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Preservation of the distribution of beam particles

with respect to longitudinal oscillation amplitude

in a 3 to 1 bunch merge

C.J. Gardner

September 3, 2019

In the work presented here we show in detail how the 3 to 1 bunch merge
can be set up so that it preserves the distribution of beam particles with
respect to longitudinal oscillation amplitude. This is an elaboration based
on the work presented in [1]. The desired merge is achieved by slowly
reducing the area inside the three-lobed separatrix that contains the beam
while keeping the areas of the three lobes equal to one another. A sequence
of RF voltages that does the job is found by employing a numerical
integration routine and a search algorithm. The integration routine
calculates the areas of the three lobes for given voltages. This is used by
the search algorithm to find voltages that give three lobes of equal area.
The resulting voltages are listed in Section 12 in order of decreasing lobe
area. These may be multiplied by a common scaling factor to make the
scheme work for any given longitudinal emittance in any given machine.
The analytic basis of the scheme is presented in Sections 2 through 13.
(These sections may be treated as appendices.) Demonstration of the
merge is done by simulation. The results are shown in Figures 1 through
39 and are discussed in Section 1.

References [1] through [10] and those cited therein provide a history of
bunch merging (and splitting) relevant to the present work. Refs. [1]
and [2] record the early work done at CERN. Refs. [3] through [10] record
the setup and study of the 2 to 1 and 3 to 1 merges used in Booster and
AGS. In particular, Refs. [9] and [10] record the recent work of K. Zeno
who proposed and developed the 3 to 1 bunch merge in Booster. It is this
merge that is studied in the present work.
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1 Simulation setup and results

The simulation is carried out following the equations and method
presented in [6]. The relevant machine parameters are the radius

R = 201.780/(2π) m (1)

and transition gamma
γt = 4.832. (2)

The simulation is done with Au31+ ions that have revolution frequency

f = 400.000 KHz (3)

at the nominal radius. This gives

γ = 1.0383386216559 (4)

and

η =
1

γ2t
− 1

γ2
= −0.884687414860. (5)

The ion mass-energy equivalent is

mc2 = 183.457368352 GeV. (6)

In practice the merge done in Booster is a 6 to 1 merge. It is carried out
by doing a 6 to 3 followed by a 3 to 1 merge. This is also done in the
simulation where the 6 to 3 merge provides the three bunches to be used in
the 3 to 1 merge.

The RF voltage program used in the simulation is shown in Figure 1.
The tabulated and plotted voltages come from Section 12. The six initial
bunches are shown in Figure 2. Here each particle in each bunch is
assigned a color according to its longitudinal oscillation amplitude. This
assignment stays with the particle throughout the simulation. The total
longitudinal emittance of the six bunches to be merged is 0.10 eV-s per
nucleon. The horizontal axis gives the particle phase in degrees.

Figures 2 through 4 show the 6 to 3 merge. They show clearly the
preservation of particle distribution with respect to longitudinal oscillation
amplitude. Although not shown explicitly, there are inner two-lobed
separatrices centered on unstable fixed points at −120, 0, and 120 degrees.
These all have the same area, and this guarantees that as the lobe area is
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reduced, the distribution of particles (with respect to longitudinal
oscillation amplitude) will be preserved if the merge proceeds sufficiently
slowly.

Figures 4 through 14 show the essential 3 to 1 merge. They show
explicitly the progressive shrinking of the area enclosed by the three-lobed
separtrix while keeping the area of each outer lobe equal to that of the
central lobe. This maintains the distribution of particles with respect to
longitudinal oscillation amplitude as shown. The time required is
480− 160 = 320 ms, which is much longer than the time available in
practice (some tens of ms).

In Figures 14 through 16 the harmonic 3 and 2 voltages are slowly
reduced to zero while the harmonic 1 voltage is held constant. The result
is the final merged bunch sitting in a harmonic 1 bucket. Figure 17 shows
a black curve that is matched to the bucket and encloses the merged
bunch. Its area is 1.017 times that of the initial six bunches, which shows
that there is very little growth of the gross emittance.

Figure 18 shows the evolution of the three-lobed separatrices during the 3
to 1 merge. Figures 19 through 22 show the corresponding evolution of
the separatrix fixed points, enclosed area, and potential wells.

