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1. Introduction  

We study coherent longitudinal beam oscillations in the BNL EIC electron storage ring (ESR). This is 
motivated by two factors. First, the present ESR design is expected to have longitudinal coupled bunch 
instability, driven primarily by a narrow-band impedance due to the RF cavity HOM absorbers [1]. A 
strategy needs to be developed to cure this instability, either by passive damping with re-designed HOM 
absorbers, or by active means with a longitudinal feedback system.  Second, as it will be shown in 
Section 2 below, to avoid unacceptable hadron emittance growth, the electron beam arrival time jitter 
in the crab cavities must be maintained below 1.1 ps rms, which imposes 0.33 mm rms limit on the 
amplitude of coherent longitudinal oscillations in the ESR. These oscillations are expected to be primarily 
driven by the RF phase noise. However, in the case that a feedback system is used to cure the instability, 
they can also come from the feedback system itself, which, in a certain frequency range, essentially 
amplifies its own sensor noise. In this note we will derive the expected magnitude of these oscillations 
for either approach, and recommend the one with the feedback system to be taken. 

The rest of this note is organized as follows. In Section 2 we derive the limit for the longitudinal arrival 
time oscillation amplitude in the crab cavities. In Section 3 we work out the longitudinal oscillation 
amplitude in the presence of the instability and feedback using a model of noise-driven harmonic 
oscillator with a derivative controller. Section 4 discusses typical values for the RF phase noise and 
longitudinal bunch-by-bunch feedback sensor noise achieved at NSLS-II and elsewhere, which we argue 
could serve as a reference for the ESR design. Section 5 presents numerical estimates for the amplitude 
of longitudinal beam jitter in the EIC ESR with and without the feedback. Finally, in Section 6 we 
summarize our results.  

  

2. Limit for longitudinal position oscillation amplitude in ESR 

Longitudinal motion of the electron bunches creates dipole beam-beam kicks on the hadrons because of 
the crossing angle. This is reduced by the crab cavities but not removed.  We begin by deriving the 
transverse kick from the electrons and then address emittance growth of the hadrons. 

Let 𝑧𝑧 denote the longitudinal position of an electron with respect to the zero crossing of the crab voltage 
with 𝑧𝑧>0 at the head of the bunch. As this particle moves through the interaction region its offset from 
the ideal orbit is 
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∆𝑥𝑥(𝑧𝑧) = 𝜃𝜃𝑧𝑧 − 𝜃𝜃 sin (𝑘𝑘𝑧𝑧)/𝑘𝑘 .         (2.1) 

In equation (2.1) 𝜃𝜃 is the half crossing angle 12.5 mrad, and k =8.25 m-1 is the wavenumber of the crab 
cavity (corresponding to 394 MHz frequency [1]).  Suppose the electron bunch centroid is oscillating as 
𝑧𝑧0(𝑡𝑡).   Then, the average offset of the electron bunch is 

⟨∆𝑥𝑥(𝑡𝑡)⟩ = ∫𝑑𝑑𝑑𝑑∆𝑥𝑥(𝑑𝑑)𝑓𝑓(𝑑𝑑 − 𝑧𝑧0(𝑡𝑡)).       (2.2) 

In equation (2.2) 𝑓𝑓(𝑑𝑑) is the longitudinal distribution function of the electron bunch, which we model as 
a Gaussian of rms width 𝜎𝜎𝑙𝑙. Expanding the sine to cubic order one gets 

⟨∆𝑥𝑥(𝑡𝑡)⟩ = 𝜃𝜃𝑘𝑘2 < (𝑑𝑑 − 𝑧𝑧0(𝑡𝑡))3 >𝑠𝑠/6 ≅ −𝜃𝜃𝑘𝑘2𝜎𝜎𝑙𝑙2𝑧𝑧0(𝑡𝑡)/2,        (2.3) 

where we assume the average oscillation amplitude is zero and that the oscillation is small compared 
with the bunch length. This transverse offset creates a beam-beam dipole kick which can drive hadron 
emittance growth [2].  The hadron beam size at the interaction point grows as 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜎𝜎𝑥𝑥2 = 2(2𝜋𝜋∆𝑄𝑄𝑏𝑏𝑏𝑏𝜎𝜎𝑥𝑥𝑥𝑥)2 ∑ 𝜌𝜌(𝑚𝑚) cos(2𝑚𝑚𝜋𝜋𝑄𝑄𝑥𝑥) .∞

