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3D Vlasov Theory of the Plasma Cascade Instability

M. Blaskiewicz

BNL 911B, Upton, NY 11973, USA

The plasma cascade instability (PCI) [1, 2] is a proposed mechanism for microbunching in electron
beams without dipole magnets. Existing theory is limited to wave propagation that is orthogonal
to the advective compression direction. This note provides a theory allowing for wave propagation
in arbitrary directions.

The plasma cascade instabilty (PCI) [1, 2] is a proposed mechanism for microbunching in electron beams without
dipole magnets. If the theory bears out this process may well be very widespread, contributing to enhanced noise in
a variety of systems employing electron beams. This note shows how one can reduce the Vlasov equation to a set of
Volterra equations of the second kind, which are amenable to accurate numerical solution.
Consider a homogeneous, infinite, electron plasma. We use Cartesian coordinates x1, x2, x3, t. The unperturbed

plasma has an average velocity

v0(x, t) =

3
∑

j=1

x̂jxjωj(t) (1)

This average velocity is driven by the acceleration

A0(x, t) =
3
∑

j=1

x̂jxjkj(t) (2)

We wish to find a distribution with these parameters. We will take an unperturbed distribution of the form f0(x,v, t) =
f0(H(x,v, t)) with

H =

3
∑

j=1

αj(t)

2
(vj − ωjxj)

2
. (3)

The Vlasov equation is

∂f0

∂t
+ v · ∂f0

∂x
+A0(x, t) ·

∂f0

∂v
= 0, (4)

and since f0 = f0(H), H satisfies equation (4) as well. InsertH for f0 in equation (4). The resulting terms proportional
to xj and vj are

−αj(vj − ωjxj)ω̇jxj + α̇j(vj − ωjxj)
2/2− vjαjωj(vj − ωjxj) + xjkjαj(vj − ωjxj) = 0. (5)

Setting the coefficients of x2

j , xjvj and v2j to zero we find equation (4) is satisfied if

α̇j = 2αjωj , ω̇j + ω2

j = kj (6)

for j = 1, 2, 3. If equations (6) are satisfied then any function f0(H) will satisfy equation (4). For physical solutions
we require f0(H)d3xd3v to be the number of electrons in the phase space volume d3xd3v.
We will use first order perturbation theory with f = f0 + f1 so that

∂f1

∂t
+ v · ∂f1

∂x
+A0(x, t) ·

∂f1

∂v
+A1(x, t) ·

∂f0

∂v
= 0, (7)

where A1 is the acceleration created by f1 and by the ion seeding the instability. Using the results of [3] we introduce
time dependent spatial wave numbers and assume a perturbation where the spatial density of the electrons varies as

nP(x, t) = n̂P(t) exp



i

3
∑

j=1

Pjλj(t)xj



 ≡ n̂P(t) exp(iΨ(x, t)) (8)
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where λ̇j + ωjλj = 0 and the Pj , s are constant in time. The total perturbed density from all wavenumbers is

n1(x, t) =

∫

nP(x, t)d
3P.

Consider an ion implanted at t = 0 and located at x = x0 + v0t. The acceleration it generates is given by (cgs
units)

AI(x, t) =
qQ

m

x− x0 − v0t

|x− x0 − v0t|3

= −i
4πqQ

m(2π)3

∫

d3Pλ1λ2λ3

(P1λ1, P2λ2, P3λ3)
∑

j

P 2

j λ
2

j

exp

(

i
∑

m

Pmλm(xm − x0m − v0mt)

)

, (9)

where q = −|e| is the electron charge, m is its mass, and Q is the charge on the ion. The net acceleration for
wavenumber P due to both the ions and electrons is AP(x, t) = Ã(t) exp(iΨ(x, t)) with[5]

Ã(t) = −4πi
(P1λ1, P2λ2, P3λ3)

∑

m

P 2

mλ2

m

{

q2

m
n̂P(t) +

qQ

(2π)3m
λ1λ2λ3 exp

(

−i
∑

m

Pmλm(x0m + v0mt)

)}

. (10)

To solve the Vlasov equation we consider a single P. Consider the Ansantz

fP(x,v, t) =
df0

dH
g(v1 − ω1x1, v2 − ω2x2, v3 − ω3x3, t) exp(iΨ(x, t)).

Notice that the xj dependence in g and f0 only shows up as vj − ωjxj so it drops out after integrating over vj . This
generates the correct spatial dependence for nP(x, t). For convenient notation define uj = vj − ωjxj and remember
that

∂g(x,v, t)

∂t
=

∂g(u, t)

∂t
+

∂g(u, t)

∂u
· ∂u(x,v, t)

∂t
.