In Figures 23 through 37 the total 6 to 1 merge time has been reduced
by a factor of 20 to just 36 ms. This is much closer to what is done in
practice. The figures show vividly the consequences of merging too quickly.
There is significant filamentation and mixing of the longitudinal oscillation
amplitude layers. As layers with differing particle densities are mixed, the
distribution develops lumps.

In Figures 35 through 37 the harmonic 3 and 2 voltages are (as before)
reduced to zero while the harmonic 1 voltage is held constant. The result
is the final merged bunch sitting in a harmonic 1 bucket. Figure 38 shows
a black curve that is matched to the bucket and encloses the merged
bunch. Its area is 1.361 times that of the initial six bunches. This is to be
compared with Figure 39 which is a copy of Figure 17 and shows the
bunch resulting from the much longer 720 ms merge. This again illustrates
the consequences of merging too quickly.
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Figure 1: Voltage program for RF harmonics 6, 3, 2, 1.
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Figure 2: (V6, V3) = (2.50, 0) kV. Time = 0 ms.
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Figure 3: (V6, V3) = (1.25, 0.8335) kV. Time = 80 ms.
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Figure 4: (V6, V3) = (0, 1.25) kV. Time = 160 ms.
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Figure 5: (V3,V2,V1) = (1.25, 0.695, 0.3001) kV. Time = 200 ms.
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Figure 6: (V3,V2,V1) = (1.25, 1.25, 0.724807) kV. Time = 240 ms.
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Figure 7: (V3,V2,V1) = (1.03455, 1.25, 0.799380) kV. Time = 280 ms.

10



Figure 8: (V3,V2,V1) = (0.873952, 1.25, 0.873952) kV. Time = 320 ms.
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Figure 9: (V3,V2,V1) = (0.742964, 1.25, 0.953600) kV. Time = 360 ms.
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Figure 10: (V3,V2,V1) = (0.611976, 1.25, 1.06050) kV. Time = 400 ms.
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Figure 11: (V3,V2,V1) = (0.546482, 1.25, 1.12962) kV. Time = 420 ms.
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Figure 12: (V3,V2,V1) = (0.480988, 1.25, 1.21420) kV. Time = 440 ms.
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Figure 13: (V3,V2,V1) = (0.415494, 1.25, 1.32080) kV. Time = 460 ms.
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Figure 14: (V3,V2,V1) = (0.35, 1.25, 1.46045) kV. Time = 480 ms.
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Figure 15: (V3,V2,V1) = (0, 0.730225, 1.46045) kV. Time = 600 ms.
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Figure 16: (V3,V2,V1) = (0, 0, 1.46045) kV. Time = 720 ms.
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Figure 17: Final merged bunch at 720 ms. The inner black curve is matched
to the RF bucket and encloses an area 1.017 times the area of the initial six
bunches. This shows very little growth of the gross emittance.
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Figure 18: Evolution of separatrix lobes from 200 to 480 ms.
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Figure 19: Evolution of stable and unstable fixed point phases.
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Figure 20: Table of stable and unstable fixed point phases, and area enclosed
by separatrix lobes. Here the unit of area is the area enclosed by the three
RF buckets at time 160 ms.
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Figure 21: Evolution of separatrix potentials from 200 to 480 ms.
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Figure 22: Here the additional curves are the potentials at 600 and 720 ms.
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Figure 23: (V6, V3) = (2.50, 0) kV. Time = 0 ms.
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Figure 24: (V6, V3) = (1.25, 0.8335) kV. Time = 4 ms.
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Figure 25: (V6, V3) = (0, 1.25) kV. Time = 8 ms.
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Figure 26: (V3,V2,V1) = (1.25, 0.695, 0.3001) kV. Time = 10 ms.
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Figure 27: (V3,V2,V1) = (1.25, 1.25, 0.724807) kV. Time = 12 ms.
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Figure 28: (V3,V2,V1) = (1.03455, 1.25, 0.799380) kV. Time = 14 ms.
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Figure 29: (V3,V2,V1) = (0.873952, 1.25, 0.873952) kV. Time = 16 ms.
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Figure 30: (V3,V2,V1) = (0.742964, 1.25, 0.953600) kV. Time = 18 ms.
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Figure 31: (V3,V2,V1) = (0.611976, 1.25, 1.06050) kV. Time = 20 ms.
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Figure 32: (V3,V2,V1) = (0.546482, 1.25, 1.12962) kV. Time = 21 ms.
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Figure 33: (V3,V2,V1) = (0.480988, 1.25, 1.21420) kV. Time = 22 ms.
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Figure 34: (V3,V2,V1) = (0.415494, 1.25, 1.32080) kV. Time = 23 ms.
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Figure 35: (V3,V2,V1) = (0.35, 1.25, 1.46045) kV. Time = 24 ms.
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Figure 36: (V3,V2,V1) = (0, 0.730225, 1.46045) kV. Time = 30 ms.
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Figure 37: (V3,V2,V1) = (0, 0, 1.46045) kV. Time = 36 ms.
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Figure 38: Final merged bunch at 36 ms. The inner black curve is matched
to the RF bucket and encloses an area 1.361 times the area of the initial six
bunches. There is significant filamentation and mixing of amplitude layers.
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Figure 39: Final merged bunch at 720 ms. The inner black curve is matched
to the RF bucket and encloses an area 1.017 times the area of the initial six
bunches. There is no filamentation or mixing of amplitude layers.
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2 Triple-harmonic RF bucket