𝑚𝑚=−∞         (2.4) 

In equation (2.4) 𝑛𝑛 denotes turn number, 𝜎𝜎𝑥𝑥 is the horizontal beam size, ∆𝑄𝑄𝑏𝑏𝑏𝑏 is the beam-beam tune 
shift, 𝜎𝜎𝑥𝑥𝑥𝑥 is the rms value of ⟨∆𝑥𝑥⟩ , 𝜌𝜌(𝑚𝑚) is its correlation function in turns, and 𝑄𝑄𝑥𝑥 is the horizontal 
tune. 

Depending on the correlation function the sum can be very large, but since the synchrotron tune is 
smaller than the betatron tune, this is unlikely. As an initial estimate we take the sum to be 1. We take 
the initial beam size to be 𝜎𝜎𝑥𝑥0 =0.1 mm, ∆𝑄𝑄𝑏𝑏𝑏𝑏=0.015, and 𝑛𝑛=10 hours/12.8 microseconds,  for the beam 
emittance to double.  This yields 𝜎𝜎𝑥𝑥𝑥𝑥=14 nm. Using equation (2.3) one gets an rms value of 𝑧𝑧0 of 0.08 
mm for 𝜎𝜎𝑙𝑙=20 mm bunch length. If there is no third harmonic cavity the electron bunch length is about 
one centimeter and the rms value of 𝑧𝑧0 is 0.33 mm, or, equivalently, the electron beam arrival time jitter 
in the crab cavities must be maintained below 1.1 ps rms. 

 

3. Analytical model for longitudinal beam oscillations 
 
In this section 𝑥𝑥 stands for the coordinate of a general 1D harmonic oscillator. The results could be 
applied to storage ring beam dynamics in the transverse or the longitudinal plane. In Section 5 below we 
will apply them to the longitudinal motion in the ESR, making a replacement 𝑥𝑥 → 𝑧𝑧. 
 

3.1. White noise driven harmonic oscillator with feedback 

Consider a unit-mass, damped harmonic oscillator driven by white noise, which is controlled by 
derivative feedback, 
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�̈�𝑥 + 2Γ�̇�𝑥 + 𝜔𝜔0
2𝑥𝑥 = 𝜎𝜎 𝜂𝜂(𝑡𝑡) − 𝑔𝑔 × (�̇�𝑥 + 𝜉𝜉̇(𝑡𝑡)),      (3.1) 

where 𝜔𝜔0 is the natural frequency, Γ > 0 is the damping decrement, 𝜎𝜎 𝜂𝜂(𝑡𝑡) is a stochastic force with 
zero mean and δ-function autocorrelation, 𝑅𝑅(𝜏𝜏) = 𝜎𝜎2𝛿𝛿(𝜏𝜏) , 𝑔𝑔 and  𝜉𝜉(𝑡𝑡) are the feedback gain and 
sensor noise. If the drive noise, 𝜂𝜂(𝑡𝑡), and the sensor noise, 𝜉𝜉(𝑡𝑡), are uncorrelated, the expected power 
spectral density (PSD) of 𝑥𝑥 is given by (i.e. [3]), 

𝑆𝑆𝑥𝑥(𝜔𝜔) = 𝜎𝜎2

(𝜔𝜔0
2−𝜔𝜔2)2+(2Γ+𝑔𝑔)2𝜔𝜔2 + 𝑔𝑔2𝜔𝜔2

(𝜔𝜔0
2−𝜔𝜔2)2+(2Γ+𝑔𝑔)2𝜔𝜔2 𝜎𝜎𝜉𝜉

2.    (3.2) 

Here the sensor noise PSD is assumed constant in the frequency range of interest, 𝑆𝑆𝜉𝜉(𝜔𝜔) = 𝑆𝑆𝜉𝜉 = 𝜎𝜎𝜉𝜉
2. 

