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Crab cavities are one of the several components included in the luminosity upgrade of the Large Hadron
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I. INTRODUCTION

Crab cavities are one of the several components included in the baseline luminosity upgrade of the Large Hadron Collider
(HL-LHC) [1]. The HL-LHC crab cavities need to deliver a nominal deflecting kick of 3.4 MV per cavity at 400 MHz in Con-
tinuous Wave (CW) operation mode at 2 K. In cold tests of unjacketed cavities, the cavities should reach at least a deflecting
voltage of 4.1 MV (20% margin). This margin is intended to cover for possible voltage degradation observed in other SRF
cavities after jacketing. The heat load per dressed (unjacketed) cavity – cavity with HOM filters and field pickup – shall not
exceed 10 W at 4.1 MV. The operation requirements for the HL-LHC crab cavities are summarized in Table I [2].

Crabbing frequency 400.79 MHz
Nominal deflecting voltage (Vt,nom) 3.4 MV
Target deflecting voltage for unjacketed cavity (Vt,unj) 4.1 MV
Heat load at Vt,unj 10 W

TABLE I: Operational requirements for a HL-LHC crab cavity

An array of Double-Quarter Wave (DQW) cavities will provide the vertical deflecting kick for crab crossing in HL-LHC [3].
The DQW cavities are compact, superconducting RF cavities which fundamental mode provides a transverse deflecting
kick [4]. In LHC, the second beam pipe imposes a tight spacial constraint to the cavity’s width. The HL-LHC DQW cavities
have a "waist" to accommodate the second beam pipe and the cavity’s height is chosen to meet the tight spacial constraint,
so the cavities can be used for crab crossing in both the vertical and horizontal planes [5, 6] as illustrated in Fig. 1. All the HL-
LHC DQW cavities present an elliptical cross section that enhances the figure of merit of maximum peak surface magnetic
field over deflecting voltage (Bp/Vt).

FIG. 1: The DQW cavity satisfies the LHC geometric constraints imposed by the second beam pipe to provide a deflecting
kick for both vertical and horizontal crossing planes.

This report is organized as follows. Firstly, a brief description of the HL-LHC DQW design evolution is provided describing
the different prototypes available, their similarities and differences. The design evolution of the Higher-Order Mode (HOM)
filters is discussed elsewhere [7–10]. Then, the cryogenic RF test campaign to validate the operation of a DQW SPS-series
cavity at nominal deflecting voltage and search for its ultimate performances is discussed.

A. The DQW PoP-Series

A first DQW cavity was designed and fabricated in 2012 to validate the DQW concept. The Proof-of-Principle (DQW PoP-
series) cavity has 6 dummy ports. These dummy ports, with a diameter of only 20 mm, are not intended to handle the large
power levels required for adequate fundamental power coupling and HOM power extraction during operation with beam,
but to ensure cleaning of the high-magnetic field region and host the test probes. The largest peak magnetic field is found in
the blending of the dummy ports (Bp/Vt = 25.1 mT/MV). The DQW PoP-series cavity is shown in Fig. 2. Table II lists the RF
properties of the PoP-series DQW cavity.

The cryogenic RF tests of a DQW PoP-series prototype in 2014 demonstrated reliable operation beyond the 3.4 MV re-
quired for HL-LHC, reaching 116 mT before quench at 4.6 MV [5].
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FIG. 2: The DQW PoP-series cavity: a) cross-section side view; b) bottom; c) perspective view; d) magnetic field distribution
using 5-color heatmap scale.

B. The DQW SPS-Series

The validation of the DQW concept with the PoP-series prototype was the first step towards the preparation of a fully-
equipped DQW cryomodule for beam tests in the Super Proton Synchrotron (SPS) of CERN. The two cavities inside of the
cryomodule were based on the DQW SPS-series design, an evolution of the PoP-series compliant with the LHC requirements
for fundamental and HOM power handling, heat load, tunability, shielding, and stiffening, all perfectly integrated into its
own cryomodule. The DQW cavity design was revisited to incorporate larger, 62 mm-diameter ports to supply the required
fundamental mode power and sufficiently damp the HOM power induced by the LHC beam during operation [6, 11]. A DQW
SPS-series cavity has 4 large ports, one for the Fundamental Power Coupler (FPC) and three for the HOM filters. Fig. 3 depicts
the nominal setup for a dressed DQW SPS-series cavity.

FIG. 3: Dressed DQW SPS-series cavity.

All 3 HOM filters of a DQW SPS-series cavity are identical and specifically designed to damp sufficiently the HOM power
from the LHC beam [7]. The S21 parameter for the HOM filters is shown in Fig. 4. The DQW HOM filter provides a deep,
broad notch (at least -80 dB deep and broader than 10 MHz) centered around the fundamental mode frequency at 400
MHz. The deep, broad notch ensures a good rejection of fundamental mode power through the HOM filter port. The filter
response changes quickly for frequencies above the fundamental mode, showing good transmission for frequencies above
the first HOM of the DQW cavity at 570 MHz. Only one mode, at 1.754 GHz, is insufficiently coupled through the HOM port
apertures. The power of this mode is extracted through a small port opened in one of the beam pipes. This small port hosts
a dual-function antenna. The hook section couples to the fundamental mode to extract sufficient power for monitoring of
the cavity’s field and control purposes. The T-section couples electrically to the 1.754 GHz mode [12].

The new cavity-port interface is optimized to reduce the Bp/Vt with respect to the PoP-series, so the maximum peak
surface magnetic field is 11% lower. The highest field is located in the cavity body, in between the two HOM ports, not in the
filter. Fig. 5 displays the magnetic field distribution in the cavity and HOM filter. To enable a smooth interface, the elliptical
racetrack of the PoP-series is modified for the SPS-series to have a constant width. The DQW SPS-series design also satisfies
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FIG. 4: S21 parameter for the HOM filter of DQW SPS-series cavity.

the spatial constraints imposed by the second beam pipe of LHC to provide crabbing kick in both vertical and horizontal
configurations. Table II lists the RF properties of the DQW SPS-series cavity.

FIG. 5: Magnetic field distribution of the fundamental mode using 5-color heatmap scale for: [left] cavity and [right] section
view of HOM filter.

Four identical cavities were fabricated based on the DQW SPS-series design [13]: two prototypes built under the umbrella
of the US LHC Accelerator Research Program (LARP) by Niowave Inc. and JLab [6] and two other built, fully dressed, and
assembled into a cryomodule by CERN for beam tests in the Super Proton Synchrotron (SPS) [14]. Eight HOM filters were
fabricated by CERN[15].