A triple-harmonic RF bucket is one in which the three harmonic numbers
h, 2h, and 3h are active. For the case in which three bunches are to be
merged into one we have, as shown in [6], the “force” function

F (φ) = A1 sinφ−A2 sin 2φ+A3 sin 3φ (7)

and associated “potential”

U(φ) = A1 cosφ− 1

2
A2 cos 2φ+

1

3
A3 cos 3φ (8)

where the amplitudes A1, A2, A3 are either zero or positive.

One starts with amplitudes

A1 = A2 = 0, A3 > 0 (9)

and then A1 and A2 are raised from zero. Eventually A3 and A2 are
brought down to zero, leaving A1 as the only nonzero amplitude. Ideally
this is done adiabatically. One ends up with merged bunches sitting in
harmonic h buckets.

According to the notation and conventions used in [6] we have

A1 =
eQV1
2πh

, A2 =
eQV2
2πh

, A3 =
eQV3
2πh

(10)

where V1, V2, V3 are the harmonic h, 2h, 3h voltages respectively.

It is convenient to define

Q =
A2

A1
, R =

A3

A1
(11)

and work with

F =
F (φ)

A1
, U =

U(φ)

A1
. (12)

We then have
F = sinφ−Q sin 2φ+R sin 3φ (13)

U = cosφ− Q

2
cos 2φ+

R

3
cos 3φ (14)

U ′ = − sinφ+Q sin 2φ−R sin 3φ (15)

U ′′ = − cosφ+ 2Q cos 2φ− 3R cos 3φ (16)
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U ′′′ = sinφ− 4Q sin 2φ+ 9R sin 3φ (17)

U ′′′′ = cosφ− 8Q cos 2φ+ 27R cos 3φ (18)

U ′′′′′ = − sinφ+ 16Q sin 2φ− 81R sin 3φ (19)

U ′′′′′′ = − cosφ+ 32Q cos 2φ− 243R cos 3φ (20)

and
F = −U ′ (21)

where the primes denote differentiation with respect to φ.

Introducing the notation

C = cosφ, S = sinφ (22)

we have the identities
sin 2φ = 2CS (23)

sin 3φ = 3S − 4S3 (24)

and
cos 2φ = 2C2 − 1 (25)

cos 3φ = 4C3 − 3C (26)

which give

U = C − Q

2

(
2C2 − 1

)
+
R

3

(
4C3 − 3C

)
(27)

U ′ = −
{

1− 2QC +R
(
4C2 − 1

)}
S (28)

U ′′ = −C + 2Q
(
2C2 − 1

)
− 3R

(
4C3 − 3C

)
. (29)

For phases with subscript “a” we write

Ca = cosφa, Sa = sinφa (30)

and

Ua = Ca −
Q

2

(
2C2

a − 1
)

+
R

3

(
4C3

a − 3Ca
)

(31)

U ′a = −
{

1− 2QCa +R
(
4C2

a − 1
)}

Sa (32)

U ′′a = −Ca + 2Q
(
2C2

a − 1
)
− 3R

(
4C3

a − 3Ca
)
. (33)
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3 Fixed point phases

Fixed point phases φf are those for which

U ′f = 0. (34)

We work exclusively below transition as that is where the 3 to 1 merge is
done in both Booster and AGS. Below transition the fixed point phase is
stable if

U ′′f < 0 (35)

and unstable if
U ′′f > 0. (36)

We use subscripts “s” and “u” for fixed points that are stable and unstable
respectively.

