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1 Introduction

Injection: 6 MeV Beam stop: 6 MeV
W Linac

This project develops a method of finding instru- R N S ey =
ment settings that minimize the power load on ac- }ggﬂ’." 23456 #:*;:;?@
celerating radio-frequency (RF) cavities in an en- & > o,
ergy recovery linac (ERL). A general symmetry the- 5: "*,‘
ory, which has been developed in detail [1] and was £ i
previously tested in simple ERL models, will be “:,g Return Loop ;
used to optimize more detailed models of the Cor- "%,,,% 42,78, 114, 150, 114, 78, 42 MeV ““‘«“*
nell Brookhaven ERL Test Accelerator (CBETA). e o

CBETA specifications are detailed in Fig. 1.

Due tQ the high 0v§r1ap with previous work, this Figure 1: CBETA layout [2]. CBETA has 4 phys-
report briefly summarizes the relevant outcomes of ically distinct return loops and a linac that holds 6
F)lder ERL symmetry models; however, the reader evenly spaced RF cavities. A 6 MeV injected electron
15 egcouraged to consult [1] .for @ IOTe COMPIe 1,0,m accelerates to 150 MeV over 4 linac passes, and
hensive coverage of these topics. This report will the beam returns to 6 MeV after 4 more decelerat-

.focus primarily on extensions of sy.mmet?y mode%— ing passes. The 150 MeV beam is intended for use in
ing toward more complex systems, including multi- experiments

particle beams or CBETA-specific cavity tracking.

1.1 Optimization System

Consider a %—turn ERL with N cavities and M linac passes. Individual passes and cavities use indices m
and n, such that 1 <m < M and 1 < n < N. The m!* return loop is between the m!" and (m + 1) linac
passes.

In an ERL without shared return loops, the degrees of freedom include: (M —1) independent loop lengths,
N cavity phases, and N cavity voltages. The objectives include minimization of N cavity loads, where load
is defined as the net beam energy gain within a single cavity over the full ERL run. In addition, (M — 1)
beam energies during return loops must meet design targets to ensure proper beam control.

There are a total of (2N + M — 1) degrees of freedom, which can be varied to satisfy (N + M — 1)
objectives. In CBETA, there are only % = 4 shared return loops; this gives 16 degrees of freedom and 13
objectives.

ERL symmetry can reduce the size of the optimization system. Symmetry exists when the decelerating
beam encounters an exactly reversed sequence of energy steps and electric field profiles as it initially experi-
enced during acceleration. To create symmetry, we make the phase and voltage settings of the (N —n +1)t"
cavity dependent on those of the n'” cavity. Degrees of freedom are then: % independent loop lengths, %
phases, and % voltages.

A symmetric ERL has only [§] independent loads, where the Gauss bracket denotes the floor of a number.
The m!" and (M —m)'" returning beams have identical energy: only % loop energy objectives are required.
If return loops with index m < % can be calibrated post-optimization to match the beam energy, then these
loops need not be considered as target energy objectives. Then, the system needs only considers the design
target of the highest energy beam, which must be met if the beam is to be used in experiments.

If the objectives only consider the maximum beam energy, the symmetric ERL has a total of N + %
degrees of freedom, which must satisfy [%] + 1 objectives. If an optimization system with equal numbers
of variables and constraints is desired, one can set all % voltages and the first (% — 1) loop lengths to
reasonable constant values. In CBETA, symmetry yields 10 possible degrees of freedom and 4 objectives.

1.2 Symmetry Theory

Our goal is to create a decelerating sequence of beam energy and electric field encounters that is identical,
but reversed in order, to the accelerating sequence. In an ERL, symmetry in the cavity fields can exist if the
geometry of the n cavity is the mirror image of that of the (N —n 4 1)** one, with respect to the center
of the linac.



Before examining a full ERL, consider two cavities (A and B) arranged end-to-end, in a mirror symmetric
way about a central point. In the later cavity, B, the beam should decelerate to its original energy over an
identical transit time as the acceleration in A took: T = T4. The RF phase of cavity B when the particle
enters, ¢in g, must have a specific relation to the cavity A input phase. To find this relation, consider the
electric field within A,

Ea(s,t) = Eap(s)sin (w(t —tina) + qSin,A), (1)

where w is the RF frequency, the particle enters cavity A at time ¢, o, and ¢in, 4 is the input phase that can
be used as a degree of freedom. The spatial RF field dependence is given by £40(s), and by convention it is
chosen to start with a positive value in the first cell of a multi-cell cavity. For cavities with an odd number
of cells, the spatial dependence is a symmetric function about the center; for an even number of cells, it is
an anti-symmetric function. This means that Ego(L — s) = £€40(s). The sign (+) is for odd and (—) is for
even numbers of cells per cavity.