The following sections will summarize the test campaign undertaken by the collaboration to validate the operation at
nominal deflecting voltage of the DQW SPS-series design and evaluate its ultimate performance. The reader will note that the
first test involving the bare cavity DQW01 led to remarkable high fields (125 mT, 65 MV/m) and deflecting voltage (5.9 MV).
Later tests of cavity plus HOM filter found its performance limited to barely the nominal deflecting voltage. Simulation and
experimental efforts to identify the source of this diminished performance will be explained and the solution to improve the
performance will be presented.
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II. MATERIALS & METHODS

All the vertical tests discussed in Section III were performed at the SRF test facility of JLab. All the cavities were based on
the DQW SPS-series design and manufactured by Niowave Inc. and JLab in the framework of LARP; the HOM filters were
manufactured by CERN. Data displayed below, unless otherwise indicated, was taken when the cavities were fully immersed
in a superfluid helium bath at 2.0 K. The tests evaluated the performance of unjacketed: bare and dressed cavities.

A. Port configuration, dissipative losses

The DQW SPS-series cavity has four DN63 ports opened on the inductive region and two DN100 ports to allow for the
passage of the beam. One DN40 port is opened on one of the beam ports for extraction of HOM power and sampling of
the fundamental mode signal. Fig. 6 shows the ports of the cavity. The position of each port connection with respect to the
cavity center is listed in Table III.

FIG. 6: Ports of the DQW SPS-series cavity.

TABLE III: Distance of port
connection to cavity center at

room temperature

Port Direction Position (mm)

FPC y 240.3
HOMa y 255.4
HOMb y 255.4
HOMc y 255.4
BPa z 309.8
BPb z 349.8
PU x 245.7

A DQW SPS-series cavity is made of RRR>300 niobium. Flanges are made of non-magnetic stainless steel grade 316LN.
Gaskets are made from OFE/OHCO copper. RF-seal gaskets are used in some port connections to reduce the exposure of
stainless steel to the RF field. Some of the blank flanges are coated with a thin (100 µm-thick) film of niobium to reduce their
heat load. Table IV contains the RF surface resistance value used to evaluate the dissipative losses of each component [17].
The value for copper considers the anomalous skin effect of copper at 2 K and 400 MHz with a 30% corrective factor to
account for the increase in RF surface resistance due to the surface roughness [18].

Material Rs(Ω)

Copper 1×10−3

Stainless steel 3×10−2

Niobium 20×10−9

TABLE IV: RF surface resistance (Rs) values used to evaluate the dissipative losses of the different components in a DQW
SPS-series cavity during a 2 K cryogenic RF test

The test probes used during cold tests of the DQW SPS-series cavities, their location and orientation are shown in Fig. 7.
The external coupling factor Qe for each test probe is listed in Table V [19]. Table VI lists the intrinsic quality factor for each
component assuming the RF surface resistance values provided in Table IV. This table also contains the power dissipated
in each component for operation at nominal deflecting voltage (3.4 MV). Table VII collects the contribution of each HOM
filter when assembled to the bare cavity. Most of the power is dissipated in the input probe and its feedthrough. Still, the
expected quality factor of the cavity (1×1010 for Rs of 9 nΩ) is one order of magnitude smaller than the total quality factor of
the rest of components (3.17×1011). That is, for a bare cavity at nominal deflecting voltage, the cavity walls would dissipate
2.71 W while the rest of components would only dissipate 0.09 W (here we assume that the quality factor of the cavity does
not degrade at high fields). Some assumptions were made when computing the contributions of each component:

• The calculations consider that the input probe temperature stays constant at 2 K. In reality, the probe might be at
higher temperature during operation, implying larger dissipative losses due to increased surface resistance.

• Flanges are thermally intercepted at 2 K and there is ideal heat conduction from flanges to RF-seal gaskets, so the
RF-seal gaskets will also be 2K despite being exposed to the electromagnetic field.



8

• Only the fundamental (operating) mode contributes significantly to the heat load.

• The surface of the flange hole has not been coated, so this surface is stainless steel.

Test probe Qe

Input 2.3×109

Pickup 8.0×1011

TABLE V: External quality factor for designed test probes

FIG. 7: [Left] Test probes for DQW SPS-series cavity cold tests. [Right] Location and orientation of the test probes, valid for
both bare and dressed cavity cold tests.

B. Instrumentation

The cavity temperature was monitored by an array of eight CERNOX thermosensors. The location of the thermosensors
varied from test to test. When discussing the results of a test, a number between 1 and 8 will be provided for each ther-
mosensor (corresponding to the channel number in the scope display) together with the letter denoting its location during
that particular test. Fig. 8 illustrates the possible locations for the thermosensors. These locations were:

• #A: Highest magnetic field region in the whole assembly (including HOM filters).

• #B: On top of blank-off, Nb-coated flange of the shortest 62-mm port, the FPC port.

• #C: On top of blank-off, Nb-coated flange. First point in the cavity to experience a temperature drop if the helium level
is insufficient to fully cover the cavity.

• #D: On top of the HOM01 filter, next to the cooling channel. Note that the cap of the HOM01 helium jacket is missing
to allow the installation of a thermosensor around the cooling channel during these cold tests.

• #E: Redundancy of #D.

• #F: On the inner conductor blending at the base of the HOM01 port. The highest magnetic field region for this port.

• #G: Inside of the helium jacket of HOM02 filter. Note that the helium jacket of the HOM02 jacket is fully assembled,
so the only way to monitor the temperature near the cooling channel of the HOM filter is to insert the thermosorts
through the inlet of the helium jacket.

• #H: Redundancy of #F.
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FIG. 8: Thermosensor map.

C. Stiffening frame

The cavities were mounted on one of the JLab standard stiffening frames. The frame was adapted to fix the two capacitive
plates of the DQW cavity in three points: one at the center of each plate and two other rods fixing the side of each plate. Fig 9
shows the DQW cavity assembled into the stiffening frame. The central rods were not used for tests conducted in 2018 and
2019 because the thread on the stiffening rod adapter welded to the cavity was damaged.

FIG. 9: Stiffening frame used for cryogenic RF tests of DQW cavities in JLab. The central rods were removed for tests
conducted in 2018 and 2019.
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Port Status Component Surface material Q0 P0,nom(W)

FPC Blanked
Flange Niobium film 2.36e16 1.14e-6
RF-seal gasket Copper 6.89e12 3.91e-3

HOMa Blanked
Flange Niobium film 1.42e17 1.90e-7
RF-seal gasket Copper 4.16e13 6.47e-4

HOMb Blanked
Flange Niobium film 1.18e17 2.29e-7
RF-seal gasket Copper 3.44e13 7.83e-4

HOMc Blanked
Flange Niobium film 1.17e17 2.29e-7
RF-seal gasket Copper 3.44e13 7.82e-4

BPa Test input

Flange Niobium film 1.18e17 2.28e-7
Feedthru Stainless steel 2.29e12 1.18e-2
RF-seal gasket Copper 4.68e13 5.76e-4
Input probe Copper 4.17e11 6.46e-2