Plugging into the Vlasov eq one finds

∂g(u, t)

∂t
+

3
∑

j=1

igPjλjuj − ωjuj

∂g

∂uj

+ αjujÃj = 0 (11)

To proceed we multiply the last term on the right of equation (11) by δ(t− t0) with the intention of integrating over
t0 later.

∂g̃(u, t, t0)

∂t
+

3
∑

j=1

ig̃Pjλjuj − ωjuj

∂g̃

∂uj

+ αjujÃjδ(t− t0) = 0 (12)

We look for solutions of the form

g̃(u, t, t0) = H(t− t0)q(t) · u exp(iK(t) · u)

where H(t− t0) is 1 for t ≥ t0 and zero otherwise. Inserting this expression into (11) and using the same sort of tricks
used to solve (5) we find that (12) is satisfied if

K̇j + Pjλj(t)− ωj(t)Kj = 0, with Kj(t0) = 0 (13)

q̇j − ωj(t)qj = 0, with qj(t0) = −αj(t0)Ãj(t0). (14)

To bring the pieces together define the general solution Mj(t) as the solution to equation (13) but with the boundary

condition Mj(0) = 0. Also define the phases Φj(t) so that ωj(t) = Φ̇j(t). With these definitions Km(t, t0) =

Mm(t)−Mm(t0) exp[Φm(t)− Φm(t0)] and qj(t, t0) = −αj(t0)Ãj(t0) exp[Φj(t)− Φj(t0)]. This yields

g(u, t) =

3
∑

j=1

t
∫

0

dt0qj(t, t0)uj exp

(

i

3
∑

m=1

umKm(t, t0)

)

(15)
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To close the equations we note that the only unknown in Ãj(t) is

n̂P(t) =

∫

d3u
∂f0

∂H
(u, t)g(u, t) (16)

= −
3
∑

j=1

t
∫

0

dt0αj(t0)Ãj(t0) exp (Φj(t)− Φj(t0))

∫

d3uf ′

0

(

3
∑

m=1

αm(t)u2

m/2

)

uj exp

(

i

3
∑

k=1

ukKk(t, t0)

)

, (17)

= −
3
∑

j=1

t
∫

0

dt0Ãj(t0)Gj(t, t0), (18)

=

t
∫

0

dt0

[

q2

m
n̂P(t0) +DI(t0)

]

3
∑

j=1













4πiPjλj(t0)
3
∑

m=1

λ2

m(t0)P
2

m

Gj(t, t0)













(19)

where

Gj(t, t0) = αj(t0) exp (Φj(t)− Φj(t0))

∫

d3uf ′

0

(

3
∑

m=1

αm(t)u2

m/2

)

uj exp

(

i

3
∑

k=1

ukKk(t, t0)

)

, (20)

= − iαj(t0)Kj(t, t0)

αj(t)
exp (Φj(t)− Φj(t0))

∫

d3uf0

(

3
∑

m=1

αm(t)u2

m/2

)

exp

(

i

3
∑

k=1

ukKk(t, t0)

)

. (21)

and

DI(t) =
qQ

(2π)3m
λ1(t)λ2(t)λ3(t) exp

(

−i
∑

m

Pmλm(t)(x0m + v0mt)

)

. (22)

We now have a Volterra equation of the second kind for n̂P. While exact solutions look hopeless a numerical solution
should be straightforward. We note that changing the integration variable in equation (21) to zi =

√
αiui turns it

into the Fourier transform of a spherically symmetric function for which a wide range of exact solutions are available.

CONNECTION TO PREVIOUS WORK

If we set ωi = 0 then these results should reduce to those in [4]. To show this we set

di(t) =
Z

(2π)3
λ1(t)λ2(t)λ3(t) exp

(

−i
∑

m

Pmλm(t)(x0m + v0mt)

)

,

g(K(t, t0)) =
1

n0

∫

d3uf0

(

3
∑

m=1

αm(t)u2

m/2

)

exp

(

i

3
∑

k=1

ukKk(t, t0)

)

,

R(t, t0) =
1

3
∑

m=1

λ2

m(t0)P
2

m

3
∑

j=1

Pjλj(t0)αj(t0)Kj(t, t0)

αj(t)
exp (Φj(t)− Φj(t0)) ,

where Z is the atomic number of the ion. Now we have

n̂P(t) =
4πq2n0

m

t
∫

0

dt0 [n̂P(t0)− di(t0)]R(t, t0)g(K(t, t0)). (23)



4

When ωi = 0, R(t, t0) = t0 − t, λi = 1, and K(t, t0) = (t0 − t)P. Make these substitutions, account for a difference in
Fourier transform conventions, and include the fact that there is a constant velocity offset between reference frames.
On finds that equation (23) here is equivalent to equation (8) in [4].
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