Note that the function −U(φ) has a local minimum at a stable fixed point
and a local maximum at an unstable fixed point. It is for this reason that it
is helpful to think in terms of the “potential well” −U(φ) rather than U(φ).

4 Unstable fixed point phases φu = ±π

For phases φ = ±π, equations (15) through (20) give

U ′ = 0, U ′′′ = 0, U ′′′′′ = 0 (37)

U ′′ = 1 + 2Q+ 3R (38)

U ′′′′ = −1− 8Q− 27R (39)

U ′′′′′′ = 1 + 32Q+ 243R. (40)

Here
Q ≥ 0, R ≥ 0 (41)

and therefore
U ′′ > 0. (42)

We therefore have unstable fixed point phases

φu = ±π (43)

The function −U(φ) reaches a local maximum at these phases.
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5 Fixed point phase φf = 0

For phase φ = 0, equations (15) through (20) give

U ′ = 0, U ′′′ = 0, U ′′′′′ = 0 (44)

U ′′ = −1 + 2Q− 3R (45)

U ′′′′ = 1− 8Q+ 27R (46)

U ′′′′′′ = −1 + 32Q− 243R. (47)

We therefore have fixed point phase

φf = 0 (48)

which is stable if
2Q− 1− 3R < 0 (49)

and unstable if
2Q− 1− 3R > 0. (50)

The case
2Q− 1− 3R = 0 (51)

will be considered in Section 13.

6 Separatrix and area enclosed

Let us assume that we have stable fixed point phase φ = 0, unstable fixed
point phases φ = ±π, and one stable and one unstable fixed point phase
between 0 and π such that

0 < φu < φs < π. (52)

We assume that there is an additional phase φe that satisfies the equation

U(φe) = U(φu) (53)

with
0 < φu < φs < φe < π. (54)

Because of the identities

U(−φ) = U(φ), U ′(−φ) = −U ′(φ), U ′′(−φ) = U ′′(φ) (55)
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we also have unstable and stable fixed point phases −φu and −φs, and the
phase −φe satisfies

U(−φe) = U(−φu). (56)

The separatrix of interest is the curve W (φ) given by [6]

W 2(φ) =
2A1

a
(Uu − U) (57)

where

a =

(
h2ω2η

β2E

)
=

(
h2c2η

R2E

)
, A1 =

eQV1
2πh

. (58)

This is a closed curve that consists of a central and two outer lobes. The
central lobe extends from −φu to φu and the outer lobes extend from −φe
to −φu and from φu to φe. Because of the symmetry U(−φ) = U(φ), the
areas enclosed by the two outer lobes are equal.

The area of the central lobe is

Ac = 2

(
2A1

|a|

)1/2 ∫ φu

−φu
(U − Uu)1/2 dφ (59)

and that of each outer lobe is

Ae = 2

(
2A1

|a|

)1/2 ∫ φe

φu
(U − Uu)1/2 dφ. (60)

Here it is convenient to express 2A1/|a| in terms of

B1 = 8
R

hc

{
2eQV1E

πh|η|

}1/2

(61)

which is the area of the harmonic h bucket produced by V1. This gives

2

(
2A1

|a|

)1/2

=

√
2

8
B1. (62)

We can then write

Ac =

√
2

8
B1Bc, Ae =

√
2

8
B1Be (63)

where

Bc =

∫ φu

−φu
(U − Uu)1/2 dφ (64)
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and

Be =

∫ φe

φu
(U − Uu)1/2 dφ. (65)

If parameters Q and R are adjusted so that

Be = Bc (66)

then the area of each outer lobe of the separatrix will equal the area of the
central lobe. In order to have a 3 to 1 merge that preserves the distribution
of particles with respect to longitudinal oscillation amplitude, we need to
maintain the equality (66) while reducing the total area enclosed by the
separatrix as demonstrated in [1]. This must be done adiabatically.