BPb Vacuum
Flange Niobium film 4.46e18 6.03e-9
Flange hole Stainless steel 1.46e13 1.84e-3
RF-seal gasket Copper 1.32e15 2.05e-5

PU Test pickup
Flange and feedthru Stainless steel 1.23e15 2.18e-5
Conventional gasket Copper 1.16e18 2.33e-8
Pickup probe Copper 1.56e15 1.73e-5

TOTAL 3.17e11 8.50e-2

TABLE VI: Bare cavity cold test port configuration. Intrinsic quality factor Q0 per component and associated power loss P0

at nominal deflecting voltage Vt,nom (3.4 MV)

Port Status Component Surface material Q0 P0,nom(W)

HOMa HOM filter
Filter Niobium 3e-2
RF-seal gasket Copper 3.45e12 7.8e-3

HOMb HOM filter
Filter Niobium 3e-2
RF-seal gasket Copper 3.45e12 7.8e-3

HOMc HOM filter
Filter Niobium 3e-2
RF-seal gasket Copper 3.45e12 7.8e-3

TABLE VII: Intrinsic quality factor Q0 per HOM port when HOM filters are included, and associated power loss P0 at
nominal deflecting voltage Vt,nom (3.4 MV)
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III. MEASUREMENTS & RESULTS

A. Test I (Feb’17) – Bare DQW01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
This was the first cryogenic RF test of a bare DQW SPS-series cavity.
AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used the cavity DQW01. The thermosensor map was as follows: C-1, B-2, F-4 and A-5. Thermosensor #3 was

located on the inner conductor blend, at the base of the FPC port. Thermosensors #6 and #7 were placed on the inner con-
ductor blend, at the base of the HOMb and HOMc ports, respectively. Thermosensor #8 was located on the outer conductor
blend, at the base of the FPC port.

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
In preparation for this test, the cavity received the following surface treatment: bulk BCP, 600◦C baking, light BCP, HPR

and 120 ◦C degassing.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The cavity quenched at 5.9 MV. Fig. 10 displays the Q0 −Vt curves measured during Test I. A first Q0 −Vt sweep found a

soft multipacting band between 2–3 MV, that was easily conditioned. This multipacting band would never return back after
the first break through. During the second sweep some field emitter blew up, and as evidence of that, for the third sweep the
cavity reached slightly higher voltage with lower radiation levels. Most likely the quench was a magnetic quench. Operation
in pulsed mode did not allow reaching higher voltages. At the quench field, the highest magnetic field in the cavity is at least
125 mT. This is a high magnetic field for an SRF cavity that followed a BCP-based surface treatment. Another evidence is
found in the thermosensor signals.

FIG. 10: Q0 −Vt curves for Test I (Feb’17) using DQW01.

The assembly experienced a Q-switch at 5.5 MV. The signal from thermosensor #2 increased abruptly at this field level,
an indication that the Q-switch was associated to the niobium thin film deposited on the shortest small port (see Fig. 11).
Temperature increases in other thermosensor locations (#6, #7 and especially #5) for fields higher than 5 MV until quench
occurs. Thermosensor #5 corresponds to the region where the highest magnetic field in the cavity is expected, another
indication that the quench is of magnetic nature.
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FIG. 11: Thermosensor signals for Q0 −Vt curves for Test I (Feb’17) using DQW01.
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B. Test II (May’17) – Bare DQW01 with HOM01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
This was the first cryogenic RF test of the a bare DQW cavity with an HOM filter.
AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used cavity DQW01 with filter HOM01. The thermosensor map was as follows: C-1, B-2, F-4, A-5, D-7 and E-8.

Thermosensor # 3 was placed on the flange that seals the HOM filter with the cavity, to monitor the gasket temperature.
Thermosensor #6 was located by the HOMb port base, on the cavity-port blend.

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The hook region of the filter received a flash BCP in preparation for this test. The whole filter was rinsed by hand using

pressurized water [20].
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly quenched at 2.8 MV in CW mode and at 3.4 MV in pulsed mode. Figure 12 displays the Q0 − Vt curve

measured at 2.0 K during Test II. The quench was not due to a hard field limit since operation in pulsed mode allowed
reaching higher voltages.

FIG. 12: Q0 −Vt curve for Test II (May’17) using DQW01 with HOM01.

The thermosensor signals support the idea that the performance was limited by a thermal quench. The quench at 2.8 MV
was preceded by a small temperature increase on the coated flange of the shortest small port (thermosensor #5). The tem-
perature also rose on one of the two thermosensors placed along the tube of the port where the HOM filter was installed
(port HOMa) and on the thermosensors #7 and #8 located close to the cooling channel of the HOM filter. Thus, there were
two possible thermal quench locations: the HOM hook or the coated flanges. The temperature increased dramatically in
the highest magnetic field region (between ports HOMb and HOMc) every time that the cavity broke through the low-field
multipacting band. This indicated that the hard field limit for a DQW SPS-series cavity equipped with HOM filters coincides
with the high magnetic field expected for this region, the largest in the whole assembly.

A first multipacting barrier was found at about 0.1 MV. The conditioning continued for around 3 hours before the voltage
jumped to about 1 MV. A soft barrier was found between 2–3 MV. It was easily processed and never came back after the first
break through. The low-field band kept coming back, but could be processed easily by operating in pulsed mode or applying
relatively higher power (tens of Watts) in CW mode [21]. Inspection of the decay signal showed no evidence of multipacting
being the cause of the quench.
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C. Test III (Jun’17)– Bare DQW02

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
This was the first cryogenic RF test of the bare cavity DQW02. The main scope of this test was to verify the repeatability of

Test I (Feb.17) results.
AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used cavity DQW02. The thermosensor map was as for Test I (Feb’17).
PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
In preparation for this test, the cavity received the following surface treatment: bulk BCP, 600◦C baking, light BCP, HPR

and 120 ◦C degassing.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The field-emission onset appeared at 2.4 MV, leading to a pronounced Q-slope as the voltage increased. Operation was

interrupted at 5.3 MV because the power necessary to run the cavity reached the administrative power limit. Figure 13
displays the Q0 −Vt curve measured at 2.0 K during Test III.

FIG. 13: Q0 −Vt curve for Test III (Jun’17) using DQW02.

All the thermosensors in the region around the cavity-port interface for ports HOMb and HOMc (#5-7) and for port HOMa
(#4) monitored a temperature increase as soon as the voltage was larger than 4.7 MV. Fig. 14 shows the thermosensor signals
for Test III. The cavity-port interfaces are high magnetic field regions in a DQW SPS-series cavity. The highest magnetic field
is located between the ports HOMb and HOMc, at least 100 mT at 4.7 MV. The multipacting band between 2.3-3.0 MV was
easily processed during a first sweep and did not appear for latter sweeps.