For symmetry in A and B, the electric field at distance s from the start of A must be opposite the field
at distance s from the end of B. Suppose each cavity has length L, and the linac has total length L > 2L,

E(Ls —s) =—£&(s) (2a)
Ep(L —s,t(Ls — s)) = —Eal(s,t(s)) (2b)
Ep(L —s,t(Ls — 9)) (2¢)

=4 5AQ(S) sin(w(TA — t(S) + tin,A) + ¢in,B)
= — E40(8) sin(w(t(s) — tin,A) + din,A)-

Solving for the unknown cavity B input phase, ¢in 5, we find conditions for cavities with an odd or even
number of cells,

(bin,B = _¢in,A —wly = _¢out,A [Odd}
(rbin,B =T = ¢in,A —wly =m— Qbout,A- [even}

3)

If ¢in,p fulfills this phase condition, for any arbitrary choice of ¢in 4, then the deceleration in B will exactly
reverse the acceleration from A. We now extend the 2-cavity argument to find phase conditions for a full
multi-turn ERL.

In an N-cavity, M-pass ERL, the beam encounters each of N cavities during a single pass, for M total
encounters per cavity. The input phase, ¢i,, is not as useful a measure as in the 2-cavity case. Instead, let
¢o,n be the RF phase of cavity n at beam injection time ¢t = 0,

(bO,n = ¢)in,mn - Wtin,mn
(4)

= (bout,mn - Wtout,mru

where the mn subscript indicates the m!”* pass of cavity n. In the 2-cavity example, A and B represented
a symmetric acceleration-deceleration pair. In the full ERL, the m!" encounter of cavity n is the mirror
symmetric pair of the m’ = (M —m+ 1) encounter of cavity n’ = (N —n+1), where the primed encounter
occurs first, i.e. m > m’. If N is odd, then the central cavity will act as its own pair, but the phase condition
will follow the same form as the other pairs. Our goal here is to find the initial phase of cavity n in terms
of the known ¢ . Inserting these pair designations into the phase conditions from Eq. (3),

$o,n = —P0,n — Whiotal [odd]

¢0,n =T = ¢O,n’ — wWhiotal [even]

(5)

where the beam travels through the full ERL, from injector to beam stop, over a total time interval, tiota =
Win,mn + Wlout,m’'n’. This is more generally stated as

(6)

¢O,n =a— QSO,n’ — wtotal,

where a indicates some constant offset based on the time and spatial dependence of the system, as seen in Ta-
ble 1.



a sin(wAt)  cos(wAt)

For t14tq; to accurately describe the total transit time over

s Symmetric 0 0
the ERL, the time of flight of the return loop between acceler-

s Anti-symmetric s 0

ation and deceleration must be set,

Table 1: Phase conditions: the value of a in
tloop, . = trotal = 2oy M, (7) Eq. (6) for ideal symmetric/anti-symmetric
spatial (s) dependence, and for ideal sin/cos
where £, u  is the time from beam injection to the end of time (¢) dependence when when ¢, = 0. If

the last accelerating pass. Time tyosq then becomes a degree the spatial field is neither symmetric (odd

of freedom. cells) nor antisymmetric (even cells), or if
The Eq. (6) and Eq. (7) conditions are sufficient to guar- the time dependence is neither sin(wAt) nor

antee that every stage of beam acceleration is matched by an cos(wAt) when ¢;, = 0, then a may not be

equivalent deceleration. At beam stop, the beam will have the as easily determined.

same energy as at injection. Symmetry guarantees that each

pair of cavities will have a net load of zero; however, an individual cavity could still have nonzero load if its

pair has an equal, opposite load. Optimization is still needed to minimize the power load on each individual

cavity.

1.3 Relevant Previous Models: TL, UR, FT

To test ERL symmetry optimization, models of CBETA beam flight were constructed in Mathematica.
Models consider a transversely on-axis particle that encounters only drift pipes or cavities. The beam
traverses a cavity in time 75, , where its energy changes by some AFE,,,,. If a modeled cavity is shorter than
the physical length in CBETA, the model element is centered within the space, and drifts on either side are
extended to compensate for the missing length. CBETA cavities have an elliptical geometry with 7 cells [2].

