RFLaw.In.

Figure 3: RF voltage and synchronous phase ramps.

• For the record: head and tail of the ancillary RF program file used in the present simulations:

Turr	Energy (GeV)	Bunch	Length (s	s) Voltag	re (V) Pha	ase (rad)	1/Qs	time (s) Qs							
1	1.00010352033947	17e9	1.80289265	548975248e-	10 32753	9.332479436	51 0.	32278075	32258099	75.66945	204877118	0.0000128	13368603822	58 0.01	32153725568869	102
2	1.00020709713517	15e9	1.80262009	90722254e-1	0 327667	.9795979095	5 0.3	322740774	60969236	75.65800	346777236	0.00002562	26737207645	16 0.01	32173723091432	:72
3	1.00031073106499	42e9	1.80234629	91266711e-1	0 327797	.1788409724	1 0.3	322700991	9749387	75.646503	04121196	0.000038440	01058114677	4 0.013	21938172680901	. 6
4	1.00041442281404	53e9	1.80207125	51560068e-1	0 327926	.9333338834	17 0.	32266140	78970054	75.63495	056042323	0.00005125	53474415290	32 0.01	32214008549013	337
5	1.00051817307471	23e9	1.80179490	666175083e-	10 32805	7.246220561	L3 0.	32262202	49736046	75.62334	58161519	0.00006406	68430191129	0.0132	23429738629952	1
7733	1.808993e10	6.6000	0000000000000000	04e-11 5.	97438111608	86878e7 (.79238	380890938	422 27	.6855307836	48293 0	.099085779413	336001 0.	036119950	44684579	
7734	1.809214e10	6.6000	000000000000000000000000000000000000000	04e-11 5.	9761445563	33635e7 (.79255	586218453	715 27	.6855307721	06933 0	.09909859278	196384 0.	036119950	461903236	
7735	1.809435e10	6.6000	000000000000000000000000000000000000000	04e-11 5.	9779086848	687515e7	0.7927	729138810	1053 2	7.685530760	56979 0	.099111406150	056765 0.	036119950	476955175	
7736	1.809656e10	6.6000	0000000000000000	04e-11 5.	97967350192	235194e7	0.7928	399639968	7998 2	7.685530749	036875	0.0991242195	1917148 0	.03611995	049200160	
7737	1.809877e10	6.6000	000000000000000000000000000000000000000	04e-11 5.	98143900772	292405e7	0.7930	070125302	2269 2	7.685530737	5082 0.	099137032887	77531 0.0	361199505	070425	
7738	1.810098e10	6.6000	000000000000000000000000000000000000000	04e-11 5.	9832052025	17209e7 (.79324	105947911	686 27	.6855307259	83725 0	.099149846250	637913 0.	036119950	522077914	

Initial Phase Space, 1 GeV

Concentration ellipses :

♦ An excerpt from the output ".res" data file, corresponding to the graphs above, details 1 GeV initial bunch characteristics:

	001100110101010	ou crrtboco	•							
surface/pi	al	lpha	beta	<x></x>	<xb></xb>	numb. of p in ellips,	rtcls out	ratio	space	pas
1.2401E-08 [m	n.radl -2.	3463E-01	5.2415E+00	-1.419431E-06	-5.320063E-07	10000	7835	0.7835	(Y,T)	
1 2374E-08 [m	radl 1	1856E-02	6 3279E+01	8 925807E-06	1 928701E-07	10000	7874	0 7874	(Z,P)	
4 8116E-04 [m	nis MeVl 6	5891E-02	7 1856E-05	2 182283E-06	9 998553E+02	10000	7811	0 7811	(±,K)	
1.01101 01 [8			.10001 00	2.1022002 00		10000	,011	0./011	(0)10)	
(Y,T) space (un sigma_Y = sigma_T =	nits : m, rad sqrt(surface/ sqrt(surface/) : /pi * beta) /pi * (1+al;	= 2.54949 pha^2)/beta)	5E-04 = 4.996104E-	05					
(Z,P) space (un sigma_Z = sigma_P =	nits : m, rad sqrt(surface/ sqrt(surface/) : /pi * beta) /pi * (1+al	= 8.84883 pha^2)/beta)	6E-04 = 1.398487E-	05					
(t,K) space (un sigma_t = sigma_K =	nits : mu_s, M sqrt(surface/ sqrt(surface/	MeV) : /pi * beta) /pi * (1+al;	= 1.85941 pha^2)/beta)	1E-04 = 2.593287E+	00					
Beam sigma m	natrix and c	determinant	s :							
6.499922E-08	2.909594E-0	9 -2.1875	32E-09 4.3	42228E-12						
2.909594E-09	2.496105E-0	09 5.9597	56E-10 3.0	56553E-12						
-2 187532E-09	5 959756E-1	0 7 8301	90E-07 -1 4	67025E-10						
4.342228E-12	3.056553E-1	12 -1.4670	25E-10 1.9	55765E-10						
sqrt(det_Y), sqrt(det_2	2): 1.	240077E-08	1.237411E-08	(Note : squ	rt(determinan	t) = el	lipse surfa	ice / pi)	
normalized	i (*beta*gamma	a): 2.	427516E-05	2.422296E-05						

3 SIMULATION HYPOTHESES: RF, PHASE SPACE, SPIN

Spin

All spins are launched vertical in these simulations. The vertical orbit is zero (no orbit defect included) (Fig. 1), so integer resonances are ineffective.