FIG. 14: Thermosensor signals for Test III (Jun’17) using DQW02.
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D. Test IV (Sep’17) – Bare DQW02

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The main scope of Test IV was to explore the maximum quench field that cavity DQW02 could provide. In the previous test

(Test III in Jun’17), cavity DQW02 did not reach the ultimate performances observed with cavity DQW01 in Test I (Feb’17).
The early field-emission onset and prominent Q-slope indicate that cavity DQW02 may have been contaminated. Thus,
before testing cavity DQW02 again, its RF surfaces followed some light BCP and HPR.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used cavity DQW02. The thermosensor location changed from previous tests. The thermosensor map for Test

IV was as follows: C-1, B-3, F-4 and A-7. Thermosensor #2 was placed on top of the Nb-coated, zero-length flange of the
longest beam port, where the vacuum line is connected. The flange used for this connection had a scratch in the Nb thin
film. Thermosensor #6 was positioned by the HOMa port base, on the outer conductor blend and thermosensor #8 was
placed near the highest magnetic field spot, on the outer conductor blend. Spatter and sharp welds were found before bulk
BCP in those locations [22], as shown in Fig. 15.

FIG. 15: Weld map for a DQW SPS-series cavity and features found on the RF surface of cavity DQW02 during visual
inspection performed before bulk BCP.

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
Cavity DQW02 received some light BCP, HPR and 120◦C bake prior to Test IV.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly quenched at 5.3 MV. The field-emission onset appeared at 3.4 MV, at higher voltages than for the previous

test, but still led to a steep Q-slope. The heat load decreased, being within the specifications – below 5 W at nominal deflect-
ing voltage (3.4 MV). Figure 16 displays the Q0 −Vt curve measured at 2.0 K during Test IV. Table VIII summarizes the main
results of this test.

Only thermosensors #1 (on the shortest beam port flange, where the input probe is installed) and #7 (on the highest mag-
netic field region in the whole assembly) show a temperature increase during Test IV. The thermosensor signals are shown
in Fig. 17. When the quench field is reached, at 5.3 MV, thermosensor #1 displays higher temperature than #7. As the voltage
is decreased, the temperature registered by both thermosensors decreases. Thermosensor #1 founds a larger temperature
for a longer time after quench than #7. The thermal path from the helium bath to the niobium thin film deposited on the
stainless-steel flange of the short beam port is longer than for point #7. Thus, longer time is also expected for the film to
become superconducting again after quench.
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FIG. 16: Q0 −Vt curve for Test IV (Sep’17) using DQW02.

FIG. 17: Thermosensor signals for Test IV (Sep’17) using DQW02.
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E. Test V (Oct’17) – Bare DQW02 with HOM01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The scope of this test was to evaluate the performances of a DQW cavity equipped with an HOM filter. The first and last

test of a DQW cavity with an HOM filter (Test II in May’17) found an early quench at 2.8 MV, attributed to insufficient surface
treatment.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
Tests with the HOM filter continued with cavity DQW02 instead of cavity DQW01. This test employed cavity DQW02 and

filter HOM01. The thermosensor map was as follows: C-1, B-2, F-4, A-5, D-7 and E-8. Thermosensor #3 was positioned
closed to the flange in port HOMa and #6 by the base of port HOMb, on the inner conductor blend.

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
Cavity DQW02 received some light BCP and HPR; the filter HOM01 received some local flash BCP (on the hook region)

followed by an ultrasonic cleaning bath prior to installation into cavity DQW02. The assembly was degassed at 120◦C.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The cavity reached 3.6 MV in CW mode, and 4.12 MV in pulsed mode [23]. The performance improvement with respect

to Test II (May’17) was attributed to the additional surface treatment followed by the HOM filter. Figure 18 displays the first
Q0 −Vt curve measured at 2.0 K during Test V. Thermosensor #4, at the base of port HOMa on the inner conductor blend,
showed the largest response to the voltage increase. Thermosensors #7 and #8, close to the cooling channel of the HOM
filter, also showed a temperature increase for large voltage values. Table VIII summarizes the main results of this test.

FIG. 18: First Q0 −Vt curve for Test V (Oct’17) using DQW02 with HOM01.

A hard multipacting band was found between 0.15–0.2 MV. Conditioning required a large incident power of about 75 W
and operation in pulsed mode. The multipacting band was broken through after 4 hours. The cavity would fall back into this
hard multipacting band afterwards, but its conditioning took shorter times of less than 10 minutes. Some other multipacting
bands were found: a low-field multipacting band between 0.065–0.088 MV, and high-field band between 1.8–2.3 MV. These
soft zones were easy to condition and did not return after the first break through. All these multipacting bands also appeared
in the bare cavity cold tests.

During multipacting conditioning, field broke through the multipacting band and suddenly jumped reaching a very high
voltage, what may have blown up a field emitter. In the successive sweeps, the cavity performance was field-emission dom-
inated. Figure 19 compares the two Q0 −Vt curves measured at 2.0 K during Test V. This situation remained unnoticed after
Test VI (Jan’18) was conducted.
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FIG. 19: First and second Q0 −Vt curves for Test V (Oct’17) using DQW02 with HOM01.
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F. Test VI (Jan’18) – Bare DQW02 with HOM01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
Test V (Oct’17) reached larger voltages than what was achieved in Test II (May’17). This improvement was associated to

the additional local flash BCP received by the HOM filter. The scope of this test was to evaluate the impact on performance
when providing additional surface treatment to the filter, in search for the ultimate performances of a DQW cavity with an
HOM filter.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used the same assembly as for Test V (Oct’17). The thermosensor map was as follows: C-1, B-2, F-4,6, D-7 and

E-8. Thermosensors #3 and #5 were by the flange of port HOMa.
PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The HOM filter was treated as follows: bulk BCP (100 µm), 600◦ baking, light BCP and manual pressure rinsing.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly performance was characterized by an early field-emission onset and a pronounced Q-slope at medium

fields. The performance for Test V (Oct’17) and Test VI (Jan’18) shows a similar early Q-slope accompanied with large radia-
tion. Figure 20 displays the Q0 −Vt curve measured at 2.0 K during Test VI.

FIG. 20: Q0 −Vt curve for Test VI (Jan’18) using DQW02 with HOM01.
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G. Test VII (May’18) – Bare DQW02 with HOM01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The previous test did not tell if the quench was related to the DQW cavity or the HOM filter. The performance was field-

emission dominated for Test V (Oct’17) and Test VI (Jan’18). Therefore, for this test the cavity went through HPR. In addition,
the HOM filter may have suffered from HFQS, as bulk BCP was performed on the HOM filter between Test V (Oct’17) and
Test VI (Jan’18) but the filter was not baked. Thus, the HOM filter was also baked at 120◦C.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used cavity DQW02 and filter HOM01. The thermosensor map was as follows: C-1, B-2, F-4,6, D-7 and E-8.