In the thin lens (TL) model, cavities have zero length and deliver a delta-function acceleration. If voltage
is designated V' and particle charge ¢, the cavity models time and energy as,

AETL = qV COS(¢iI,), TTL =0. (8)

The ultra-relativistic (UR) model treats the beam as having speed v = ¢ within a 7-cell cavity of length
corresponding to 7 stacked pillboxes,

L
AEyr = qV cos(¢in), Tur = —= (9)

The finite time-tracked (FT) model accounts for non-ultrarelativistic particle speeds by starting with an
averaged cavity transit time, Trr. From Tgr, we find velocity v, which is used to calculate the total change
in momentum Ppr and energy change Egr, in a set of coupled equations. The FT model approximates the
effect of a single accelerating pillbox cavity,

Top = £ (1 41 ) APpp = %Ein[cos(wTFT ¥ bin) — cos(éim)]- (10)

2 Vin Vout

Models with CBETA specifications and these three cavity types have been previously constructed with a
single, transversely on-axis particle. These were optimized using Newton’s method to reduce cavity load and
achieve the CBETA peak energy target of 150 MeV. The optimized solutions yield objective output values
within 100 peV precision of targets [1].

2 Longitudinal Beam Tilting

Since the single-particle ERL has been successfully optimized in the simple TL, UR, and FT models, we
next consider a beam where particles differ only in longitudinal position and energy. If particles are offset
from the optimized path, then the beam final energy may differ from that of the optimized case. This may
result in particle containment problems if the energy spread of the beam is too large at beam stop.



Using relative phase space coordinates, (2, pz,y, Py, 2,0), the optimized single-particle path is defined at
coordinates (0,0,0,0,0,0), and all other particles in this beam occur at some (0,0,0,0, z,0). For brevity,
particle coordinates will be written as (z,d), where § = Ez_i}fzo is a normalized quantity. If a beam with a
Gaussian distribution of (z, ) particles is sent through an FT model ERL, the output distribution is visually
tilted from the input (Fig. 2, left). By controlling the distribution of input particles, the energy spread
at ERL input and output can be made equal (Fig. 2, middle), or the energy spread at beam stop can be

minimized for optimal collection of output particles (Fig. 2, right).
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Figure 2: Injected (4) and final (e) particle distributions of the FT model ERL in longitudinal (z,d) phase
space. Left: Gaussian input with standard deviations of ¢, = 1.1 mm, o5 = 5 - 10™* results in highly
tilted output. Middle: matrix-tilted input results in equal, opposite output tilt. Right: highly tilted input
results in minimized output d spread. Vertical and horizontal lines indicate one standard deviation of output
distribution z and §.

2.1 Symmetric Beam Tilt Derivation

The energy spread, og, of the beam at injection and beam stop can be made equal if the initial distribution
is formed with a particular tilt in longitudinal phase space. This tilt is found by comparing transfer matrices
of one offset particle over both forward and backward ERLs. The forward matrix M transforms injection
phase space coordinates to those at beam stop,

Zstop — Mll M12 Zinj 11
|:5st0p:| [Mm M22} [&m} ’ (11)
Similarly, the reverse matrix R models a particle that entered at beam stop, traveled backward through all
ERL paths, and exited at injection,
— Zinj Ri1 Riz| |—Zstop
= ) 12
[ Jinj } [321 Rzz] [ dstop ] (12)

By equating like terms in Eq. (11 and an inverted Eq. 12), we find M;; = Mo in the matrices. Since the
goal is to achieve identical initial and final energy spread, the M matrix must preserve the magnitude of the
0 component at some z. The transfer matrix can be written with a linear coordinate relation, § = Az, for
small initial offsets of the two general phase space coordinates,

BRI ] -



Resolving the matrix equation into two linear equations then yields the scale factor between z and 4§,

1— My, Moy

A= = — .
M3 1+ My,

(14)

If A is used as the slope of the tilted input beam, the ERL input and output distributions have mirrored
slopes and arrangements relative to the optimized particle path (Fig. 2, middle).

2.2 Model Construction
Beam effects are tested on the TL, UR, and FT models, which

have been modified slightly from their original state to report Symmetric UR FT
the results of particles offset from the optimized one. A beam Slope A 20.6714 1.7748
is generated with a Gaussian distribution of approximately re- Inj. Angle (°) -33.8772 | -60.6006
alistic proportions: standard deviations are ¢, = 1.1 mm and Pass 4 Angle (°) | -0.0042 -1.0045
05 =5-107%. In Fig. 2, the leftmost plot indicates the inputs Stop Angle (°) 41.9810 | 63.4172
and outputs of an untilted beam. 0B (keV) 53765 | 12.0839
To create a tilted beam (Fig. 2, middle), the ERL transfer o ;to'p (keV) 6.6398 | 13.5756
matrix is formed by injecting a single test particle with small Jé,’smp /05 in 1.2350 1.1234

z or § offset on the order of 10~7 m or 10~7, respectively, and
measuring the output. From Eq. (13), the matrix elements are, Table 2: Optimal beam tilt parameters for