Denoting the sensor noise bandwidth (in rad/s) by 𝐵𝐵𝜉𝜉 , the total integrated sensor noise power (in m2) 
is then  

𝜎𝜎𝑠𝑠2 = 1
2𝜋𝜋 ∫ 𝑆𝑆𝜉𝜉(𝜔𝜔)𝑑𝑑𝜔𝜔 =

𝐵𝐵𝜉𝜉
𝜋𝜋
𝜎𝜎𝜉𝜉
2 .       (3.3) 

Integrating (3.2) over frequency, we get for the expected rms of the residual oscillation 𝜎𝜎𝑥𝑥,   

𝜎𝜎𝑥𝑥2 = 1
2𝜋𝜋 ∫ 𝑆𝑆𝑥𝑥(𝜔𝜔)𝑑𝑑𝜔𝜔 = 𝜎𝜎𝑥𝑥02

1+12𝑔𝑔/Γ
+

𝑔𝑔2𝜎𝜎𝜉𝜉
2

2(2Γ+𝑔𝑔)
 ,      (3.4) 

where 𝜎𝜎𝑥𝑥0 denotes the expected rms of the residual oscillation without the feedback (at 𝑔𝑔 = 0),  

 𝜎𝜎𝑥𝑥0 = �〈𝑥𝑥2〉 = 𝜎𝜎
2𝜔𝜔0√Γ

= 𝜔𝜔0
2
�𝑆𝑆𝑥𝑥(0)

Γ
 .       (3.5) 

Combining (3.3) and (3.4), we obtain the fractional change in the power of the residual oscillations 
due to the feedback, 

𝜎𝜎𝑥𝑥2

𝜎𝜎𝑥𝑥02
=

1+𝜋𝜋4 𝑔𝑔
2

Γ2
Γ𝜎𝜎𝑠𝑠2/𝐵𝐵𝜉𝜉

1+12𝑔𝑔/Γ
 .        (3.6) 

As expected, increasing the feedback gain from zero results in the initial reduction of the residual 
oscillation power. When the second term in the numerator of (3.6) takes over, the residual 
oscillations start to increase, eventually exceeding the level without the feedback. For a noiseless 
sensor the model results in infinitely small residual oscillations in the limit of infinitely large 
feedback gain. 

From (3.6) it is easy to find the optimal feedback gain which minimizes the residual oscillation for a 
given sensor noise level, 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 = 2Γ�√1 + 𝛼𝛼2/𝛼𝛼 − 1�,        (3.7) 

where we introduced parameter 𝛼𝛼 to express the normalized sensor noise amplitude, 
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𝛼𝛼 = �
𝜋𝜋Γ
𝐵𝐵𝜉𝜉

𝜎𝜎𝑠𝑠
𝜎𝜎𝑥𝑥0

= 2Γ
𝜔𝜔0
�

𝑆𝑆𝜉𝜉
𝑆𝑆𝑥𝑥(0)

 .        (3.8) 

Note that for all practical situations  Γ ≪ 𝜔𝜔0, so, for any reasonably good feedback sensor, this 
parameter is expected to be small, 𝛼𝛼 ≪ 1. 

Finally, the minimum level of the residual oscillations at the optimum feedback gain is given by 

𝜎𝜎𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚
2

𝜎𝜎𝑥𝑥02
= 2α�√1 + 𝛼𝛼2 − 𝛼𝛼� ,       (3.9) 

therefore, in the limit of small sensor noise, the residual oscillations will be substantially reduced by 
the feedback,  

 𝜎𝜎𝑥𝑥,𝑚𝑚𝑚𝑚𝑑𝑑 = 𝜎𝜎𝑥𝑥0√2α,    𝛼𝛼 ≪ 1 .       (3.10) 

Fig. 1 illustrates this in the frequency domain. Note that at every sensor noise level there is some 
increase in the high-frequency PSD compared to the no-feedback case, however the integrated 
power is always lower with the feedback, in agreement with (3.9). 