Thermosensors #3 and #5 were by the flange of port HOMa.
PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The cavity underwent HPR, while the HOM filter was manually rinsed with pressurized water. Then, the whole assembly

was degassed at 120◦C for 24 h.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly quenched at 4.7 MV with barely no field emission before the quench field was reached. This was the largest

voltage ever achieved by the assembly of a DQW SPS-series cavity and its HOM filter. This excellent performance is attributed
to adequate surface treatment applied to cavity and HOM filter. Figure 21 displays the Q0−Vt curve measured at 2.0 K during
Test VII. The Q0−Vt curve for this test showed higher Q at 4.7 MV than for Test IV (Sep’17) with cavity DQW02 by itself and is
comparable to the Q found for Test I (the best data set for a bare DQW cavity). An array of Oscillating Superfluid Transducers
(OST) was installed around the assembly. Unfortunately, data could not determine the origin of the quench.

FIG. 21: Q0 −Vt curve for Test VII (May’18) using DQW02 with HOM01.



21

H. Test VIII (Jul’18) – Bare DQW02 with HOM01 separated by NbTi spacer

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
With the scope of discriminating the location of the quench, an NbTi spacer retracted the HOM filter further away from

the cavity. By retracting the filter out from the cavity, it was exposed to lower magnetic fields. If the quench was related
to the cavity or to the system cavity-filter, the retraction of the HOM filter would not allow higher voltages to be reached.
If the quench was related to the HOM filter (due to the hard field limit being reached in the filter – magnetic quench – or
because the power dissipated was such that the cooling was insufficient – thermal quench), the retraction would decrease
the magnetic field, and higher fields could be reached.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
This test used cavity DQW02 and filter HOM01. The HOM filter was retracted from the cavity by a 20 mm long NbTi spacer.

No thermosensor data was taken for this test.
PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The cavity underwent HPR, while the HOM filter was manually rinsed with pressurized water. Then, the whole assembly

was degassed at 120◦C for 24 h.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The external Q for the pickup probe (Qe) was one order of magnitude larger than for previous tests. Fig. 23 displays the

Q0−Vt curve measured at 2.0 K during Test VIII. If the Qe value is trusted, the maximum magnetic field in the assembly would
be larger than 150 mT. Up to our knowledge, this is an unprecedented field for a SRF cavity that has received a BCP-based
treatment. On the other hand, the maximum electric field would be larger than 80 MV/m. This value exceeds the Kilpatrick
limit by more than a factor 4 but barely no field emission observed.

FIG. 22: Q0 −Vt curve for Test VIII (Jul’18) using DQW02 with HOM01 separated by NbTi spacer.

Swapping the cable readouts assigned to the pickup probe and the HOM filter output leads to the results depicted in
Fig. 23, which seem more reasonable than those from Fig. 22 and find the same quench field as for Test I (Feb.’17) involving
only the bare cavity. If this was the case, the cavity DQW02 would have reached, for the first time, the same high quench field
as cavity DQW01.
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FIG. 23: Q0 −Vt curve for Test VIII (Jul’18) using DQW02 with HOM01 separated by NbTi spacer.
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I. Test IX (Sep’18) – Bare DQW02 with HOM01 separated by NbTi spacer

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
Evaluate the performances of the Test VIII (Jul’18) assembly after high-pressure rinsing the cavity to eliminate any possible

contaminant.
AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
The same as for Test VIII (Jul’18). The thermosensor map was as follows: B-1, C-2, D-7, E-8, F-4, and A-5, Thermosensor

#3 was close to the gasket in the port HOMa and #6 was on the inner conductor blend by the port HOMb.
PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
Cavity DQW02 followed HPR and then the whole assembly baked at 120◦C in preparation for this test.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
Two Q0 −Vt curves were taken for Test IX. Figure 24 displays the first Q0 −Vt curve measured at 2.0 K during Test IX. The

quench field was 5.1 MV, close to the value obtained in Test IV (Sep’17) for the bare cavity DQW02. Table VIII summarizes the
main results of this test. By retracting the HOM filter about 20 mm – which decreases the fields in the HOM filter by a factor
2 – the quench field was sooner reached in the cavity rather than the HOM filter. A Q-switch appears for voltages between
1.2 – 1.6 MV, lowering the Q0 at higher voltages.

FIG. 24: First Q0 −Vt curve for Test IX (Sep’18) using DQW02 with HOM01 separated by NbTi spacer.

Figure 25 shows the performance evolution during Test IX. The performance seems to deteriorate after the first Q0 −Vt

curve (more pronounced HFQS driven by larger field-emission current, earlier quench). The blow-up of an emitter could
explain this deterioration. Thermosensor #3 was not available during the voltage sweep. Thermosensor #8 (in the HOM
filter, by its cooling channel) followed the voltage profile until it got lost; however, thermosensor #7 did not registered any
temperature increase. The other thermosensors did not show any significant temperature increase during the test. Fig. 26
shows the thermosensor signals collected during Test IX.
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FIG. 25: Comparison between the two Q0 −Vt curves for Test IX (Sep’18) using DQW02 with HOM01 separated by NbTi
spacer.

FIG. 26: Thermosensor signals for Test IX.
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J. Test X (May’19) – DQW02 with HOM01

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The main scope of Test X was to verify the repeatibility of Test VII results (early quench at 4.7 MV), to exclude that higher

quench field observed for Test VIII and Test IX is not exclusively related to the additional HPR followed by the cavity in
preparation for these two tests.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
The assembly consisted of DQW02 and HOM01 (as for Test VII). The thermosensor map was as follows: B-1, C-2, F-4,

D-7 and E-8. Thermosensor #3 was placed on the HOMa port, close to the gasket. Thermosensor #5 was placed inside the
cooling channel of the HOM filter. Thermosensor #6 was placed between #3 and #4.

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The RF surfaces did not receive any additional surface treatment after Test IX in preparation for Test X.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly reached 4.5 MV before quench. Figure 27 displays the Q0 −Vt curves measured at 2.0 K during Test X.

Table VIII summarizes the main results of this test. The quench field for Test X was found at lower values than for Test VII
(May’18). Fig. 28 shows the evolution of the radiation level with voltage for different tests of the DQW02 cavity. From Test
VII (May’18) to Test IX (Sep’18), the field-emission onset moved to lower voltages. Test X also showed a low field-emission
onset with respect to Test VII (May’18).The change in slope between the two Q0 −Vt curves taken during Test X (the earlier
with a field emission onset at 1.6 MV; the latter, at 2.1 MV) may be an indication of an emitter blowing up. The latter curve
finds a field-emission onset similar to previous values observed after Test VII (May’18). Note that the assembly was not high-
pressure rinsed in preparation for Test X and some contamination may have occurred during removal of the NbTi spacer.

FIG. 27: Q0 −Vt curves for Test X (May’19) using DQW02 with HOM01 after removal of NbTi spacer.