If we have particular values of Q and R for which (66) is satisfied, then it
will be satisfied for any voltages V1, V2, V3 that satisfiy

V2
V1

= Q,
V3
V1

= R. (67)

7 Conditions that give lobes of equal area

The separatrix described in the previous section requires fixed point phases
φu and φs such that

0 < φu < φs < π. (68)

According to (32) these must satisfy

1− 2QCf +R
(
4C2

f − 1
)

= 0 (69)

which has solutions

Cf =
Q

4R

{
1±
√

1 +D
}

(70)

where

D =
4R

Q2
(R− 1). (71)

This gives two distinct and real fixed point phases provided

1 +D > 0 (72)

and
|Cf | < 1. (73)
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With the help of the identity

(2R− 1)2 = 4R2 − 4R+ 1 (74)

we have

1 +D =
1

Q2

{
Q2 + (2R− 1)2 − 1

}
(75)

and the condition (72) becomes

Q2 + (2R− 1)2 > 1. (76)

In Sections 8, 9, 10, 11 we consider the special cases R = Q, R = 1,
R = 1/2, and Q = 1 respectively. It is shown that the values of Q and R
for which (66) is satisfied are

R = Q = 1.724 5964 8340 (77)

R = 1, Q = 1.430 2845 6621 (78)

R = 1/2, Q = 1.119 7590 0273 (79)

Q = 1, R = 0.3657 2039 31952 (80)

for the four cases. The corresponding phases φu, φs, φe are

φu = 48.75 ◦, φs = 99.17 ◦, φe = 124.65 ◦ (81)

φu = 44.345 ◦, φs = 90 ◦, φe = 110.95 ◦ (82)

φu = 35.73 ◦, φs = 72.06 ◦, φe = 86.79 ◦ (83)

φu = 29.87 ◦, φs = 60 ◦, φe = 71.55 ◦ (84)

respectively.

8 Lobes of equal area obtained with R = Q

For the case in which R = Q we have

Cf =
1

4

{
1±
√

1 +D
}

(85)

1 +D = 5− 4

Q
(86)
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U ′′f = −Cf + 2Q
(
2C2

f − 1
)
− 3Q

(
4C3

f − 3Cf
)

(87)

and
U ′′f = −Cf −Q

{
12C3

f − 4C2
f − 9Cf + 2

}
. (88)

Here Q > 0 and we require
1 +D > 0. (89)

This gives

0 < 5− 4

Q
< 5 (90)

0 <

√
5− 4

Q
<
√

5 (91)

and

1 ≤ 1 +

√
5− 4

Q
≤ 1 +

√
5. (92)

For the upper sign in (85) we therefore have

1

4
≤ Cf ≤

1 +
√

5

4
(93)

which gives unstable fixed point phases

75.52 ◦ ≥ φu ≥ 36 ◦. (94)

From (91) we also have

−
√

5 ≤ −
√

5− 4

Q
≤ 0 (95)

which gives

1−
√

5 ≤ 1−
√

5− 4

Q
≤ 1. (96)

For the lower sign in (85) we therefore have

1−
√

5

4
≤ Cf ≤

1

4
(97)

which gives stable fixed point phases

108 ◦ ≥ φs ≥ 75.52 ◦. (98)
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By numerical integration of (64) and (65) one finds that (66) is satisfied if

R = Q = 1.724 5964 8340. (99)

The corresponding phases φu, φs, φe are

φu = 48.75 ◦, φs = 99.17 ◦, φe = 124.65 ◦. (100)

9 Lobes of equal area obtained with R = 1

For the case in which
R = 1, 0 < Q < 2 (101)

equations (71), (70), and (33) become

D = 0 (102)

Cf =
Q

4
(1± 1) (103)

and
U ′′f = −Cf + 2Q

(
2C2

f − 1
)
− 3

(
4C3

f − 3Cf
)
. (104)

Taking the minus sign in (103) gives

Cf = 0, U ′′f = −2Q < 0 (105)

and stable fixed point phases

φs = ± 90 ◦. (106)

Taking the plus sign in (103) gives

Cf =
Q

2
, C2

f =
Q2

4
, C3

f =
Q3

8
(107)

U ′′f = −Q
2

+Q3 − 2Q− 3Q3

2
+

9Q

2
(108)

U ′′f = 2Q− Q3

2
=
Q

2

(
4−Q2

)
(109)

U ′′f = −Q
2

(Q− 2)(Q+ 2) > 0 (110)
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and unstable fixed point phases

φu = ± arccos(Q/2). (111)

By numerical integration of (64) and (65) one finds that (66) is satisfied if

Q = 1.430 2845 6621. (112)

The corresponding phases φu, φs, φe are

φu = 44.345 ◦, φs = 90 ◦, φe = 110.95 ◦. (113)

10 Lobes of equal area obtained with R = 1/2

For the case in which

R =
1

2
, 1 < Q <

5

4
(114)

we have

Cf =
Q

2

{
1±
√

1 +D
}

(115)