 
 

Figure 1: PSD of residual oscillations at the optimum feedback gain plotted 
for different feedback sensor noise levels and Γ 𝜔𝜔0⁄ = 0.05.  

 

3.2. Adding the instability 

So far we considered a stable situation, Γ > 0,  and showed that the optimized derivative feedback 
with a low-noise sensor can substantially reduce the residual noise due to a stochastic driving force.  
 
In the context of electron storage ring longitudinal beam dynamics (well described by a damped 
harmonic oscillator model, see i.e. [4]) this applies to the common case of longitudinally stable 
beam, driven by RF noise (primarily m=0 mode). It is well-known that a bunch-by-bunch feedback 
system, which essentially acts on all coupled-bunch modes, can effectively reduce the residual beam 
noise in this case. In practice, feedback controllers for such systems utilize a band-limited 
differentiator implemented as a digital FIR filter [5], i.e. they are more complicated than a simple 
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derivative controller used in our model. Nevertheless, we believe that our controller model is 
appropriate for the preliminary design estimates to be worked out in this note.  
 
Now we are extending the model to estimate how the feedback will affect the residual beam noise, 
when, in addition to the white noise drive considered so far, there is an instability the feedback 
needs to damp. 

 
To include beam instability, we need to: 

1) replace, Γ → Γ𝑑𝑑 − Γ𝑚𝑚 , in (3.1), where Γ𝑑𝑑 is the radiation damping rate, assumed fixed, and 
Γ𝑚𝑚 > 0 is the instability growth rate, 
 
�̈�𝑥 + 2(Γ𝑑𝑑 − Γ𝑚𝑚)�̇�𝑥 + 𝜔𝜔0

2𝑥𝑥 = 𝜎𝜎 𝜂𝜂(𝑡𝑡) − 𝑔𝑔 × (�̇�𝑥 + 𝜉𝜉̇(𝑡𝑡));      (3.11) 

 
2) Proceed as above, except only consider the feedback gains such that, Γ𝑑𝑑 − Γ𝑚𝑚 + 𝑔𝑔 > 0 , so 

that the beam is stable with feedback; 
 

3) Normalize the residual motion rms to that for the case without the feedback and instability, 
i.e. replace, Γ → Γ𝑑𝑑  , in (3.5) to obtain  

 

𝜎𝜎𝑥𝑥0 = 𝜎𝜎
2𝜔𝜔0�Γ𝑑𝑑

= 𝜔𝜔0
2 �

𝑆𝑆𝑥𝑥(0)
Γ𝑑𝑑

 .       (3.12) 

 
The equivalent of (3.6) becomes 

 
𝜎𝜎𝑥𝑥2

𝜎𝜎𝑥𝑥02
= 1

1+12(𝑔𝑔−2Γ𝑖𝑖)/Γ𝑑𝑑
�1 + 𝜋𝜋

4
 𝑔𝑔2

Γ𝑑𝑑𝐵𝐵𝜉𝜉

𝜎𝜎𝑠𝑠2

𝜎𝜎𝑥𝑥02
� .     (3.13) 

 

Similarly to Section 3, finding the optimum feedback gain is equivalent to minimizing the function  

𝑓𝑓(𝑦𝑦) = 1+𝛼𝛼2𝑦𝑦2

1+𝑦𝑦−𝑦𝑦𝑚𝑚
,          (3.14) 

where y = 1
2
𝑔𝑔/Γ𝑑𝑑 , y𝑚𝑚 = Γ𝑚𝑚/Γ𝑑𝑑 , and the sensor noise parameter α is given by 