The 1st Q0 −Vt curve taken for Test X found a multipacting band for voltages between 2 and 3 MV, conditioned before
the 2nd curve was taken, as seen in Fig. 29 and 28. The assembly experienced a Q-switch around 2.5 – 3.5 MV, which was
accompanied by a slight temperature increase in all the thermosensors, with the largest increase being recorded for #5 (in
the HOM filter, inside its cooling channel). The quench was paired with a slight temperature increase in thermosensors #1
(on the FPC flange - the largest temperature increase), #5 (in the HOM filter, inside its cooling channel) and #7 (in the HOM
filter, by its cooling channel). Fig. 30 displays the thermosensor signals collected during Test X.
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FIG. 28: Radiation evolution for some tests employing the cavity DQW02.

FIG. 29: Comparison between Q0 −Vt curves for Test X (May’19) using DQW02 with HOM01 after removal of NbTi spacer.
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FIG. 30: Thermosensor signals for Test X.
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K. Test XI (Jul’19) – DQW02 with HOM01 and HOM02

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The scope of this test was to evaluate the performance of the DQW SPS-series design when more than one HOM filter is

assembled to the cavity. This configuration is closer to the final one, with 3 HOM filters assembled to the cavity.
AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
The filter HOM02 was installed in the bottom port HOMb, withstanding 45 degrees with respect to the vertical beam

plane, as designed for the final setup of the fully dressed DQW SPS-series cavity. Fig. 31 shows the cavity DQW02 with the
filter HOM02 installed in port HOMb. For this test, the pickup probe was borrowed from DQW01 because the pickup probe
from DQW02 broke. The thermosensor map was as follows: B-1, C-2, G-3, H-4, A-5, F-6, D-7 and E-8.

FIG. 31: Orientation of filter HOM02 installed in port HOMb for Test XI (Jul’19).

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
The filter HOM02 went through the following surface preparation before the test: heavy BCP (100 µm) done in two iter-

ations, baking at 600◦C for 10 hours, light BCP (10 µm) and ultrasound cleaning. The cavity went through HPR. Then the
whole assembly was backed at 120◦C.

ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
Figure 32 displays the Q0 −Vt curve measured at 2.0 K during Test XI. The test was stopped when the deflecting voltage

in the cavity was about 2.8 MV because the power coming through the filter HOM02 reached the administrative limit. At
2.8 MV, the power coming through the filter HOM02 was 9 W, to be compared with the 0.2 W for the filter HOM01. A possible
explanation for such large power transmission is that the notch of filter HOM02 was detuned with respect to the cavity
frequency, so either the filter HOM02 or the cavity need to be tuned. Such large power coming through the filter may also
explain why the external Q of the pickup probe

(
3.4×1013

)
is one order of magnitude higher than for other tests.

The field emission onset appears earlier than for the previous test, at 1.4 MV. This might be an indication that the filter
HOM02 required the hand pressurized rinsing that was skipped in preparation for this test. Table VIII summarizes the main
results of this test.

The assembly was inspected after this cold test, finding that the pickup probe was loose. This may explain the higher
external Q of the pickup port.
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FIG. 32: Q0 −Vt curve for Test XI (Jul’19) using DQW02 with HOM01 and HOM02.
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L. Test XII (Oct’19) – DQW02 with HOM01 and rotated HOM02

ScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScopeScope
The scope of this test was a second attempt to evaluate the performance of the DQW SPS-series design when more than

one HOM filter is assembled to the cavity. This configuration is closer to the final one, with 3 HOM filters assembled to the
cavity. The previous test showed large fundamental mode power leaking from filter HOM02. For this test, the filter HOM02
has been rotated with respect to the design orientation to present a larger external Q at the fundamental mode frequency.

AssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssemblyAssembly
The filter HOM02 was installed in the bottom port HOMb, withstanding 90 degrees with respect to the vertical beam plane,

as shown in Fig. 33, for a target external Q of 1011. The quality assurance measurements performed with the cavity under
vacuum and at room temperature found an external Q of 6.441e10 for the HOMa port hosting the HOM01 filter and 2.032e11
for the HOMb port with the HOM02 filter rotated. The feedthrough of the input port was borrowed from cavity DQW01
because the one from DQW02 was damaged. The thermosensor map was as follows: B-1, C-2, G-3, H-4, A-5, F-6, D-7 and
E-8.

FIG. 33: Orientation of filter HOM02 installed in port HOMb for Test XII (Oct’19).

PreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparationPreparation
Both filters, HOM01 and HOM02, went through pressurized hand-held water rinsing followed by ultrasound cleaning. The

cavity was high-pressure rinsed. Then, the whole assembly was leak tested and backed at 120◦C.
ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults
The assembly quenched at 4.0 MV during CW operation. The field-emission onset appeared at low fields, around 2 MV, as

already seen for other cryogenic RF tests of a DQW cavity with HOM filters. This early field-emission onset may be the cause
for the quench at 4.0 MV. Fig. 34 displays the Q0 −Vt curve measured at 2.0 K during Test XII and Table VIII summarizes the
main results of this test.
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FIG. 34: Q0 −Vt curve for Test XII (Oct’19) using DQW02 with HOM01 and rotated HOM02.
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IV. DISCUSSION

A summary of the tests conducted with the LARP DQW SPS-series cavities is presented in Table VIII. The following section
is dedicated to discuss the main observations from the series of tests conducted with the LARP DQW SPS-series prototypes.

A. Bare Cavities

The bare DQW SPS-series cavities exceeded nominal deflecting voltage (3.4 MV) with up to 73% margin and the heat load
was lower than 10 W as required at 4.1 MV. The cavities presented an excellent performance beyond nominal deflecting
voltage up to 5.9 MV, showing pretty low RF surface resistance (9 nOhm) and reaching high electric and magnetic fields (up
to 65 MV/m and 125 mT, respectively) with a field-emission onset at voltages above the nominal deflecting voltage.

The performance of cavity DQW02 during its bare cavity tests seems not optimal due to field emission — evidenced by
much lower Q0 and higher radiation than DQW01. However, the maximum magnetic field reached by cavity DQW01 and
DQW02 is comparable when errors are accounted. On the other hand, if the results displayed in Fig. 23 for Test VIII (Jul’18)
are trusted, cavity DQW02 would have actually reached the same quench field as the cavity DQW01 in Test I (Feb’17). Thus
we can make the claim that the performance of both cavities is comparable and the results are reproducible.

The quench for both bare cavities is of magnetic nature. Data collected for both cavities (DQW01 for Test I in Feb’17 and
DQW02 for Test III in June’17 and Test IV in Sep’17) shows that the temperature around ports HOMb and HOMc was higher
for voltages over 5 MV. This is the highest magnetic field region in the whole assembly, with the field being at least 107 mT for
a deflecting voltage of 5 MV. At quench field, the maximum magnetic field (about 125 mT) is equivalent to a TESLA single-
cell cavity delivering 30 MV/m [24]. Another evidence were the fast quenches and associated temperature increase in the
highest magnetic field region after sudden passage of multipacting bands.