a symmetric injector-stop energy spread,

[Mll M12] _ ﬁ(éim’ =0) g::jp (2inj = 0) . (15) found for a typical-sized CBETA beam (z =
Moy My, ztof’ (0inj = 0) Z::J.p (0inj = 0) 1.1 mm, § = 5-10~%) with matrices. “An-

gle” describes the counter-clockwise angle

The A parameter from Eq. (14) is the slope needed for sym-
metric tilt. In longitudinal phase space, a line with this slope
is generated and superimposed on all beam coordinates. Slight
non-linearity may occur in the output beam if the (z,d) injec-

between the positive z-axis in longitudinal
phase space and a linear fit of the beam.
The beam of order 10~2 in both coordinates
is much larger than the z = 1077 m,§ =

tion coordinates exceed the linear regime of the matrix calcu-
lation. However, this can be compensated for by calculating a
matrix using test particles of larger offset.

For a beam with the energy spread minimized at the end
of the ERL (Fig. 2, right), the appropriate tilt of the injected
distribution is determined by scanning over the possibilities. The slope of the line superimposed over the
Gaussian distribution is modified in uniform intervals until the o5 at beam stop has reached a minimum
value. Again, non-linear distortions to the shape of the output beam may arise if the input beam is larger
than the linear regime of the matrix.

107 offset used to calculate the matrix, re-
sulting in some nonlinear curvature in the
output beam.

3 ERL Symmetry: Bmad Simulator

The effectiveness of the Mathematica-based TL, UR, and FT models is limited by the accuracy of the
equations used to model the RF cavity as a time and energy coordinate transform. Mathematica models are
advantageous due to their rapid simulation speed, but they do not describe the CBETA behavior completely.
To model the behavior of the ERL in a more realistic manner, the time and energy interactions between a
cavity and beam must account for RF fields directly. This is accomplished using the Bmad simulator, which
can track particle time and energy through cavities using Runge Kutta integration.

In a Bmad hybrid lattice, like in the Mathematica models, the CBETA system is modeled as a series of
alternating drifts and cavities. Drifts are represented by identity transfer matrices that increase the time of
the system, but do not otherwise alter particle coordinates. The hybrid lattice does not consider transverse
effects of non-accelerating components, such as return loop optics; all such elements are replaced by drift
pipes in the hybrid model. The cavities use Runge Kutta integration with either fixed or variable step size
(fixed step time runge kutta or time runge kutta, in the Bmad language [3]). The RF fields can be
generated by assuming a standard pillbox waveguide (bmad standard field option) or interpolating a grid-
shaped map of field magnitudes (fieldmap option). Use of fieldmap cavities results in slower simulation



speed than the pillbox fields, since fieldmaps have more complex spatial dependencies; they are typically
generated in a different program, such as Microwave Studio, to account for the exact geometry of the CBETA
cavities.

In our models, Bmad is run via the Tao simu-

lation interface. The Appendix contains the Bmad Objective Pillbox Fieldmap
code required to create an example CBETA hybrid (eV) (Bmad) (Bmad)
lattice with pillbox cavities .and enforce ERL sym- AFoop.4 8514910~ L | -7.2021-10 1
metry, as well as the Tao script required to properly Elond 1 -2.6786-10—4 -4.6014
activate the Bmad code. With slight modifications EIOM’2 -3.1140.10-5 -2.1626
to the cavity and overlay element code, the Bmad Eion d,3 -8.4966-10~5° 7 5983
hybrid lattice can be adapted to use fieldmap cavi- Eload’4 6.4570-10~2 75821
ties instead. S . Bioaas | 6.7490-1072 | -2.1718
To measure the tolerance of optimization objec- Eload 6 7.6797-10~2 -4.5920
tives to errors in machine settings, each input can Ener’ - -
be varied by a slight, known amount to measure the (Mc\%,
reaction of the objectives. Combining these slopes
. . . . . Eioop1 42.1801 42.0116
via error propagation equations will result in val-
L Eioop,2 78.2023 78.0316
ues for system error tolerance when multiple inputs
. . . B Eioop,3 114.226 114.125
are simultaneously fluctuating. Error sensitivity and
. . Eioop,a 150.000 150.000
tolerance are further explored in the original ERL
symmetry report [L]. Eigop,s 114.226 114.125
Eioop,6 78.2023 78.0316
. . . _ Bloop.7 42.1801 42.0116
3.1 Hybrid with 7-Cell Pillbox Cavi- Eloop.s 6.00000 6.00000
ties Input - -
By default, Bmad approximates cavities as se- bo,1 (Z> 0.3851 4.0930
ries of stacked pillbox waveguides. When Bmad 0,2 (O) -41.5841 27.3243
lcavity element attributes are set in the bmad 0,3 (°) -83.5456 A7.4272
standard field calculation with the multi-cell trotal (145) 2.15429 2.15467
longitudinal mode O option, the transversely on- tioop,1 (K8) 0.26456 0.23729
axis electric field follows the spatial dependence, tioop,2 (115) 0.26455 0.23807
tioop,3 (1s) 0.26456 0.23731
E(s) = 2G sin(ks) sin(wt + ¢in), (16) qVn (MeV) 6.0500 6.0500