𝛼𝛼 = �
𝜋𝜋Γ𝑑𝑑
𝐵𝐵𝜉𝜉

𝜎𝜎𝑠𝑠
𝜎𝜎𝑥𝑥0

= 2Γ𝑑𝑑
𝜔𝜔0

�
𝑆𝑆𝜉𝜉

𝑆𝑆𝑥𝑥(0)
 .       (3.15) 

       The minimum level of the residual oscillations occurs for the optimum feedback gain of 

𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜 = 2Γ𝑑𝑑��1 + 𝛼𝛼2(Γ𝑚𝑚/Γ𝑑𝑑 − 1)2/𝛼𝛼 + Γ𝑚𝑚/Γ𝑑𝑑 − 1�,    (3.16) 

       and is given by 

𝜎𝜎𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚
2

𝜎𝜎𝑥𝑥02
= 2α ��1 + 𝛼𝛼2(Γ𝑚𝑚/Γ𝑑𝑑 − 1)2 + 𝛼𝛼(Γ𝑚𝑚/Γ𝑑𝑑 − 1)� .    (3.17) 
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As expected, these two equations are identical to (3.7) and (3.9) for Γ𝑚𝑚 = 0. 

Consider α<<1 regime, which we argued before is the usual situation in the longitudinal plane. Here 
the asymptotics of (3.17) for small and large values of  Γ𝑚𝑚/Γ𝑑𝑑 parameter become 2𝛼𝛼 and 4𝛼𝛼2Γ𝑚𝑚/Γ𝑑𝑑 

respectively. They intersect at Γ𝑚𝑚/Γ𝑑𝑑 = 1
2𝛼𝛼

. Therefore, as long as the instability growth rate is lower 

than this value,  

   Γ𝑚𝑚
Γ𝑑𝑑

< 1
2𝛼𝛼

,           (3.18) 

the feedback is very effective, and it reduces beam oscillation power by a large factor, 

𝜎𝜎𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚
2

𝜎𝜎𝑥𝑥02
= 2α, α ≪ 1.        (3.19) 

The reduction (or increase) of the residual beam oscillation power due to the feedback in the 
presence of instability, described by (3.17), is illustrated in Fig. 2, as a function of the instability 
growth rate. It shows that the feedback is ineffective when the sensor noise is large. It also shows 
that for any instability growth rate one could peak a feedback sensor with low enough noise (given 
by (3.18)) that the feedback will reduce the residual oscillations by a large factor given by (3.19). 

 
 

Figure 2: Residual oscillation power with the derivative feedback set to the 
optimum gain plotted for different feedback sensor noise levels. 

 

In Fig. 2 we normalize the oscillation power to that without the instability and feedback, (3.12), 
which in turn depends on the magnitude of the drive noise. For a storage ring application, the latter 
is primarily given by the RF phase noise, which has not been specified yet for the ESR RF system 
design. To proceed further and estimate the magnitude of the electron beam oscillation in 
millimeters, we need to come up with a reasonable specification for the RF phase noise, as well as to 
estimate if the required feedback sensor noise performance is realistic. First, to get a feel for these 
parameters, we present some examples from the NSLS-II storage ring light source at BNL. 
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4. Typical values for RF phase noise and longitudinal BPM noise 
demonstrated at NSLS-II 

In modern synchrotron light sources the most stringent limit for the magnitude of beam oscillations in 
the longitudinal plane usually comes from the timing users. For instance, in the NSLS-II PDR [6] the 
required beam motion below 5% of rms bunch length (assumed 10 ps in the PDR), required by the 
timing experiments, specifies the tightest requirement for the RF phase jitter equal to 0.16 degree of RF 
phase ( f𝑅𝑅𝑅𝑅 = 500 MHz ). This specification has been achieved by a large margin.  

 
 

Figure 3: RF cavity phase noise from 0.2 sec time-domain buffer sampled at 4 
MHz. The cavity is set to the nominal operating voltage of 1.5 MV.  