Several intrinsic resonances are crossed over an acceleration range E : $400 \text{ MeV} \rightarrow 18 \text{ GeV} (G\gamma : 0.9 \rightarrow 40.8)$, with typical strength landscape as in the figure below: due to the lattice symmetries, all intrinsic resonances in the RCS energy range have negligible strength (theoretically, zero), and imperfection resonance strengths are minimized [1].

4 Acceleration From 1 to 18 GeV in 7738 Turns

These results are from a 1,000 particle tracking. Given this number, statistics is not that accurate, however it yields the bulk of the behavior, further refinements will be dealt with on NERSC computers.

The transmission here is 929/1000, these 71 particles are lost during the first 233 turns. Note that optimization of the ramp is on-going at this stage, toward getting closer to zero loss.

Figure 4 displays the evolution of various parameters along the acceleration cycle (a 30 particle sample, taken from the 1,000 tracked). The horizontal emittance grows from about turn 3000 (upper right plot, below), toward its equilibrium value, which is greater than the value attained during the ramp (Tab. 6); as a matter of fact:

- the horizontal emittance damping time is $\tau_x \approx 450$ turns (Tab. 4),

- betatron damping time constant is n [turns] such that emittance(n)=emittance(0)/e, thus n $\approx (1-1/e) \times E/\Delta E$; taking $E = 18 \times 10^9 \text{ eV}$, $\Delta E = 18 \times 10^9/8000 = 2.25 \times 10^6 \text{ eV}$ /turn, that gives in the 18 GeV region $n = (1-1/e) * 8000 \approx 5000 \text{ turns}$

- 450 turns versus 5000, so SR dominates, the acceleration rate ΔE does not allow betatron damping to compensate SR growth.

Figure 4: Dynamics during the ramp, 1,000 particle bunch, 1 to 18 GeV. Phase-space plots at the end the of acceleration cycle are displayed in p. 11.

5 Final Bunch Densities; Spin

Table 5 summarizes SR statistics data over the acceleration ramp. Final phase spaces are given in Fig. 5.

Table 5: SR statistics over the acceleration ramp, from 1 to 18 GeV. Monte Carlo tracking, 1,000 particles, 7738 turns

TRANSVERSE HORIZONTAL

rms $\epsilon_x/\pi = 108.6$ nm $\beta \gamma \epsilon_x/\pi = 3.83$ mm

TRANSVERSE VERTICAL $\epsilon_y/\pi = 7.4 \times 10^{-3} \,\mathrm{nm}$

LONGITUDINAL (phase-dp/p) $< \delta p/p >= 1.08354 \times 10^{-3},$ $\sigma_{\delta p/p} = 1.1193 \times 10^{-3}$

 $<\phi>= 0.7984802 \text{ rad},$ $\sigma_{\delta\phi} = 0.1098435 \text{ rad} \xrightarrow{/h\omega_{\text{rev}}} \sigma_{\delta t} = 29.61 \text{ ps}$ $\Delta\phi = 0.72930858 \longrightarrow \Delta t = 196.6 \text{ ps}$

$$f_{rev} = c/3841.35 = 78.1 \, kHz, \ h = 7560$$

$$< E >= 17.9076 \,\mathrm{GeV}, \, \sigma_{\mathrm{E}} = 20.0661 \,\mathrm{MeV}$$

Figure 5: Final phase spaces, after acceleration from 1 to 18 GeV.

Recap: SR Parameters at 18 GeV, on the Ramp

Equilibrium data are added, for comparison.

Table 6: Equilibrium emittances.											
		- At	equilibr	On the ramp							
		ESR	R	CS	RCS						
		theory	theory	tracking	tracking						
ϵ_y/π	pm			0	7						
$\gamma \epsilon_x / \pi$	mm	2.85	4.61	4.2	3.83						
ϵ_x/π	nm	81	131	120	109						
ϵ_l/π	μ eV.s		≈ 400	363	591						

Spin

Resonance strengths are weak enough (page 9) that, in this perfectly aligned ring simulations, the rms spin tilt from vertical over the acceleration range is less than 10 mrad, figures below.

Horizontal spin component densities at 18 GeV, turn 7738, 1,000 particles:

References

- [1] Electron-Ion Conceptual Design Report. https://brookhavenlab.sharepoint.com/sites/eRHIC/cdr2020/Summary%20%20Status/ Forms/AllItems.aspx?CT=1600103406774&OR=OWA%2DNT&CID=ec55f32b%2D0f57%2Dc5bb%2Dd8ab %2D2fa2b8df89f8&id=%2Fsites%2FeRHIC%2Fcdr2020%2FSummary%20%20Status%2FEIC%5FCDR %5FDraft%2Epdf&parent=%2Fsites%2FeRHIC%2Fcdr2020%2FSummary%20%20Status
- [2] F. Méot, et als.: Polarized e-bunch acceleration at Cornell RCS. Tentative tracking simulations. eRHIC Note 57, BNL C-AD, Sept. 2017. https://technotes.bnl.gov/PDF?publicationId=42654