where G is the accelerating gradient of a v = ¢ parti- Table 3: Optimized objectives, beam energies, and in-
cle traveling through the cavity. This pseudo T My, Put setting solutions (phase, total time, loop time of
field resembles a 1°* harmonic pillbox, except that flights, and cavity voltage) after numerical optimiza-
the field is shifted in space to give the correct 0! tion of ¢g and tioa1 in Bmad CBETA hybrids.
harmonic symmetry [3]. This results in a field that

better models the field produced by elliptical cavi-

ties than a true 0" harmonic pillbox.

Tracking particles through pillbox cavities with fixed or variable step Runge Kutta results in energy
differences of less than 1 meV. The hybrid model uses variable step Runge Kutta beam tracking (Bmad time
runge kutta option), and it is optimized using the Levenberg-Marquardt differential algorithm. Optimized
values are given in Table 3. Note that all values of the form wt are 27 periodic; for instance, tyota1 may be
increased or decreased by any offset of %’r without affecting the solutions.

3.2 Hybrid with CBETA Fieldmap Cavities

Since CBETA cavities have an elliptical geometry [2], the Bmad pillbox fields are not the best model. A
more accurate model, albeit more computationally intensive, uses fieldmaps: grids of electric and magnetic
field magnitudes throughout the space of the cavity. Fieldmaps account better for the geometric effects of
the physical cavity. A transversely on-axis particle will only experience a field in the longitudinal direction

(Fig. 3).



The CBETA fieldmap visually appears to be symmetric about the cavity center. However, if the list of
on-axis field intensities (from s = 0 to s = L) is subtracted from a reversed list (from s = L to s = 0),
there is a maximum of 1.32% discrepancy between the forward and backward field sequences. Evidently,
this discrepancy is significant: if two fieldmap cavities are arranged in linear sequence (bringing one electron
from 6 MeV to 12 MeV, and back to 6 MeV), as in the 2-cavity symmetry condition derivation, symmetry
conditions lead to particle acceleration and deceleration that differ by energies on the order of 1-10 keV.
With such energy asymmetry present in a simple 2-cavity scenario, adding more cavities is most likely to
result in increasing asymmetry, and creating a symmetric ERL quickly becomes unfeasible.

If the fieldmap asymmetry is problematic, then
one may expect resolution when using a symmetric ‘ ‘ ‘
fieldmap. Tests of custom-generated ideal sinusoidal 2+ i
fieldmaps, which have perfect symmetry by mathe- P
matical definition, do appear to indicate that this i P
is a reasonable assumption. A modified CBETA N
fieldmap is constructed by averaging the original 0 :5: : 1
and reversed lists of field points. This way, the \ i !
grid points that had resulted in a 1.32% discrepancy Yoo P
have been shifted to midway between the asymmet- Lo ] i
ric magnitudes, and the fieldmap is now symmetric. -2t \j‘ "vr 'V' 1\/ .
When tested in the 2-cavity scenario, the symmetry ‘ ‘ ‘ ‘
conditions give acceleration and deceleration that 0.0 0.2 04 0.6 08 1.0
differ by less than 1 eV: a vast improvement over Cavity s (m)
the original, un-averaged fieldmap. Using this mod-
ified map, we then return to the hybrid ERL. Figure 3: Spatial dependence of the CBETA fieldmap

The Bmad hybrid lattice operates similarly with along the central axis of the cavity.

a pillbox or fieldmap cavity. However, while pillbox

cavities follow a sin(wAt + ¢;,) time dependence, fieldmaps are varied as cos(wAt + ¢i,). Hence, following
Table 1, the phase condition on fieldmap cavities must include an extra m to compensate for the different
time dependence. A similar optimization scheme is used, resulting in solutions of 1-10 eV precision (Table 6).
The larger magnitude of post-optimization objective values (1-10 eV, as opposed to under 1 eV) may indicate
higher calculation noise when fieldmap cavities are used.