1 +D = 1− 1

Q2
=

1

Q2
(Q2 − 1) (116)

and

Cf =
1

2

{
Q±

√
Q2 − 1

}
(117)

where
1 < Q+

√
Q2 − 1 < 2 (118)

and

Q− 3

4
< Q−

√
Q2 − 1 < Q. (119)

By numerical integration of (64) and (65) one finds that (66) is satisfied if

Q = 1.119 7590 0273. (120)

The corresponding phases φu, φs, φe are

φu = 35.73 ◦, φs = 72.06 ◦, φe = 86.79 ◦. (121)
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11 Lobes of equal area obtained with Q = 1

For the case in which

Q = 1,
1

3
< R <

1

2
(122)

equations (71), (70), and (33) give

D = 4R(R− 1) < 0 (123)

1 +D = (2R− 1)2 < 1 (124)

Cf =
1

4R
{1± (2R− 1)} (125)

and
U ′′f = −Cf + 2

(
2C2

f − 1
)
− 3R

(
4C3

f − 3Cf
)
. (126)

Taking the plus sign in (125) gives

Cf =
1

2
, U ′′f = 3

(
R− 1

2

)
< 0 (127)

and stable fixed point phase
φs = 60 ◦. (128)

Taking the minus sign in (125) gives

Cf =
1−R

2R
< 1 (129)

and unstable fixed point phase

φu = arccos

(
1−R

2R

)
. (130)

By numerical integration of (64) and (65) one finds that (66) is satisfied if

R = 0.3657 2039 31952. (131)

The corresponding phases φu, φs, φe are

φu = 29.87 ◦, φs = 60 ◦, φe = 71.55 ◦. (132)
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12 Assorted values of parameters (R,Q) that give
lobes of equal area

Here we give various voltages (V3, V2, V1) and associated parameters

R =
V3
V1
, Q =

V2
V1

(133)

for which (66) is satisfied. These have been obtained by numerical
integration of (64) and (65). The associated phases (φu, φs, φe) are given in
degrees. The single-lobe areas are given in units of the area of the single
harmonic 3h bucket obtained with

(V3, V2, V1) = (1.25, 0, 0). (134)

In order of decreasing lobe area we have

(V3, V2, V1) = (1.25, 0, 0) (135)

(φu, φs, φe) = (60, 120, 180) (136)

Area = 1.00000 (137)

(V3, V2, V1) = (1.25, 0.695, 0.3001) (138)

(R,Q) = (4.16527824059, 2.31589470177) (139)

(φu, φs, φe) = (53.3808, 108.5719, 140.8947) (140)

Area = 0.68125 (141)

(V3, V2, V1) = (1.25, 1.25, 0.72480723) (142)

(R,Q) = (1.72459648340, 1.72459648340) (143)

(φu, φs, φe) = (48.7524, 99.1671, 124.6547) (144)

Area = 0.49557 (145)

54



(V3, V2, V1) = (1.03455, 1.25, 0.799380) (146)

(R,Q) = (1.29419049764, 1.56371187670) (147)

(φu, φs, φe) = (46.6176, 94.7459, 117.8746) (148)

Area = 0.384 (149)

(V3, V2, V1) = (0.87395196, 1.25, 0.87395196) (150)

(R,Q) = (1, 1.43028456621) (151)

(φu, φs, φe) = (44.3451, 90, 110.9511) (152)

Area = 0.29409 (153)

(V3, V2, V1) = (0.742964, 1.25, 0.9536) (154)

(R,Q) = (0.779114932886, 1.31082214765) (155)

(φu, φs, φe) = (41.7336, 84.5500, 103.3358) (156)

Area = 0.21679 (157)

(V3, V2, V1) = (0.611976, 1.25, 1.06050) (158)

(R,Q) = (0.577063649222, 1.17868929750) (159)

(φu, φs, φe) = (37.9007, 76.5731, 92.6497) (160)

Area = 0.13726 (161)

(V3, V2, V1) = (0.558155816095, 1.25, 1.11631163219) (162)

(R,Q) = (0.5, 1.11975900273) (163)

(φu, φs, φe) = (35.7276, 72.0639, 86.7878) (164)

Area = 0.10483 (165)
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(V3, V2, V1) = (0.546482, 1.25, 1.12962) (166)

(R,Q) = (0.483775074804, 1.10656681008) (167)

(φu, φs, φe) = (35.1885, 70.9484, 85.3541) (168)

