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Abstract

In this note we develop an approach to description of beam dy-
namics of electrons experiencing both strong non-linear focusing from
the space charge of a hadron beam and the self-field effects.

1 Introduction

In non-magnetized bunched electron coolers the dynamics of electrons is dom-
inated by the strong non-linear focusing from the cooled hadron beam. The
effects of electrons own space charge must be taken into account as well.

These effects were critical for the angular spread of electrons in LEReC
[1] cooling section (CS).

The goal of this paper is to present our approach to fast calculation of
electron angular spread throughout the CS of the non-magnetized cooler in
the presence of strong non-linear space-charge forces (both external and self-
induced).

We start with a reminder of how a standard text-book envelope equation
is derived and of when its various parameterizasions are applicable. Then we
move to a detailed description of the algorithm for computing the envelope
and angles of electrons in the CS of non-magnetized bunched beam coolers.

2 Space charge force

Let us consider an electron beam co-traveling in the cooling section with a
hadron beam. We assume that the center of masses of both beams coincide.
We also assume that both beams have a circularly symmetric transverse
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distribution. These assumptions are relevant to the LEReC case and they
simplify the derived formulas.

From Gauss’s and Ampere’s laws the electron displaced by radius r (r2 =
x2 + y2) from the common center of the electron and proton bunches expe-
riences the transverse force:

F =
eΛ(r)

2πε0γ2r
(1)

Here Λ(r) = Λe(r) − Λi(r), Λe(r) and Λi(r) are linear charges of considered
longitudinal slice of respectively the ion and the electron beams encircled by
radius r.

From Newton’s law:

r′′ =
F (r)

γβ2mec2
(2)

Then the effect of the space-charge is simply:

r′′ =
2c

Iaγ3β2

Λ(r)

r
(3)

where Alfven current Ia = 4πε0mec3

e
.

In the presence of additional linear focusing (3) becomes:

r′′ =
2c

Iaγ3β2

Λ(r)

r
− kr (4)

3 Emittance and envelope

3.1 1D emittance

Let’s consider an ensemble of electrons in (x, x′) phase space. We will assume
that the phase space occupied by these particles can be well represented by
and ellipse. We parameterize the ellipse as:

γx2 + 2αxx′ + βx′2 = ε (5)

where ε = A/π, with A being an ellipse area, and βγ − α2 = 1. It follows
right away from (5) that the maximum x:

xmax =
√
εβ (6)
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If our ensemble of particles is subject to transformations described by ma-
trix M with detM = 1 then both ε = const (it’s a special case of Liouville’s
theorem) and the “ellipticity” is preserved. Then,

β1 = M2
11β0 − 2M11M12α0 +M2

12γ0 (7)

which gives for a drift of length s:

β(s) = β0 − 2sα0 + s2γ0 (8)

Substituting (8) into (6) and taking second derivative of xmax with respect
to s we get:

x′′max =
ε2

x3max

(9)

Equation (9) describes how the border of an ensemble of particles evolves
in the physical space if in the phase space the ensemble can be approximated
by an ellipse with area A = πε.

Let us derive here a few other emittance-related formulas, which will be
useful in the following considerations.

First of all, from (6),for two similar ensembles with border radii x1 and
x2:

ε2 = ε1
x22
x21

(10)

Second, the angles of particles can be split into correlated and uncorre-
lated parts. It follows directly from (5) and (6) that the correlated angles:

θc = −α
√
ε

β
(11)

And the uncorrelated angles are given by:

θuc =

√
ε

β
(12)

Of course, for the total angular spread we obtain:√
θ2c + θ2uc =

√
εγ (13)

Figure 1 visualizes the meaning of the discussed concept.
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Figure 1: Uncorrelated, correlated and total angles for the particles encircled
by an ellipse with area πε.

3.2 r-emittance

Let us consider an arbitrary particle in the 4D phase space with coordinates
(x, x′, y, y′) (see Fig. 2).

Figure 2: A particle with (x, x′, y, y′) coordinates.