Another potential solution to the fieldmap asymmetry, though unexplored in this study, is to use original
and reversed fieldmaps in a symmetric arrangement. That is, the original fieldmap will remain unmodified,
while a second map will be created using an exactly reversed s dependence. Since CBETA has an even
number of cavities, with N = 6, we can make the linac symmetric by putting forward-facing fieldmaps in the
first 3 cavities and backward-facing maps in the latter 3. Hence, during acceleration and deceleration, the
particle should encounter similar fields despite the lack of symmetry in an individual cavity. This potential
solution has not been tested in Bmad.

g (arb. units)

4 Conclusions

In this project, ERL symmetry has been successfully implemented in simplified CBETA simulations of
transversely on-axis particles traveling through drift and cavity elements. In cases where the RF fields are
symmetric within the cavities, the phase conditions derived in Eq. (6) and Eq. (7) successfully establish
symmetry. Following this arrangement, the tested systems have been optimized using the symmetry-reduced
variable-constraint system to minimize the load and achieve the target peak beam energy.

In the cases considered, only the load and maximum beam energy have been used as optimization goals.
Future CBETA simulations may expand this optimization system to consider additional parameters, such
as intermediate beam energy or beam energy spread. Detailed properties of non-accelerating elements, e.g.
loop optics and bending magnets, should also be considered in simulation before attempting to apply ERL
symmetry to a physical system; transverse effects may lead to more complex symmetry requirements than
identified in the purely longitudinal models considered here.
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6 Appendix
6.1 Mathematica CBETA Model

The Mathematica TL, UR, and FT models use the following basic framework to model a single on-axis
electron in a symmetric ERL with N = 6 cavities and M = 8 linac passes. A modified version of this code
is used in cases where symmetry may be broken, e.g. with particles of (z,9) offset or when measuring the
sensitivity to ERL setting error.

erlsim[phiin_, wtTot_] := Module[{
phi = Flatten[{phiin, Pi - wtTot - Reverse[phiin]}],
wtime = 8, energy = E®, eold = E®, load= {0, 6, B, B, B8, 8}, ePeak =8
}, Do[Do[
({# CAVITY =)
{wtime, energy} = cavity[wtime, energy, phi[[n]]]}
load[[n]] = load[[n]] + (energy - eold) ; eold = energy;
If(m=4&kn =6, ePeak = energy - 150 808 800] ;
{(# DRIFT =)
If[n <6, wtime = wtime + ws ldrift /v[energy]];

y {ny 6}]3;

(* RETURN LOOP +)
If[m< 4, wtime = wtime + wtloop[[m]],
If(m=4, wtime = wtime + (wtTot - 2wtime),
If[m< 8, wtime = wtime + wtloop[[8-m]]]]1];
y {my B}]3
Flatten[{ePeak, load}]]

This particular code is from the TL model: hence the presence of Pi in the phase condition from Eq. (6)
on line 2. The cavity[] module maps input time, energy, and ¢;, phase into output time and energy values,
and can take the form of a TL, UR, or FT equation system. EO is the particle energy at injection in eV, w
is the RF angular frequency in rad/s, 1drift is the length between the end of a cavity and the beginning of
the subsequent cavity, and v[energy] is the particle velocity. Time is scaled by a factor of w and measured
in radians for convenience. ERL input parameters include phiin, an array of input phases for the first 3
cavities; wtTot, the scaled version of tiota from Eq. (7); and wtloop, an array of 3 times of flight for the
first 3 return loops, which are reversed but identical for the last 3 loops in a symmetric system. This code
creates symmetry on the order of 10~7 eV. The outputs, peak energy offset ePeak and the array of cavity
load values, are then optimized with Newton’s method toward the target value 0.

6.2 Bmad CBETA Hybrid Model

The following Bmad code generates a sample CBETA hybrid lattice with only drift pipes and 7-cell pillbox
cavities. Numbers are consistent with the optimized solution only if the solution values in Table 3 take
precedence; this is indicated by the call, filename command, which invokes the optimized solution as
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an external list of attribute input values. Numbers unstated in the table are already optimized, and thus
remain unchanged, in this code. Due to CBETA convention, the first cavity after the injector is designated
RD1CAVO6 and the last RD1CAVO1. More information on Bmad code formatting can be found in the Bmad
manual [3].