Area = 0.09791 (169)

(V3, V2, V1) = (0.480988, 1.25, 1.21420) (170)

(R,Q) = (0.396135727228, 1.02948443420) (171)

(φu, φs, φe) = (31.5443, 63.4375, 75.8393) (172)

Area = 0.06047 (173)

(V3, V2, V1) = (0.457150491494, 1.25, 1.25) (174)

(R,Q) = (0.3657203931952, 1) (175)

(φu, φs, φe) = (29.8692, 60, 71.5536) (176)

Area = 0.04777 (177)

(V3, V2, V1) = (0.415494, 1.25, 1.32080) (178)

(R,Q) = (0.314577528770, 0.946396123561) (179)

(φu, φs, φe) = (26.2461, 52.6032, 62.4486) (180)

Area = 0.02758 (181)

(V3, V2, V1) = (0.35, 1.25, 1.46045) (182)

(R,Q) = (0.239652162005, 0.855900578589) (183)

(φu, φs, φe) = (17.0159, 33.9535, 39.9929) (184)

Area = 0.00461 (185)
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(V3, V2, V1) = (0.33, 1.25, 1.5124031) (186)

(R,Q) = (0.218195797139, 0.826499231587) (187)

(φu, φs, φe) = (11.9134, 23.7262, 27.8728) (188)

Area = 0.001087 (189)

(V3, V2, V1) = (0.3130, 1.25, 1.56100205945) (190)

(R,Q) = (0.200512227454, 0.800767681524) (191)

(φu, φs, φe) = (2.0582, 4.0924, 4.7965) (192)

Area = 0.9523× 10−6 (193)

and finally
(V3, V2, V1) = (0.3125, 1.25, 1.5625) (194)

(R,Q) = (1/5, 4/5) (195)

(φu, φs, φe) = (0, 0, 0) (196)

Area = 0. (197)

The sequence of R and Q values and corresponding voltages given above
can be used to produce a 3 to 1 merge that preserves the distribution of
particles with respect to longitudinal oscillation amplitude. This is
accomplished by adiabatically reducing the area enclosed by the
three-lobed separatrix while keeping the areas of the individual lobes equal
to one another. The voltages can be multiplied by a common scaling factor
to make the scheme work for any given longitudinal emittance in any given
machine.

13 The limit of zero lobe area

The data in the previous section show that the limit of zero lobe area is
reached when

(R,Q) = (1/5, 4/5). (198)

Putting these values into the equations

D =
4R

Q2
(R− 1) (199)
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Cf =
Q

4R

{
1±
√

1 +D
}

(200)

gives
D = −1, Cf = 1. (201)

This shows that for parameter values (R,Q) = (1/5, 4/5) there are no
fixed point phases φu and φs that satisfy

0 < φu < φs < π. (202)

If, however, R and Q are moved slightly away from these values, one can
obtain φu and φs that satisfy (202). This is shown by (191) and (192).

Further insight can be gained by returning to Section 5 and examining
the case for which

U ′′ = 2Q− 1− 3R = 0. (203)

Multiplying (203) by nine gives

27R = 18Q− 9, (204)

which inserted into (46) gives

U ′′′′ = 10Q− 8. (205)

If we now take
Q = 4/5 (206)

we have
U ′′′′ = 0 (207)

and (203) gives
R = 1/5. (208)

According to (44) through (47) we then have, at phase φ = 0,

U ′ = U ′′ = U ′′′ = U ′′′′ = U ′′′′′ = 0 (209)

and
U ′′′′′′ = −24. (210)

We therefore have stable fixed point phase φs = 0. This also can be seen
by substituting

Q = 4/5, R = 1/5 (211)
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into (28) which gives, for any phase φ,

−U ′ =
{

1− 8

5
C +

1

5

(
4C2 − 1

)}
S (212)

where
C = cosφ, S = sinφ. (213)

This reduces to

−U ′ = 4

5
(C − 1)2 S (214)

which shows that for
−π < φ < 0 (215)

the function −U is monotonically decreasing, while for

0 < φ < π (216)

it is monotonically increasing. The function −U(φ) therefore has a broad
minimum at φ = 0 with no fixed point phases between 0 and π. (We note
in passing that this is just what one would want to have in order to obtain
a flat bunch sitting in a triple harmonic bucket.) If the special conditions
that produce this broad minimum are slightly perturbed then one can
obtain two small phases φu and φs that satisfy (202).
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