It is not hard to see that (in notations of Fig. 2):

r′√
x′2 + y′2

= cos(ϕ− ϑ) (14)

Substituting cos(ϕ) = x/r, sin(ϕ) = y/r, cos(ϑ) = x′/
√
x′2 + y′2 and

sin(ϑ) = y/
√
x′2 + y′2 into (14) we obtain:
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rr′ = xx′ + yy′ (15)

In a similar fashion, noticing that φ′/
√
x′2 + y′2 = sin(ϕ − ϑ) and that

ϕ′ = φ′/r we obtain:

r2ϕ′ = yx′ − xy′ (16)

Taking a second derivative of r2 = x2 + y2 we get:

r · r′′ + r′2 = xx′′ + yy′′ + x′2 + y′2 (17)

Combining (18) with (15) and (16) we get:

r3 · r′′ = (xx′′ + yy′′)r2 + (r2ϕ′)2 (18)

Let’s consider the evolution of the boundary a of the transverse circularly
symmetric uniform distribution over the drift ds. For such a distribution
a2 = 2 < r2 >, a2 = 4 < x2 >= 4 < y2 > and εx = εy. Then, using (9) and
(10) we get from (18):

a′′ =
16ε2x + 4 < r2ϕ′ >2

a3
(19)

We can define r-emittance εa as:

ε2a = 16ε2x + 4 < r2ϕ′ >2 (20)

The physical meaning of two parts of εa is clear from (10) and (16).
The first part is just a 1D emittance scaled up by a factor of 4 due to
a2 = 4 < x2 >. The second part is the “rotational emittance” representing
the input of correlated rotational angles in the presence of solenoidal field
(it is probably the only x-y coupling preserving the circular symmetry). In
the absence of continuous solenoidal field in the cooling section, which is the
LEReC case, ε2a = (4εx)

2.

4 r-layer equation

We can write an equation of r-layer as superposition of two special cases (4)
and (20):

r′′ =
2c

Iaγ3β2

Λ(r)

r
− kr +

ε2r
r3

(21)
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Equation (21) is mathematically robust for the case of linear space charge
force. It is an approximation (but a good one for properly done numerical
simulations) for the nonlinear case.

5 Uniform transverse distribution

For the uniform transverse distribution of electrons and ions in the CS we
get:

Λe =
Ie
βc

r2

a2e(s)
(22)

Λe =
Ii
βc

r2

a2i
(23)

Here ae and ai are total radii of respectively electron and ion beams. In (23)
we assumed that ai = const and that r ≤ ai ∀ s in the CS. In (22) we used
ae(s) to stress that the beam radius changes as the beam travels through the
CS.

From (21-23):

r′′ = Ke

(
r

a2e
− Ii
Ie

r

a2i

)
− kr +

ε2r
r3

(24)

where, generalized perviance Ke = 2Ie
Iaβ3γ3

.

The envelope equation (r = ae) is:

a′′e = Ke

(
1

ae
− Ii
Ie

ae
a2i

)
− kae +

ε2a
a3e

(25)

Equation (25) with Ii = 0 is exactly the equation 4.85 in [2], which is a K-V
equation for round beam with equal horizontal and vertical emittances (see
Chapter 5.3.2 of [2]).

If we are interested in equation for the root mean square (rms) radius
σr =

√
2ar, then noticing that the linear focusing preserves the uniformity

of distribution and using (10) we get from (24):

σ′′r = Ke

(
1

2σr
− Ii
Ie

σr
a2i

)
− kσr +

ε2σ
σ3
r

(26)

Here εσ = εa
σ2
r

a2e
.

Finally, if we are interested in “one dimensional” equation for σxy ≡ σx =
σy, (σ2

x + σ2
y = σ2

r) then we get:
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σ′′xy = Ke

(
1

4σxy
− Ii
Ie

σxy
a2i

)
− kσxy +

ε2xy
σ3
xy

(27)

where εxy = εa/4.
With Ii = 0 (27) is the “Sacherer equation” [3].
Therefore, when writing the envelope equation for the beam with uniform

distribution use (25) if you are interested in the full envelope (usually it is
the best idea for the beam, which transverse profile is literally a circle), use
(26) if you are interested in rms envelope, and if you want to work with “1D”
parameters use (27). Of course, you must not forget about proper emittance
scaling provided by (10).