parameter [lattice ] = "CBETA hybrid 6¢8p lattice”
parameter [geometry] = Open

parameter[e_tot | = 6eb6

parameter [particle ] = Electron
parameter [absolute_time_tracking | =T
beginning [ x _position] = 12.971553
beginning [z_position] = 11.5139582
beginning [theta_position] = —0.26179938779915
beginning [s] = 8.53583

beginning [ beta_a | = 0.34295156880491
beginning [alpha_a] = 0.72321443195869
beginning [beta_b | = 1.0004383576185
beginning [alpha_b] = 0.1884214500459

| === CAVITIES

RDICAV: Lcavity, descrip = "3DMODEL=7103—210_STL/7103—210_bare.blend”,
L = 0.807133540769230717338,
RFFREQUENCY = 1.3E9, , PHIO = 0,
N.CELL = 7, N.REF_PASS = 1, DSSTEP = 0.01,
tracking_method = time_runge_kutta, mat6_calc.method = tracking,
AUTOSCALE AMPLITUDE = F, AUTOSCALEPHASE = F, LONGITUDINALMODE = 0
RDI1CAV01: RDICAV
RD1CAV(02: RDICAV
RD1CAV03: RDICAV
RD1CAV04: RDICAV
RD1CAV05: RDICAV
RDI1CAV06: RDICAV

l===== INTERCAVITY DRIFTS ——
PIPEA: Pipe, L = 0.6033278592307693, DS.STEP = 0.01, aperture = 10

PIPEB: Pipe, L = 0.6033278592307693, DS.STEP = 0.01, aperture = 10
PIPEC: Pipe, L = 0.6033278592307693, DSSTEP = 0.01, aperture = 10
PIPED: Pipe, L = 0.6033278592307693, DS.STEP = 0.01, aperture = 10
PIPEE: Pipe, L = 0.6033278592307693, DS.STEP = 0.01, aperture = 10

l===== RETURN LOOPS =—=

LOOP1: Hybrid, type = "NBPIPE” |
DELTA REF TIME = 2.368749995073098E—-07,
mat6_calc_.method = Taylor, tracking_method = Taylor,

11},
f2: 1)2}.
(3 103},
(4 1)1},
{5 1]5}.
{6: 1|6}

LOOP2: Hybrid, type
DELTA REF_TIME =
mat6_calc_method
{1: 1)1},

{2: 1]2},

"NBPIPE” |
.368468384497991E-07,
Taylor, tracking_method = Taylor,

I o |l
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{3: 1|3},

(4 1)1},
{5: 1[5},
{6: 1|6}

LOOP3: Hybrid, type = "NBPIPE”
DELTA REF_TIME = 2.368368820576889E—-07,
mat6_calc_.method = Taylor, tracking.method = Taylor,

{1: 11},
{2: 1]2},
{3: 1|3},
{4: 1]4}
{5: 1]5}.
{6: 1|6}

LOOPP: Hybrid, type = "NBPIPE”, L =71.2846659779234,
DELTA REF_.TIME = 1.190803262451950E—7,
mat6_calc_method = Taylor, tracking.method = Taylor,
{1: 1|1},

{2: 12},
{3: 1|3},
{4: 1]},
{5: 1|5},
{6: 1|6}

LOOP5: loop3
LOOP6: loop?2
LOOPT7: loopl

multi_line_la: line [multipass] = (RD1CAV06,PIPEA,
RD1CAV05, PIPEB,
RDICAV)4, PIPEC,
RDICAV03, PIPED,
RDICAV02, PIPEE,
RDICAVO01)
lat: line = (multi_line_la , LOOPI,
multi_line_la , LOOP2,
multi_line_la , LOOP3,
multi_line_la ;, LOOPP,
multi_line_la , LOOP5,
multi_line_la , LOOPG6,
multi_line_la , LOOP7,
multi_line_la)
use, lat
call , filename="../timesymmetry/varl —20190329—nov—p0.in”

For fieldmap cavities, the CAVITY element in the lattice file is modified to call an external grid file, defined
in the grid field attribute:

CAVITY: Lcavity ,
L=1.14, n_cell=7, field_calc = fieldmap,
RFFREQUENCY = 1.3E9, PHIO = 0, VOLTAGE = 6.05¢6,
AUTOSCALE AMPLITUDE = F, AUTOSCALEPHASE = F,
FIELD_AUTOSCALE = 1.0000602602116610562177357,
grid_field = call::../fieldmaps/MLG-grid—cyl_201904 —axisymr .bmad,
tracking_method = fixed_step_time_runge_kutta , num_steps=1140,
mat6_calc_method = tracking
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6.2.1 Lattice Overlay

If a Bmad overlay element is added to the hybrid script before the lat: 1line definition, the properties
of multiple lattice elements can be controlled at once. The following code imposes the symmetry conditions
from Eq. (6) and Eq. (7), as well as ensuring that all cavities have the same RF frequency and gradient. In
addition, return loops carrying beams of identical energy are constrained to have the same times of flight.
Numbers stated have been found during an intermediate optimization stage. As before, optimized solutions
from Table 3 take precedence over the numbers here, particularly for phi01-3 and ttot values.