 

To illustrate this, Fig. 3 presents the phase noise measurement for one (of the two total) NSLS-II RF 
cavities set to the nominal voltage of 1.5 MV, with 2 mA of beam current in the ring (this low-current 
beam does not affect the measurement). The integrated noise is about 0.03 degree rms in 10 kHz 
bandwidth. Apart from low-frequency broad-band contribution, the noise includes power-line 
harmonics (i.e. 360 Hz, 720 Hz, etc.), as well as subharmonics of the solid-state pulse switch modulated 
high voltage power supply, powering the klystron (3.85 kHz and 7.7 kHz lines in the plot). 

Cavity probe signals, used for the measurement shown in Fig. 3, are routinely monitored during high 
current beam operations, in which case the measured phase noise also includes a substantial 
contribution from the electron beam. Typical integrated phase noise at 400 mA measures 0.1-0.2 degree 
rms in 2 MHz bandwidth, and less than 0.05 degree rms in 10 kHz bandwidth. For reference, NSLS-II 
revolution frequency is 3.78 kHz and the synchrotron frequency at high current is ~2 kHz.  

Similarly, 0.1-0.2 degree rms RF phase noise values have been reported by several other light sources, all 
with the main RF frequency in the usual range of 350 to 500 MHz.  
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With regards to the longitudinal feedback system sensor (BPM) noise performance, we again present an 
example from NSLS-II. Even though the coupled-bunch motion at NSLS-II is stable at full design current 
of 0.5 A, the light source is equipped with a longitudinal bunch-by-bunch (BxB) system front-end from 
Dimtel for monitoring and diagnostic purposes. (On top of that, NSLS-II has two complete BxB feedback 
systems for both transverse planes, which are required to damp the respective instabilities during 
operations).  

Fig. 4 shows typical signals from the longitudinal BxB system front-end during 400 mA current, presently 
used in routine operations. The first 1200 RF buckets (out of 1320 total) are filled approximately 
uniformly, and a single “camshaft” bunch is added to the bucket 1281.   

 
 

Figure 4: Longitudinal BxB feedback front-end signals at 400 mA. Fill pattern 
consists of 1200-bunch uniform train plus a camshaft bunch at bucket 1281. 

 

The two plots relevant to this technical note are at the bottom. The left shows the longitudinal 
oscillation rms for each bunch, while the right plot shows the spectral content of these oscillations, 
averaged over the bunch train. As expected, the longitudinal beam motion occurs dominantly near the 
synchrotron frequency (here 𝑓𝑓𝑠𝑠=2.2 kHz), as well as at lower frequencies, where distinct peaks due to 
power-line harmonics, i.e. 720 Hz, are clearly visible. There is virtually no motion at frequencies above 
2𝑓𝑓𝑠𝑠. From the left plot, buckets 1-1200 measure ~9.8 ADC counts rms motion, while the empty buckets 
(>1200, excluding the camshaft bunch) measure ~2.6 counts.  

Using the calibration of 91 ADC counts per mA, per degree RF at 25 dB of front-end attenuation 
obtained during the system commissioning in 2014 [7-8], we can convert the displayed data (0.33 
mA/bunch, 0 dB attenuation) to the degrees of RF phase. The result is 0.02-degree rms beam jitter for 
the filled buckets, and 0.005 degree rms jitter for the empty buckets. The last number is a good measure 
for the feedback BPM noise level. Clearly, this level is very small to affect the real beam jitter 
measurement at high current. 
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5. Beam arrival position jitter estimates for the EIC ESR  

In this section we present numerical estimates for the amplitude of longitudinal oscillations in the EIC 
ESR with and without the longitudinal feedback, and work out some constraints on the magnitude of RF 
phase noise in both cases. Because we only consider longitudinal dynamics here, we will be making the 
replacement 𝑥𝑥 → 𝑧𝑧, in the relevant formulas derived in Section 3.  