6 Gaussian transverse distribution

Let us assume that at the entrance to the CS both the electron and the ion
beams have a circularly symmetric Gaussian transverse distributions with
linear charge density function:

fe,i(r, φ) =
Ie,i
βc

1

2πσ2
e,i

e
− r2

2σ2
e,i (28)

It is important to point out that in the notations used in (28) σ ≡ σx = σy
and r2 = x2 + y2.

Then the respective linear charges encircled by radius r:

Λe(r) =
Ie
βc

(
1− e−

r2

2σe(s)2

)
(29)

Λi(r) =
Ii
βc

(
1− e

− r2

2σ2
i

)
(30)

Then, from (21) we get:

r′′ = Ke
1

r

[(
1− e−

r2

2σe(s)2

)
− Ii
Ie

(
1− e

− r2

2σ2
i

)]
− kr +

ε2r
r3

(31)

The space charge-induced force in (31) is essentially nonlinear. This
means that the beam distribution changes along the CS. This also means
that while Liouville’s theorem holds true (because the forces acting on the
beam are still Hamiltonian and because the flow of the ensemble of particles
in the phase space is still “smooth”) and the emittance ε = const, the ellip-
ticity of the phase space area characterized by ε is not preserved. Therefore,
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(31) is correct only at the entrance of the CS, the envelope equation can not
be obtained in the explicit form and, generally speaking, the rms correlated
angular spread of the beam σθc at any given location s along the CS is not
equal to the “envelope angle” dσr/ds.

Of course, at each point along the cooling section for step ds small enough
to preserve the ellipticity of the chosen phase space area (21) is still correct.
So, the brutal force approach to numerical simulations of beam dynamics is
to split initial distribution into Nr layers, start solving (21) (initially written
in form (31)) and on each step of the simulation recalculate the transverse
distribution, split new distribution into Nr layers again and repeat the inte-
gration step.

We suggest a simplified approach resulting in a much faster and cleaner
numerical calculations. We assume that the linear charge of the electron
beam encircled by r(s) stays constant ∀s along the CS. That is, we assume
that while the transverse distribution is changing freely and the radius r(s)
of each r-layer is evolving along the CS, the charge encircled by each layer:

Λe(r(s)) = const =
Ie
βc

(
1− e

− r20
2σ2e0

)
(32)

Then, with assumption (32) and taking (10) into account (21) becomes:

r′′ = Ke
1

r

[(
1− e

− r20
2σ2e0

)
− Ii
Ie

(
1− e

− r2

2σ2
i

)]
− kr +

ε2x,yr
4
0

σ4
e0

1

r3
(33)

We solve (33) numerically with an explicit, exactly simplectic, second
order method [4]. Explicitly written, the numerical solution for layer m of
Nr layers is given by:

rn+1,m = rn,m + dsθn,m +
ds2

2
Φ(rn,m, r0,m) (34)

θn+1,m = θn,m + dsΦ(rn,m +
ds

2
θn,m, r0,m) (35)

Φ(rn, r0) = Ke
1

rn

[(
1− e

− r20
2σ2e0

)
− Ii
Ie

(
1− e

− r2n
2σ2
i

)]
− krn +

ε2x,yr
4
0

σ4
e0

1

r3n
(36)

On each step of simulations the correlated angular spread σθc can be
calculated from obtained Nr layer angles θn,m and the rms beam size σr must
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be calculated from Nr rn,m. Remember that you do not need to re-calculate
the distribution since you already know the charge within each layer. Finally,
one shall apply (12) to obtain uncorrelated energy spread as:

σθuc =
εr
σr

=
2εx,y
σr

(37)

Of course, the total angular spread on each step is
√
σ2
θc + σ2

θuc. When

providing the final result one has to remember that we calculated σr =
√

2σx,y
and σθ =

√
2σθx,y.

7 Conclusion

In this note we described the electron beam dynamics in non-magnetized
electron cooler with strong hadron-electron focusing. We derived a set of
explicit equations (34-37) for fast numerical simulations of such a beam.
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