OLA: overlay = {

RDICAV06[ phi0O ] : phiO1 ,

RDICAVO05[ phi0 ] : phi02 ,

RD1CAV04[ phiO ] : phi03,

RDICAV03[phi0]: — freq*ttot —(phi03 —freq*tin03) +freqxtin04 ,
RDICAV02[phiO]: — freqxttot —(phi02 —freqx*tin02) +freqx*tin05 ,
RDICAVO01[phiO]: — freqxttot —(phi0l —freqxtin01l) +freqx*tin06 ,
RD1CAV06 [RFFREQUENCY | : freq , RDICAV06 [ GRADIENT|: gradl ,
RD1CAV05 [RFFREQUENCY | : freq , RD1CAV05[GRADIENT|: grad?2 ,
RD1CAVO4[RFFREQUENCY | : freq , RDICAVO4[GRADIENT]: grad3
RDI1CAV03[RFFREQUENCY]: freq , RDICAV03[GRADIENT]: grad3 ,
RDICAV02 [RFFREQUENCY | : freq , RDICAV02[GRADIENT]: grad2 ,
RD1CAV01 [RFFREQUENCY |: freq , RDICAV01 [GRADIENT|: gradl ,

LOOP1 [DELTA REF_TIME ] : tloopl ,
LOOP2[DELTA REF_TIME ] : tloop2 ,
LOOP3[DELTA REF_TIME ] : tloop3 ,
LOOPP [DELTA REF TIME]: ttot —2xtacc ,
LOOP5 [DELTA REF.TIME] : tloop3 ,
LOOP6 [ DELTA REF.TIME | : tloop2 ,
LOOP7[DELTA REF_TIME ] : tloopl },

var = {gradl,grad2,grad3, tloopl ,tloop2,tloop3,
freq ,ttot ,tacc ,phi0l,phi02,phi03,
tin01 , tin02 ,tin03 , tin04 , tin05 , tin06 },
freq=1.3E9,
gradl1=7.495661739238474518060E+06,
grad2=7.495661739238474518060E+06,
grad3=7.495661739238474518060E+06,
phi01=-1.069612157567734634505E—-03,
phi02=9.432810195658532584350E—03,
phi03=1.224977144027790745828E—-02,
ttot=2.154292829479637483151E—-06,
tacc=8.985447301214728925306E—-07,
tloop1=2.645554000000001826695E—-07,
tloop2=2.645522991200002675476E—07,
tloop3=2.645522991200002675476E—07,
tin01=0,
tin02=4.71147991648038992481E—09,
tin03=9.41869637863859074217E—-09,
tin04=1.41247494681694054310E—08,
tin05=1.88303158525942066161E—08,
tin06 =2.35356321067870731463E—08

For fieldmap cavities, the cavity length is different due to fringe fields and the CBETA elliptical geometry.
Additionally, since fieldmaps have a cos(wt) spatial dependence, the phase condition is modified according to
Table 1. Note that Bmad uses units of rad /2, instead of rad, to measure phase. The following parameters
in the overlay must be altered:
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RDICAV03[ phi0 ] :
RD1CAV02[ phiO | :
RD1CAVO01[ phiO | :

grad=5.3070175438596494495868683E+06,
length=1.14

6.2.2 Tao Symmetry Script

.5 —freq*ttot —(phi03 —freqxtin03) +freq*tin04
.5 —freq*ttot —(phi02 —freqxtin02) +freq*tin05
b —freq*ttot —(phi0l —freqx*tin01) +freq*tin06

Several parameters of the overlay can only be set after a test particle has been tracked through the lattice.
For example, tin05 indicates the particle entrance time to the 5" cavity, yet it is also used in determining
the phase of the 5" cavity. These parameters are set based on the data values calculated after Bmad is
initialized. Accordingly, the script should be called only after the particle has been tracked through an
initial, non-symmetrized lattice. Within the Tao simulation interface, the following script ensures that the
tracking-dependent parameters have accurate values:

set
set
set
set
set
set
set

ele
ele
ele
ele
ele
ele
ele

O_LA
O_LA
O_LA
O_LA
O_LA
O_LA
O_LA

tin01
tin02
tin03
tin04
tin05
tin06
tacc

ele:
ele:
ele:
ele:
ele :
ele:

_PIPEA\1[t] — ele :: BEGINNING|
_PIPEB\1[t] — ele ::BEGINNING|
:PIPEC\1[t] — ele::BEGINNING]
.PIPED\1[t] — ele ::BEGINNING|
.PIPEE\1[t] — ele :: BEGINNING|
ele : :RDICAVOI\4[t] — ele : : BEGINNIN
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:RDICAV06\1[t] — ele ::BEGINNING]t |