We take relevant parameters from the EIC PCDR [1], specifically the longitudinal radiation damping time 
(at 10 GeV), τ𝑑𝑑 = 2000 turns, corresponding the damping rate Γ𝑑𝑑 = 1/2000  turns-1, the instability 
growth rate Γ𝑚𝑚 = 2π/1000  turns-1, the synchrotron tune ν𝑠𝑠 = ω𝑠𝑠/ω𝑟𝑟𝑥𝑥𝑟𝑟 = 0.05, and the RF frequency 
f𝑅𝑅𝑅𝑅 = 591  MHz.  

First consider the case without the instability, so that the beam oscillations are driven by the RF phase 
noise only. As is clear from (3.2), the beam response is resonantly enhanced around the synchrotron 
frequency and then is sharply falling off at higher frequencies (see the dashed curve in Fig. 1). Higher 
frequency RF noise is therefore largely irrelevant, so we limit our consideration to the noise centered 
around the synchrotron frequency, with a similar magnitude bandwidth, 𝐵𝐵𝑅𝑅𝑅𝑅~ω𝑠𝑠. 

Let us assume that the phase noise of rms 𝜎𝜎𝜙𝜙 (in degrees) is distributed uniformly in this bandwidth. The 
PSD of this noise, 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑅𝑅, can be expressed as  

1
𝜋𝜋 ∫ 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑅𝑅𝑑𝑑𝜔𝜔

ω𝑠𝑠+
1
2𝐵𝐵𝑅𝑅𝑅𝑅

ω𝑠𝑠−
1
2𝐵𝐵𝑅𝑅𝑅𝑅

= 𝐵𝐵𝑅𝑅𝑅𝑅
𝜋𝜋
𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑅𝑅 = 𝜎𝜎𝜙𝜙2, or     (5.1) 

𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑅𝑅 = 𝜋𝜋
𝐵𝐵𝑅𝑅𝑅𝑅

𝜎𝜎𝜙𝜙2.         (5.2) 

At low frequency the beam simply follows the RF, so, from Section 3 (where  𝑆𝑆𝑥𝑥(𝜔𝜔) stands for the 
oscillator motion PSD in units of meter2×second/rad) we have, for the beam motion PSD, 

  𝑆𝑆𝑧𝑧(0) = 𝑃𝑃𝑆𝑆𝑃𝑃𝑅𝑅𝑅𝑅 �
𝑐𝑐

𝑓𝑓𝑅𝑅𝑅𝑅 360
�
2

= 𝜋𝜋
𝐵𝐵𝑅𝑅𝑅𝑅

� 𝑐𝑐
𝑓𝑓𝑅𝑅𝑅𝑅 360

�
2
𝜎𝜎𝜙𝜙2.     (5.3) 

The ratio in parenthesis is simply the degree of RF phase to position conversion factor. For 591 MHz 
frequency, 1 degree of RF phase corresponds to 1.41 mm.    

Substituting (5.3) into (3.12), we obtain the final expression for the residual beam oscillation rms,   

 𝜎𝜎𝑧𝑧0 = 𝜎𝜎𝜙𝜙
𝑐𝑐

𝑓𝑓𝑅𝑅𝑅𝑅 360
1
4�

𝜋𝜋𝐵𝐵𝑅𝑅𝑅𝑅
Γ𝑑𝑑

 .        (5.4) 

 
Plugging in the PCDR values, and taking, for instance, 𝜎𝜎𝜙𝜙 = 0.1 degree and 𝐵𝐵𝑅𝑅𝑅𝑅 = 𝜔𝜔𝑠𝑠, we obtain  
 
 𝜎𝜎𝑧𝑧0 =  1.6 mm,           (5.5)  

which significantly exceeds the 0.33 mm rms crab cavity limit worked out in Section 2.  
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In order for the beam oscillation amplitude to end up right at this limit, we must reduce the RF phase 
noise proportionally, to about 0.02 degrees rms, which could be somewhat challenging in practice. On 
top of that, due to numerous approximations made, it would be prudent to assume a safety factor of 2-5 
at this stage of the design. This however will easily bring the required RF phase noise spec beyond the 
state-of-the-art.  