FIG. 35: Q0 vs Vt curves for collection of bare cavity tests. The yellow star marks the target of 5 W heat load maximum at
3.4 MV.

B. Dressed Cavities: Bare Cavities with HOM Filters

The performances for DQW SPS-series cavities equipped with HOM filters were limited at earlier voltages (4.5–4.7 MV)
by quench than for bare cavity tests. Still, they reached well beyond the required nominal deflecting voltage with a com-
fortable margin of 38%. In addition, reproducibility was confirmed (see Test VII in May’18 and Test X in May’19). The
quench experienced by the dressed DQW cavities was sharp, but not necessarily accompanied by a significant radiation
increase or multipacting (the closest multipacting band appears between 2–3 MV). The test campaign was complemented
with simulation-based studies to fully understand the limiting factor in the performance of the dressed DQW cavities.
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1. Effect of surface treatment followed by HOM filter

All the HOM filters tested before Test VI (Jan’18) had received a minimal surface treatment consisting of flash (20 µm)
Buffered-Chemical Polishing (BCP) exclusively in the hook section and manual pressure rinsing. The insufficient surface
treatment followed by the HOM filters was the main cause of the early quench, as shown by the higher voltages achieved by
subsequent improvement of the filter RF surface between Test V (Oct’17) and Test VII (May’18) (see Table II). With a complete
surface treatment including bulk BCP (only on the hook, where the magnetic field is the highest in the whole HOM filter),
high-temperature (600◦C) degassing and low-temperature (120◦C) baking, the cavity plus filter assembly could reach 4.7 MV
with no evidence of High-Field Q-Slope (HFQS).

FIG. 36: Q0 vs Vt curves for collection of tests illustrating the effect of surface treatment applied to HOM filter on cavity
performance. The yellow star marks the target of 5 W heat load maximum at 3.4 MV.

2. Thermal studies and quench location

The section of the HOM filter emerging out of the DQW cavity is equipped with its own helium jacket. A cooling channel is
opened in the main filter body for passive cooling of the hottest region, the tip of the hook [25]. The heat flux in 2 K superfluid
helium is about 1 W/cm2. The cooling channel of the HOM filter, with a section of 1 cm2, is sized to extract about 1 W of
heat.

In the LHC configuration, cavity and filter will be surrounded by a limited helium volume given by the space between the
helium jacket and the niobium walls of the HOM filter. However, for these tests, the cavity was without its helium jacket
and the top cap of the filter’s helium jacket was not assembled to allow the installation of a couple of thermosensors by the
cooling channel aperture (see Fig. 37). The thermosensors registered a temperature increase on this location for several tests
(Test II in May’17, Test V in Oct’17, and Test IX in Sep’18), which suggested a thermal runaway initiating in some part of the
main filter body.

The thermal behaviour of the HOM filter was studied for different voltage levels with CST [26]. The study considers the
temperature dependence of the thermal conductivity and the BCS surface resistance for niobium [27] (BCS surface resis-
tance for niobium at 2 K is 1 nΩ), and assumes a residual surface resistance of 5 nΩ. For operation at 4.1 MV, the temperature
in the surroundings of the cooling channel is still 2 K, as shown in Fig 38. The maximum temperature is found in the tip of
the hook. Above 4.5 MV, the power dissipated in the hook gets larger than 1 W (see Fig. 39) and the filter becomes thermally
unstable, what probably causes the quench at 4.7 MV observed in the Test VII (May’18).
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FIG. 37: [Left] Section view of HOM filter; the region receiving BCP is framed. [Right] Detail of the jacketed HOM filter used
for cold tests without the top cap.

FIG. 38: Temperature distribution in the HOM filter for deflecting voltage of 4.1 MV.

FIG. 39: Maximum temperature and power dissipated in HOM filter in function of the deflecting voltage.
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3. Effect of retracting the HOM filter

To discriminate if the quench was originated from the cavity or the filter, a 20 mm-thick NbTi spacer was inserted between
the HOM filter and its cavity port. If previous tests were limited by the HOM filter, due to large peak fields or large dissipated
heat, the retracted HOM filter could not possibly be the limitation, because retracting the HOM filter by 20 mm reduced the
fields in the filter by a factor 2 and the dissipated heat in the hook by a factor 4.

Higher voltages were reached with this configuration – 5.1 MV, as demonstrated in the Test IX (Sep’18) – close to the values
obtained in the bare test of the DQW2 cavity – 5.3 MV in Sep’17. The Q-switch of 1.7×1010 appearing in the Test IX (Sep’18)
at 1.6 MV (see Fig. 36) is attributed to the NbTi spacer becoming normal conductor.

While the retraction of the filter allows reaching higher voltages, it is not considered a solution because it reduces the cou-
pling to some modes and consequently the damping. The pursue of even higher voltages, if needed, will require a revision
of the HOM filter thermal properties.

Fig. 40 displays Q0 −Vt curves and radiation dose rate for all the DQW2 cavity tests with and without filters.

FIG. 40: Q0 vs Vt curves for collection of DQW2 cavity tests, with and without HOM filter, illustrating the effect of HOM filter
retraction on cavity performance.The yellow star marks the target of 5 W heat load maximum at 3.4 MV.

C. Lorentz Force Detuning

The cold test frame, shown in Fig. 9, does not fully reproduce the boundary conditions of a DQW cavity in the cryomod-
ule. The expected LFD for a jacketed DQW cavity is about -40 Hz/(MV2). Measured LFD during cold tests is about -(500–
600) Hz/(MV2). After removing the rods fixing the capacitive plates to the stiffening frame for test on Jan’18, the LFD in-
creased to about -(700–800) Hz/(MV2). This was expected because the capacitive plates, in the high electric field region,
were let free, and so the Lorentz force would attract them together, increasing their capacitance and thus reducing the cavity
frequency.

D. Multipacting Bands

Table IX summarizes the multipacting bands predicted by simulations for the DQW SPS-series cavity and the multipacting
bands found during the tests. Fig. 41 shows the different cavity regions where multipacting sites are predicted and their
impact energy and band. The multipacting predictions by ACE3P and CST matched well the multipacting bands found
during the tests. A recurrent multipacting band, below 0.5 MV, related to multipacting in the cavity waist as predicted by
ACE3P and CST, was found in every single test. Other multipacting bands processed and never came back in following tests.
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Predicted by simulations Found during tests without filter
Band (MV) Region Code Band (MV) Description
0.26 Cavity waist CST 0.17, 0.2 Hard. Conditioned 1.5 h at 10-20 W input power before first breach

through. Every quench will cause cavity to drop into this zone for
about 30 minutes. Found for every test.