We now turn to the case of longitudinal instability being cured by the feedback. As discussed above, on 
top of curing the instability, the feedback can bring the residual beam oscillations down by a large 
factor, as long as the feedback BPM has a good signal-to-noise ratio. In dimensionless form this was 
described by (3.17). To illustrate the required sensor noise performance in real units, we can express 
(3.17) in terms of the integrated sensor noise, 𝜎𝜎𝑠𝑠, by substituting the unitless noise parameter  𝛼𝛼 from 
(3.15), resulting in 

𝜎𝜎𝑧𝑧,𝑚𝑚𝑚𝑚𝑑𝑑
2 = 2𝜎𝜎𝑧𝑧02�

𝜋𝜋Γ𝑑𝑑
𝐵𝐵𝜉𝜉

𝜎𝜎𝑠𝑠
𝜎𝜎𝑧𝑧0

��1 + 𝜋𝜋Γ𝑑𝑑
𝐵𝐵𝜉𝜉

� 𝜎𝜎𝑠𝑠
𝜎𝜎𝑧𝑧0
�
2

(Γ𝑚𝑚/Γ𝑑𝑑 − 1)2 + �
𝜋𝜋Γ𝑑𝑑
𝐵𝐵𝜉𝜉

𝜎𝜎𝑠𝑠
𝜎𝜎𝑧𝑧0

(Γ𝑚𝑚/Γ𝑑𝑑 − 1)� , (5.6) 

where the residual oscillation rms without the feedback is given by (5.4).  

Assuming the PCDR parameters, in particular Γ𝑚𝑚 Γ𝑑𝑑⁄ = 4π,  and setting the sensor bandwidth in (5.6) to 
one synchrotron frequency, 𝐵𝐵𝜉𝜉 = 𝜔𝜔𝑠𝑠, we obtain the final result shown in Fig. 5. It plots the beam arrival 
position jitter vs. the feedback sensor noise for representative levels of RF phase noise.  

 

Figure 5: Beam arrival position jitter vs. integrated feedback sensor noise for several rms 
values of RF phase noise, 𝜎𝜎𝜙𝜙.  Bandwidth of [0.5 1.5]𝜔𝜔𝑠𝑠 is assumed for both the RF and sensor 
noise. 

It illustrates that, for instance, for the RF noise level of 𝜎𝜎𝜙𝜙=0.1 degree rms, the sensor noise of 0.11 mm 
rms (or 0.078 degrees of RF phase), should be sufficient to maintain the beam arrival position jitter less 
than a factor of two of the 0.33 mm rms crab cavity limit derived in Section 2. This sensor noise level is a 
factor of 16 higher than what is measured at NSLS-II, and therefore we consider it readily achievable. 
Separately, bunch-by-bunch feedback BPM noise levels similar or better than at NSLS-II have been 
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demonstrated elsewhere [8]. In case more stringent RF phase jitter specs can be achieved in the ESR, the 
requirement for the feedback sensor noise performance will be even more relaxed.  

 

 

6. Summary and outlook 

To avoid unacceptable hadron emittance blow-up, the electron bunch arrival position jitter in the crab 
cavities must be maintained below 0.33 mm rms. This specification can be met in the presence of 
longitudinal coupled bunch instability by using a feedback damper. Our analysis predicts fairly relaxed 
specs for the RF phase noise (achieved at NSLS-II and elsewhere) as well as for the maximum allowable 
feedback sensor noise (also achieved). In addition to damping the unstable mode(s) the feedback will 
greatly reduce the amplitude of the (stable) m=0 mode that usually dominates the noise in the 
longitudinal plane. 

An alternative option is to passively damp the instability (through the cavity damper redesign) but this 
will also require meeting much more challenging RF phase noise specs. This option is a seemingly 
inferior one. 

Things could become more complicated with harmonic RF (not considered so far) which may require a 
further look. Modelling relevant effects in more detail can be done with Elegant and Matlab to help 
further specify relevant ESR systems. 
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