0.1–0.5 Cavity waist ACE3P
1.06 Cavity-small port CST 1.1 Soft
1.0–2.5 Waist CST 1.9, 2.3 Soft
0.8–3.5 Dome CST 1.9, 2.3, 3.0 Soft
1.6–3.0 Cavity-beam port, cavity-small port ACE3P 1.9, 2.3, 3.0 Soft
4.0–4.5 Dome ACE3P 4.5 Soft. Quenched into this band for a few minutes.

Predicted by simulations Found during tests with or w/o filter
Band (MV) Region Code Band (MV) Comments
0.26 Cavity waist CST 0.17, 0.2 Hard. Conditioned 1.5h at 10-20 W input power before first breach

through. Every quench will cause cavity to drop into this zone for
about 30 minutes. Found for every test.

0.1–0.5 Cavity waist ACE3P
2.12 HOM stub CST 1.8–2.3 Soft

2–3 Soft

TABLE IX: Comparison between multipacting bands predicted by simulations and those found during cold tests

FIG. 41: [Left] Cavity regions where multipacting sites are predicted by ACE3P and [right] their impact energy and band [6].

FIG. 42: [Left] HOM filter region where multipacting sites are predicted by CST and their impact energy; [right] secondary
emission yield (SEY) and band for multipacting sites in HOM filter [28].
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E. Field-Emission Onset and Quench Voltages

The tests with 2 HOM filters found some early field-emission onset at 1.5 – 2.4 MV. However, tests with only 1 HOM filter
are encouraging: field emission can appear as late as for bare cavity tests. There were 3 successful tests for a bare cavity
with 1 HOM fields that reached a deflecting voltage above 4.5 MV with a field-emission onset above 2.8 MV, not so far from
the nominal deflecting voltage. Fig. 43 summarizes the field-emission onset and quench voltages found for the LARP DQW
SPS-series cavities.

FIG. 43: Field-emission onset and quench voltages for cold tests of the LARP DQW SPS-series cavities.

F. Coupling Evolution for Test Probes

Table X lists the evolution of the coupling for the two probes (input and pickup probes) used for the cryogenic RF tests.

Assembly Test External Q for input probe (Q1) External Q for pickup probe (Q2)

Design CST 2e9 8e11
DQW01 Warm 1.92e9 1.77e12

Test I (Feb’17) 2.07e9 1.60e12
DQW02 Warm 1.83e9 1.19e12

Test III (Jun’17) 2.05e9 1.78e12
Test IV (Sep’17) 1.83e9 1.20e12c

DQW01+HOM01 Test II (May’17) 2.10e9 1.47e12
DQW02+HOM01 Test V (Oct’17) 1.93e9 1.21e12

Test VI (Jan’18) 2.15e9 1.27e12
Test VII (May’18) 2.12e9 1.21e12
Test VIII (Jul’18) 1.93e9 1.15e11
Warm n/a 6.28e12
Test IX (Sep’18) 2.08e9 2.74e12
Test X (May’19) 1.84e9 1.24e12

DQW02+HOM01+HOM02 Test XI (Jul’19) 1.9e9 3.4e13
Warm 1.8e9 2.2e12
Test XII (Oct’19) 1.8e9 2.2e12

TABLE X: Coupling evolution for test probes
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V. CONCLUSIONS & OVERVIEW

The availability of prototypes proved useful to investigate the performance limitations and define surface treatment
procedures for the HL-LHC DQW cavities. The CERN DQW SPS-series were installed by mid 2017 into their cryomod-
ule for beam tests in SPS. At the time, the performances of the four DQW SPS-series prototypes was in the range of 4.7 –
5.9 MV [6, 16, 29] for bare cavity cold tests, well above the 3.4 MV nominal deflecting voltage and reaching magnetic field
values as high as 125 mT (Bp/Vt = 21.2 mT/MV), but the performances of a DQW SPS-series cavity with HOM filters did not
exceed 3.3 MV. Thanks to this test campaign, we could find the pathway to operate dressed crab cavities at higher voltages
beyond required levels.

The excellent results found during this test campaign highlight the maturity of the design of the DQW cavity and its HOM
filters and shed light on the necessary preparations to ensure that the HL-LHC requirements are fulfilled.

These are the lessons learned during this test campaign:

• The HOM filters should receive the same surface treatment as any other SRF cavity.

• A standard SRF surface treatment (bulk BCP, high-temperature degassing, light BCP, low-temperature bake) for cavity
and filter is sufficient to exceed the required deflecting voltage (4.7 MV before quench) with a comfortable margin
(38%). The cryogenic load is lower than 10 W at 4.1 MV with pretty low surface resistance of 10 nΩ at low fields.

• Large peak fields can be reached with a DQW cavity equipped with its HOM filters – 106 mT in cavity at quench field
of 4.7 MV – but still not as high as for other niobium cavities that followed a BCP-based surface treatment, like the
bare DQW SPS-series cavities. A quench in the HOM filter, likely of thermal nature, limits Continuous-Wave (CW)
operation.

• Demonstrated successful manufacture by industry of DQW cavities.

The DQW SPS-series cavities and their HOM filters find two main operational limitations that are not critical:

• Earlier quench field for dressed cavity than for bare cavity, likely caused by insufficient cooling in the HOM filter. This
earlier quench field reduces the advantageous margin presented by the bare DQW SPS-series cavity.

• Recurring multipacting band below 0.5 W is difficult to make disappear. The beam tests of the DQW cryomodule in
SPS did not find, however, major operational complications related to the presence of this multipacting band.

Some improvements towards the HL-LHC-series production were identified:

• Make the length of the short beam port as long as the longest beam port to reduce heat load in the joint.

• Enlarge the cooling channel if possible to provide more cooling capacity and therefore increase the margin over the
operational deflecting voltage required for the HL-LHC crab cavities.

• Another improvement came from the lessons learned during the beam tests of a fully equipped DQW cryomodule in
the SPS. The pickup antenna showed some direct coupling to the beam. The antenna design was changed to reduce the
direct coupling. Another small port was opened on one of the beam ports to host a dedicated antenna for extraction
of the 1.754 GHz HOM power.

• Apply a full surface treatment to the HOM filters.

• Modify the test probes, made in copper, to include a stainless-steel threaded hole insert. The current test probes had
the threaded hole made in copper. After several uses, the thread was damaged and compromised the correct fixing of
the probe to the feedthrough.

The DQW LHC-design characteristics are summarized in Table II. Modifications exclusively affect some cavity ports and
RF ancillaries [11]. None of the improvements implies a change of the main body of the DQW cavity, where the maximum
peak fields are located. Thus, performance beyond the nominal with extraordinary margin can be also expected for LHC-
series. In the near future, the LARP DQW SPS-series cavities will be used to test the effects of electropolishing by KEK.
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